Visual-Inertial Odometry with Point and Line Features

Yulin Yang, Patrick Geneva, Kevin Eckenhoff and Guoquan Huang November 15, 2019

University of Delaware, Newark DE, USA

Introduction

- Visual-inertial navigation is widely used for 6DOF estimation.
- Rich amount of geometrical information available in man-made environment can be exploited.
- Points and lines are most commonly seen and can both be utilized for robust and accurate pose estimation.

- A tightly-coupled monocular visual-inertial navigation system which leverages point&lines and is evaluated on real-world datasets.
- Discuss two 3D line feature triangulation algorithms.
- Degenerate motion identification for 3D line triangulation based on line segment measurements.
- Performance evaluation for 3 line representations in a visual SLAM scenario.

Related Work

- Kottas et al. [1] proposed to used lines in VIO with quaternion representation and performed line obs analysis.
- Guo et al. [2] utilized SLAM line (free&structural) within an visual-inertial SLAM system.
 - No degenerate motion analysis.
 - Only use only quaternion to represent line orientation.
- Yu et al. [3] proposed two point inverse depth parameterization and applied line feature for rolling shutter.
 - No degenerate motion analysis.
 - No comparisons of line triangulation algorithms.

^[1] Kottas and Roumeliotis, "Efficient and consistent vision-aided inertial navigation using line observations"

^[2] Guo et al., "Large-scale cooperative 3d visual-inertial mapping in a manhattan world"

^[3] Yu and Mourikis, "Vision-aided inertial navigation with line features and a rolling-shutter camera"

Problem Formulation

- State parameters: $\mathbf{x} = \begin{bmatrix} \mathbf{x}_I^\top & \mathbf{x}_{calib}^\top & t_d & \mathbf{x}_c^\top \end{bmatrix}^\top$
- Perform online spatial and temporal calibration for both point&line features.
- Limit state vector size through MSCKF feature null-space operation.

Line Measurement

• Camera line measurement:

- Start endpoint:
 - $\mathbf{x}_s = [u_s, v_s, 1]^\top$
- End endpoint: $\mathbf{x}_e = [u_e, v_e, 1]^\top$
- Projected 2D image line: L

RPNG

Line Representation

- The norm of plane formed by line with orig O: \mathbf{n}_e .
- Line direction: \mathbf{v}_e
- Line distance to orig \mathbf{O} : d_l .
- Orientation form $\mathbf{R}(\bar{q}) = [\mathbf{n}_e, \mathbf{v}_e, \mathbf{n}_e \times \mathbf{v}_e].$

Model #	Line	Error states
Orthonormal	\mathbf{n}_l , \mathbf{v}_l	$\delta oldsymbol{ heta}_l$, $\delta \phi_l$
Quaternion	d_l , \bar{q}_l with $\mathbf{R}(\bar{q}_l) = [\mathbf{n}_e, \mathbf{v}_e, \mathbf{n}_e imes \mathbf{v}_e]$	$\delta oldsymbol{ heta}_l$, $ ilde{d}_l$
Closest Point (CP)	$\mathbf{p}_l = d_l \bar{q}_l$	$\mathbf{p}_l = \hat{\mathbf{p}}_l + ilde{\mathbf{p}}_l$

Simulation: Line Representation Comparisons

- Visual SLAM environment.
- Orthogonal, Quat and Closest Point (CP) line are compared.
- Finding: Quat and CP perform equally better than Ortho.

Given series of line segment observations from different clones \Rightarrow Estimate of geometric elements (\mathbf{n}_e , \mathbf{v}_e and d_l) of the 3D line.

- Algorithm A: based on orthogonality to formulate linear system to recover n_e, v_e and d_l respectively.
- Algorithm B: based on two intersecting planes to formulate Plücker matrix which contains 3D line parameters.

