
LIC-Fusion: LiDAR-Inertial-Camera Odometry



Motivation

3D LiDAR: accurate range measurements but 
suffers from point cloud sparsity, high cost, and 
lower collection rates

Camera: informative appearances, light-
weight, low-cost, but susceptible to lighting 
conditions

IMU: Proprioceptive sensor which measures the
velocity and linear acceleration of the sensing 
platform in a high frequency

• A tightly-coupled odometry by leveraging the 
“best” of each sensor modality 2

Fig 1. LiDAR and visual features
used in the proposed LIC-Fusion. 



Contributions

• Design of a tightly-coupled, light-weight  LiDAR-inertial-camera (LIC) 
odometry

• With online spatial and temporal calibrations between different sensor 
modalities. Correlations between states are explicitly modeled and 
analytically derived.

• IMU measurements, sparse visual features, and two different sparse 
LiDAR features are used for update in a light-weight EKF framework.

• Validate proposed system in both indoor and outdoor environments even 
under extremely aggressive motion and show superior performance over 
state-of-the-art.
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System Overview

• System composed of two main parts: (i) . Propagation by high-frequency 
IMU, (ii). Update by sparse visual and LiDAR feature     
• State vector including the extrinsics between sensors, cloned IMU states at 
the time instant of receiving the image and LiDAR scan:

• States are correlated and the covariance matrix is maintained. 4

Fig 2. Data flow of LIC-fusion in a EKF based MSCKF framework. 

 



Propagation

• Propagate up to IMU time 
𝑘

which is the 
current best estimate of the measurement 
collection time in the IMU clock.
For example, if a new LiDAR scan is received with 
timestamp 𝐿𝑘 , we will propagate up to 𝐼𝑘 𝐿𝑘 𝑑𝐿

• Augment the state vector by stochastic cloning

• The propagation is a function of the temporal 
and spatial extrinsics, which allow our 
measurements model to update the poses and 
extrinsics jointly.
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Fig 3. Time offset between IMU and 
Camera/LiDAR



Update by Measurements
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Fig 5. Measurements from 
multiple modalities for update.

• LiDAR Features: extract high and low curvature 
sections of LiDAR scan rings which correspond to 
edge and planar surf features [Ji Zhang 2014]. 
Matching those features between scans.

• Visual features: initialize in 3D by triangulation.  
Null-space operations are performed for remove 
the dependency of 3D features.



Experiments Results I : Outdoor

• • 800 meters in length recorded in a university campus scenario 
while mounting the sensors rig on a car.

• LIC-fusion shows superior performance regarding accuracy.
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Fig 6. The self-
assembled LiDAR-
inertial-camera rig .

Fig 7. Estimated trajectories compared with MSCKF, Loam, Ground 
truth from RTK-GPS. And the Average mean squared errors.



Experiments Results I : Outdoor

• 800 meters in length recorded in a university campus scenario while 
mounting the sensors rig on a car.

• LIC-fusion shows superior performance regarding accuracy.
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Experiments Results II : Indoor

• Tested in multiple indoor scenarios while holding the sensors rig by hand.

• LIC-fusion shows superior performance regarding accuracy.
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Fig 6. The Indoor-A scenario. Fig 7.  The estimated trajectories in 
indoor scenarios.



Experiments Results III : Aggressive Motion Test

• Shake the sensors rig as strongly as possible by hand. Violent rotation and 
acceleration: raw IMU measurements over 8 rad/s and 25 m/s^2 at some 
instants.

• LIC-fusion shows superior performance regarding robustness to high 
dynamics. 10

Fig 8.  Raw IMU measurements over the 
high-dynamic Indoor-C sequence. 

Fig 9.  The estimated trajectories over the 
high-dynamic Indoor-C sequence.



System Demonstration
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Conclusion

• Proposed tightly-coupled, light-weight  LiDAR-inertial-camera (LIC) odometry.

• With online spatial and temporal calibrations between different sensor 
modalities.

• System shows robustness to high dynamics.

• Outperforms state-of-the-art due to fully utilizing multiple types of 
measurements in a tightly-coupled way.
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Thanks for listening！

Xingxing Zuo
xingxingzuo@zju.edu.cn
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