

Online IMU Intrinsic Calibration: Is It Necessary?

Yulin Yang¹, Patrick Geneva¹, Xingxing Zuo², Guoquan (Paul) Huang¹

¹ Robot Perception and Navigation Group (RPNG), University of Delaware ² Institute of Cyber-System and Control, Zhejiang University, Hangzhou, China

Motivation

- Visual-Inertial Navigation System (VINS) has been widely used in 6D pose tracking for mobile robots
- > Online calibration can benefit system performance.
 - Camera extrinsics, intrinsics, and cam-imu time offset
 - Limited investigation of IMU intrinsics
- Does online IMU intrinsic calibration improve performance?
 - IMU intrinsic **observability**?
 - Any **degenerate** motions?

IMU Intrinsic Model

The corrected IMU readings can be listed as:

$${}^{I}\boldsymbol{\omega} = {}^{I}_{w}\mathbf{R}\mathbf{D}_{w}\left({}^{w}\boldsymbol{\omega}_{m} - \mathbf{b}_{g} - \mathbf{n}_{g}
ight)$$

$${}^{I}\mathbf{a} = {}^{I}_{a}\mathbf{R}\mathbf{D}_{a}\left({}^{a}\mathbf{a}_{m} - \mathbf{b}_{a} - \mathbf{n}_{a}\right) - {}^{I}_{G}\mathbf{R}^{G}\mathbf{g}$$

where \mathbf{D}_* represents scale and skew correction to $\{w\}$ or $\{a\}$

> 4 IMU model variants (15 DoF):

- > System State (including IMU, intrinsics and feature): $\mathbf{x} = \begin{bmatrix} \mathbf{x}_I^\top & \mathbf{x}_{in}^\top & \mathbf{x}_f^\top \end{bmatrix}^\top$
- > System ODE: $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{n}_I)$ \longrightarrow $\tilde{\mathbf{x}}_{k+1} \simeq \Phi_{(k+1,k)} \tilde{\mathbf{x}}_k + \mathbf{G}_k \mathbf{n}_{Ik}$
- > Visual Feats: $\mathbf{z} \triangleq \begin{bmatrix} u \\ v \end{bmatrix} = \mathbf{h}(\mathbf{x}) + \mathbf{n}_f \longrightarrow \tilde{\mathbf{z}}_k \simeq \mathbf{H}_k \tilde{\mathbf{x}}_k + \mathbf{n}_{fk}$

* imu2 is used for the rest of the paper.

Observability Analysis

> The observability matrix can be built:

$$\mathbf{M} = \begin{bmatrix} \mathbf{M}_1 \\ \mathbf{M}_2 \\ \vdots \\ \mathbf{M}_k \end{bmatrix} = \begin{bmatrix} \mathbf{H}_1 \\ \mathbf{H}_2 \mathbf{\Phi}_{(2,1)} \\ \vdots \\ \mathbf{H}_k \mathbf{\Phi}_{(k,1)} \end{bmatrix}$$

Given fully-excited motions, even with monocular camera, IMU intrinsic parameters will be observable.

Degenerate motions

Motion Types	Nullspace Dim.	Unobservable Parameters
constant ${}^{w}\omega_1$	1	d_{w11}
constant ${}^{w}\omega_{2}$	2	d_{w12}, d_{w22}
constant $^{w}\omega_{3}$	3	$d_{w13}, d_{w23}, d_{w33}$
constant $^{a}a_{1}$	3	d_{a11} , pitch and yaw of ${}^{I}_{a}\mathbf{R}$
constant $^{a}a_{2}$	3	d_{a12}, d_{a22} , roll of ${}^{I}_{a}\mathbf{R}$
constant $^{a}a_{3}$	3	$d_{a13}, d_{a23}, d_{a33}$

*	Any combination of these degenerate motions is still degenerate.				
	0	1-axis rotation (e.g. MAVs)			
	0	Constant accel x motion (e.g. cars)			
	0	Planar motion (e.g. cars)			

Simulation: General Motion

\succ Simulation Setup

- **OpenVINS simulator with IMU-camera pair** Ο
- 4 variants are tested with Monte-Carlo \bigcirc
- 216 meter with 3 motion profiles Ο
- Fully-excited motion, full calibration, all converge ! \succ

Simulation: Degenerate Motions

1-axis rotation: dw1, dw2, dw3

> Constant a_x: da1, pitch and yaw of ${}^{I}_{a}\mathbf{R}$

and gain information

Real-World: TUM and KAIST

TABLE IV: Absolute Trajectory Error (ATE) on TUM VI room equences (with units degrees/meters). *imu1* denotes \mathbf{D}_{a6} , $\mathbf{D}_{\omega 6}$, ${}^{I}_{w}\mathbf{R}$; *imu2* denotes \mathbf{D}_{a6} , $\mathbf{D}_{\omega 6}$, ${}^{I}_{a}\mathbf{R}$; *imu3* denotes \mathbf{D}_{a6} , $\mathbf{D}_{\omega 6}$, ${}^{I}_{w}\mathbf{R}$; *imu4* denotes \mathbf{D}_{a9} , $\mathbf{D}_{\omega 6}$.

IN WN

IMU Model	dataset-room1	dataset-room2	dataset-room3	dataset-room4	dataset-room5	dataset-room6	Average	
VIO	1.430 / 0.089	1.173 / 0.064	1.934 / 0.088	1.333 / 0.054	1.140 / 0.092	0.888 / 0.056	1.317 / 0.074	Handheld Motions:
imu l	0.954 / 0.066	1.153 / 0.059	1.809 / 0.074	1.175 / 0.038	1.028 / 0.073	1.017 / 0.033	1.189 / 0.057	Improved Accuracy!
imu2	0.877 / 0.077	1.170 / 0.051	1.974 / 0.076	1.148 / 0.039	0.950 / 0.081	0.825 / 0.038	1.157 / 0.060	
imu3	0.957 / 0.065	1.142 / 0.058	1.836 / 0.075	1.211 / 0.039	1.006 / 0.073	1.021 / 0.034	1.196 / 0.057	
imu4	0.893 / 0.077	1.173 / 0.052	1.896 / 0.076	1.134 / 0.038	1.259 / 0.097	0.823 / 0.038	1.196 / 0.063	

Online IMU Intrinsic Calibration: Is It Necessary?

Recommended for <u>fully-excited</u> motions

Not recommended for underactuated motions (most non-handheld will be degenerate)

- Observability and degenerate motion analysis for IMU intrinsics
- > Extensive evaluations in simulation and real-world
- > Future: Full VINS calibration analysis

Yulin Yang, yuyang@udel.edu Robot Perception and Navigation Group (RPNG)