RPNG

Line Triangulation - Algorithm A

Algorithm A:

• Recover \mathbf{n}_e :

$$C_1 \mathbf{n}_e = rac{\mathbf{x}_{s1} imes \mathbf{x}_{e1}}{\|\mathbf{x}_{s1} imes \mathbf{x}_{e1}\|}$$

• Recover \mathbf{v}_e :

$$\begin{bmatrix} \vdots \\ C_i \mathbf{n}_{eiC_i}^{\top C_1} \mathbf{R}^{\top} \\ \vdots \end{bmatrix}^{C_1} \mathbf{v}_{e1} = \mathbf{0}$$

• Recover the line distance d_l:

$$\begin{bmatrix} \vdots \\ \mathbf{b}_i^{\top C_1} \mathbf{n}_{e1} \\ \vdots \end{bmatrix}^{C_1} d_l = \begin{bmatrix} \vdots \\ \mathbf{b}_i^{\top} \lfloor^{C_1} \mathbf{p}_{C_i} \rfloor_{C_i}^{C_1} \mathbf{R}^{C_i} \mathbf{v}_{ei} \\ \vdots \end{bmatrix}$$

where $\mathbf{b}_i = \lfloor^{C_1} \mathbf{v}_{e1} \rfloor_{C_i}^{C_1} \mathbf{R}^{C_i} \mathbf{n}_{ei}$. RPNG

Algorithm B:

• The Plücker matrix:

$$\mathbf{L}^* = \pi_1 \pi_i^\top - \pi_i \pi_1^\top = \begin{bmatrix} \lfloor ^{C_1} \mathbf{v}_{e1}^{(i)} \rfloor & ^{C_1} d_l^{(i)} C_1 \mathbf{n}_{e1}^{(i)} \\ - ^{C_1} d_l^{(i)} (^{C_1} \mathbf{n}_{e1}^{(i)})^\top & 0 \end{bmatrix}$$

• Recover geometry:

$${}^{C_{1}}\mathbf{n}_{e1} = \sum_{i=2}^{m} {}^{C_{1}}\mathbf{n}_{e1}^{(i)} / \left\| \sum_{i=2}^{m} {}^{C_{1}}\mathbf{n}_{e1}^{(i)} \right\|$$
$${}^{C_{1}}\mathbf{v}_{e1} = \sum_{i=2}^{m} {}^{C_{1}}\mathbf{v}_{e1}^{(i)} / \left\| \sum_{i=2}^{m} {}^{C_{1}}\mathbf{v}_{e1}^{(i)} \right\|$$

RPNG

Degenerate Motion

- Degenerate motions cause the line parameters to become unobservable, hence should be avoided.
- Any combined degenerate motions are also degenerate (i.e. all motions within the plane π will be degenerate).

Table 1: Degenerate Motion Summary

Motion	Solvable	Unsolvable
Along line direction: \mathbf{v}_e	\mathbf{n}_e	\mathbf{v}_e and d
Toward line: $\mathbf{v}_e imes \mathbf{n}_e$	\mathbf{n}_e	\mathbf{v}_e and d
Pure rotation	\mathbf{n}_{e}	\mathbf{v}_e and d
Perpendicular to plane: \mathbf{n}_e	$\mathbf{n}_e, \mathbf{v}_e$ and d	-
Random motion	$\mathbf{n}_{e}, \mathbf{v}_{e}$ and d	-

RPNG

Simulation: Triangulation Algorithm and Degenerate Motion

- Simulate 3 motions with 8 lines.
- Algorithm A&B are implemented.
- Lines 1,5&8 are degenerate in 1D motion.

Simulation: Triangulation Algorithm and Degenerate Motion

- Algorithm A, which takes advantage of the geometrical orthogonality, is better than B.
- Algorithm A w/ 3D motion performs best.

Real-World Experiments: EuRoc Datasets Results

- Adding lines improves the overall accuracy in most cases.
- Line quality is affected by environment structure, mono camera motion and visual tracking.

RPNG

University of Delaware

System Demonstration

Visual-Inertial Odometry with Point and Line Features

Yulin Yang, Patrick Geneva, Kevin Eckenhoff and Guoquan Huang

Robot Perception and Navigation Group (RPNG) Department of Mechanical Engineering University of Delaware

Visual Inertial Odometry with Point and Line Features

- A tightly-coupled mono-VIO with point&line features.
- Analysis different line triangulation algorithms and their degenerate motion.
- Compared line representations and showed Quat. and CP outperformed Ortho for larger pixel noises.
- Future work: Leverage SLAM line features (free&structural line), evaluate inverse depth line representations.

Y. Yang, P. Geneva, K. Eckenhoff, G. Huang {yuyang,pgeneva, keck, ghuang}@udel.edu