Visual-Inertial Localization with Prior LiDAR Map Constraints

Xingxing Zuo^{1*}, Patrick Geneva^{2*}, Yulin Yang², Wenlong Ye¹, Yong Liu¹, and Guoquan Huang² November 15, 2019

¹Zhejiang University, Hangzhou, China
²University of Delaware, Newark DE, USA
* Contribute equally.

Motivation

- Micro air vehicles (MAV) are resource constrained with small sensor payload limits
- Leverage low-cost light-weight stereo visual-inertial sensors for estimation
- Leverage *a priori* point map information to bound estimation drift
- Focus on cross-modal constraints between semi-dense stereo and LiDAR prior pointclouds

Figure 1: EurocMav prior LiDAR map with example semi-dense stereo reconstruction.

- Design of a *tightly-coupled* MSCKF-based filter for low-cost multi-modal 6DOF pose estimation.
- Find global pose constraints through NDT registration of semi-dense stereo reconstruction and the prior LiDAR map.
- Handle covariance of registration and investigate sensitivity to prior map inaccuracies.
- Validate proposed system in simulation and real-world datasets and show superior performance over state-of-the-art.

Figure 2: Data flow and proposed map constraint generation.

- System composed of two main parts: (i) sparse feature tracking, (ii) semi-dense reconstruction and registration.
- Sparse feature tracks allow for fast ego-motion estimation and locally accurate estimates.
- Registration to the prior map limits provides globally accurate estimates with little drift.

Semi-Dense Reconstruction

Figure 3: Depth correspondence matching.

Figure 4: Without depth refinement (left). With depth refinement (right).

- Select keyframes with large baseline for refinement
- Refine depths by finding matches in other keyframes
- Prune noisy points in reconstructed pointcloud

Normal Distribution Transform (NDT) Registration

- Use point-to-distribution (P2D) of NDT to optimize map transformation ${C_k \atop M} \mathbf{R}, {}^M \mathbf{p}_{C_k}$ of semi-dense reconstruction
- Covariance can be found through inverse of cost function's Hessian matrix
- Can directly update filter as we additionally estimate the transformation between map and VIO frame {^G_M**R**, ^M**p**_G}

Figure 5: Example registration to prior map.

- Simulated 836m vehicle trajectory in Gazebo with realistic sensor noise values where used.
- System shows accuracy improvement when including prior map constraints over odometry method.

Figure 6: Orientation and position RMSE for the standard MSCKF and map-aided MSCKF with prior LiDAR map noises of $\sigma = 0.03m$).

Table 1: Trajectory RMSE with different levels of prior map noises.

RMSE	MSCKI	$\sigma = 0.03m$	$\begin{array}{l} \textbf{MSCKF}\\ \textbf{w/ Map}\\ \sigma=0.30m \end{array}$	$\begin{array}{l} \textbf{MSCKF}\\ \textbf{w/ Map}\\ \sigma=0.40m \end{array}$	$\begin{array}{l} \textbf{MSCKF} \\ \textbf{w/ Map} \\ \sigma = 0.50m \end{array}$
Position (m)	3.19	1.26	2.33	3.08	3.24
Orientation (deg)	2.77	1.11	1.87	2.22	2.94

- Looking at sensitivity to noisy prior maps, system is robust to large amounts of noise.
- Only after > 0.40m noise the filter degrades to standard MSCKF accuracy.

- Evaluated with provided LiDAR maps of EurocMav Vicon rooms
- Estimation occurs at 30Hz with prior map loop-closures at 1.25Hz
- Outperforms VINS-Mono with and without loop-closure

Table 2: Relative pose error fordifferent segment lengths.

Segment Length	MSCKF	MSCKF w/ Map	VINS-Mono (odom)	VINS-Mono (loop)
7m	0.136	0.143	0.162	0.156
14m	0.148	0.154	0.180	0.160
21m	0.194	0.184	0.233	0.208
28m	0.202	0.175	0.246	0.223
35m	0.237	0.191	0.273	0.260

Visual-Inertial Localization with Prior LiDAR Map Constraints

Xingxing Zuo*, Patrick Geneva, Yulin Yang, Wenlong Ye*, Yong Liu* and Guoquan Huang

RPNG, University of Delaware, USA *Institute of Cyber-Systems & Control, Zhejiang University, China

Conclusion

- Proposed inclusion of cross-modal prior map constraints in MSCKF framework.
- Leveraged NDT registration of semi-dense reconstruction to prior pointcloud.
- System shows robustness to prior map noises.
- Outperforms state-of-the-art due to inclusion of prior map constraints
- Base system used, OpenVINS, has been open sourced: https://github.com/rpng/open_vins