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Introduction

• Visual-inertial navigation is widely used for 6DOF estimation.

• Rich amount of geometrical information available in

man-made environment can be exploited.

• Points and lines are most commonly seen and can both be

utilized for robust and accurate pose estimation.
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Contribution

• A tightly-coupled monocular visual-inertial navigation system

which leverages point&lines and is evaluated on real-world

datasets.

• Discuss two 3D line feature triangulation algorithms.

• Degenerate motion identification for 3D line triangulation

based on line segment measurements.

• Performance evaluation for 3 line representations in a visual

SLAM scenario.
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Related Work

• Kottas et al. [1] proposed to used lines in VIO with

quaternion representation and performed line obs analysis.

• Guo et al. [2] utilized SLAM line (free&structural) within an
visual-inertial SLAM system.

• No degenerate motion analysis.

• Only use only quaternion to represent line orientation.

• Yu et al. [3] proposed two point inverse depth
parameterization and applied line feature for rolling shutter.

• No degenerate motion analysis.

• No comparisons of line triangulation algorithms.

[1] Kottas and Roumeliotis, “Efficient and consistent vision-aided inertial navigation using line observations”

[2] Guo et al., “Large-scale cooperative 3d visual-inertial mapping in a manhattan world”

[3] Yu and Mourikis, “Vision-aided inertial navigation with line features and a rolling-shutter camera”
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Problem Formulation

• State parameters: x =
[
x>I x>calib td x>c

]>
• Perform online spatial and temporal calibration for both

point&line features.

• Limit state vector size through MSCKF feature null-space

operation.

University of Delaware 4



Line Measurement

• Camera line measurement:

zl =
[

x>
s l√
l21+l22

x>
e l√
l21+l22

]>
(1)

• Start endpoint:

xs = [us, vs, 1]>

• End endpoint:

xe = [ue, ve, 1]>

• Projected 2D image

line: L
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Line Representation

• The norm of plane formed by line with

orig O: ne .

• Line direction: ve

• Line distance to orig O: dl .

• Orientation form R(q̄) = [ne,ve,ne×ve].

Model # Line Error states

Orthonormal nl, vl δθl, δφl

Quaternion
dl, q̄l with

R(q̄l) = [ne,ve,ne × ve]
δθl, d̃l

Closest Point (CP) pl = dlq̄l pl = p̂l + p̃l
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Simulation: Line Representation Comparisons

• Visual SLAM environment.

• Orthogonal, Quat and Closest

Point (CP) line are compared.

• Finding: Quat and CP perform

equally better than Ortho.
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Line Triangulation - Overview

Given series of line segment observations from different clones

⇒ Estimate of geometric elements (ne, ve and dl) of the 3D line.

• Algorithm A: based on

orthogonality to formulate linear

system to recover ne, ve and dl

respectively.

• Algorithm B: based on two

intersecting planes to formulate

Plücker matrix which contains 3D

line parameters.
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Line Triangulation - Algorithm A

Algorithm A:

• Recover ne:
C1ne = xs1×xe1

‖xs1×xe1‖

• Recover ve:
...

Cin>ei
C1
Ci
R>

...

 C1ve1 = 0

• Recover the line distance dl:
...

b>i
C1ne1
...

 C1dl =


...

b>i bC1pCic
C1
Ci
RCivei

...


where bi = bC1ve1cC1

Ci
RCinei.
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Line Triangulation - Algorithm B

Algorithm B:

• The Plücker matrix:

L∗ = π1π
>
i − πiπ>1 =[

bC1v
(i)
e1 c C1d

(i)
l

C1n
(i)
e1

−C1d
(i)
l (C1n

(i)
e1 )> 0

]

• Recover geometry:

C1ne1 =
m∑
i=2

C1n
(i)
e1 /

∥∥∥∥∥
m∑
i=2

C1n
(i)
e1

∥∥∥∥∥
C1ve1 =

m∑
i=2

C1v
(i)
e1 /

∥∥∥∥∥
m∑
i=2

C1v
(i)
e1

∥∥∥∥∥
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Degenerate Motion

• Degenerate motions cause the line parameters to become

unobservable, hence should be avoided.

• Any combined degenerate motions are also degenerate (i.e. all

motions within the plane π will be degenerate).

Table 1: Degenerate Motion Summary

Motion Solvable Unsolvable

Along line direction: ve ne ve and d

Toward line: ve × ne ne ve and d

Pure rotation ne ve and d

Perpendicular to plane: ne ne,ve and d -

Random motion ne,ve and d -
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Simulation: Triangulation Algorithm and Degenerate Motion

• Simulate 3 motions with 8 lines.

• Algorithm A&B are implemented.

• Lines 1,5&8 are degenerate in 1D

motion.
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Simulation: Triangulation Algorithm and Degenerate Motion

• Algorithm A, which takes advantage of the geometrical

orthogonality, is better than B.

• Algorithm A w/ 3D motion performs best.
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Real-World Experiments: EuRoc Datasets Results

• Adding lines improves the overall

accuracy in most cases.

• Line quality is affected by environment

structure, mono camera motion and

visual tracking.
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System Demonstration
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Conclusions and Future Work

Visual Inertial Odometry with Point and Line

Features

• A tightly-coupled mono-VIO with point&line features.

• Analysis different line triangulation algorithms and their

degenerate motion.

• Compared line representations and showed Quat. and CP

outperformed Ortho for larger pixel noises.

• Future work: Leverage SLAM line features (free&structural

line), evaluate inverse depth line representations.

Y. Yang, P. Geneva, K. Eckenhoff, G. Huang

{yuyang,pgeneva, keck, ghuang}@udel.edu
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