

Fast Monocular Visual-Inertial Initialization Leveraging Learned Single-View Depth

Nathaniel Merrill, Patrick Geneva, Saimouli Katragadda, Chuchu Chen, and Guoquan Huang

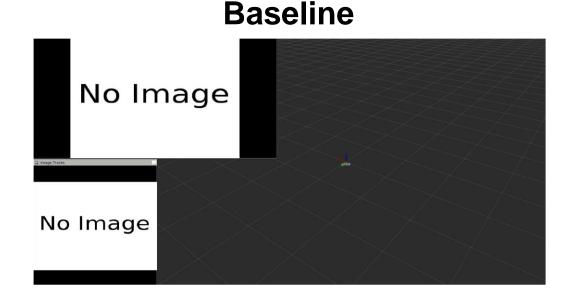
> Robot Perception and Navigation Group (RPNG) University of Delaware, USA

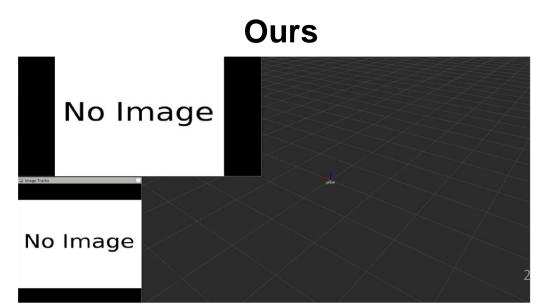
Introduction

- Visual-Inertial Odometry (VIO) requires accurate initial conditions to run
- State-of-the-art systems require 2sec, large parallax and many features to init

Introduction

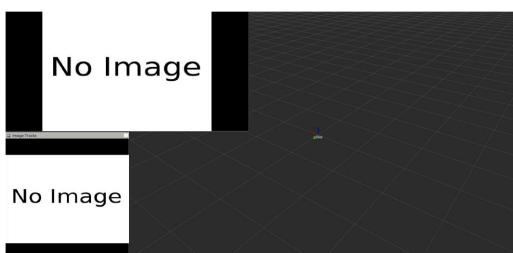
- Visual-Inertial Odometry (VIO) requires accurate initial conditions to run
- State-of-the-art systems require 2sec, large parallax and many features to init
- This work
 - Propose a new initialization method for monocular VIO using learned monocular depth



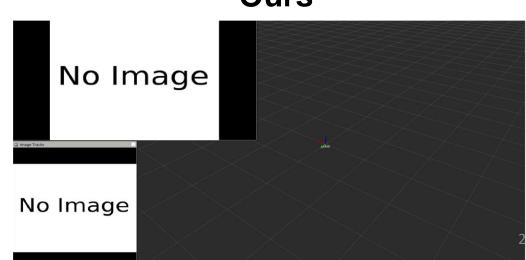


Introduction

- Visual-Inertial Odometry (VIO) requires accurate initial conditions to run
- State-of-the-art systems require 2sec, large parallax and many features to init
- This work
 - Propose a new initialization method for monocular VIO using learned monocular depth
 - Our method is shown to be faster, more accurate, and more robust, initializing in only 300ms with low parallax and as low as 15 features



Baseline



Ours

Baseline Monocular Visual-Inertial Initialization

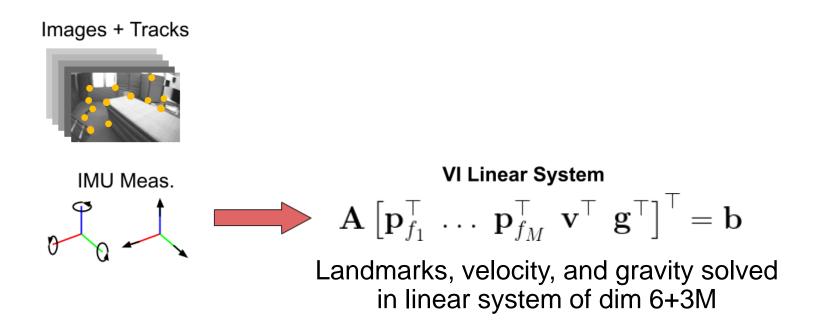
- State-of-the-art monocular initialization methods [1] use image tracks and IMU measurements in a VI-SfM to solve for initial conditions
- Large number (M) features required to initialize

Images + Tracks

IMU Meas.

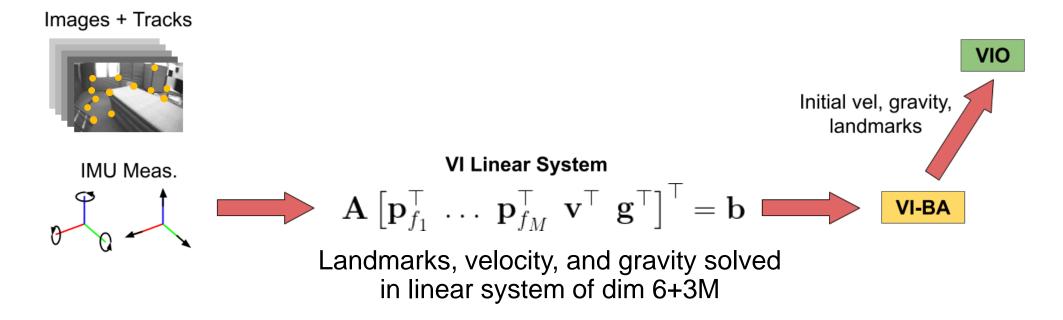
Baseline Monocular Visual-Inertial Initialization

- State-of-the-art monocular initialization methods [1] use image tracks and IMU measurements in a VI-SfM to solve for initial conditions
- Large number (M) features required to initialize



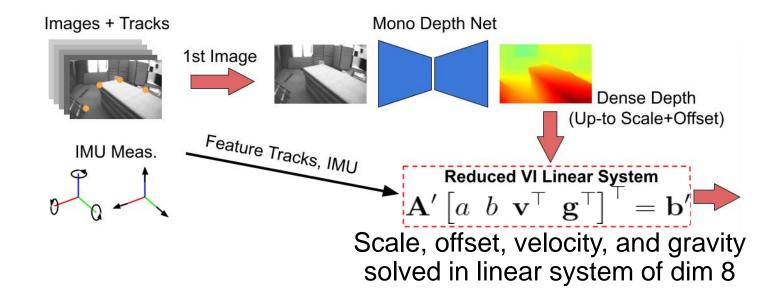
Baseline Monocular Visual-Inertial Initialization

- State-of-the-art monocular initialization methods [1] use image tracks and IMU measurements in a VI-SfM to solve for initial conditions
- Large number (M) features required to initialize



- Key idea: leverage learned monocular depth to reduce the linear system
 - Propose new model of 3D landmarks w.r.t. learned affine-invariant depth d_i

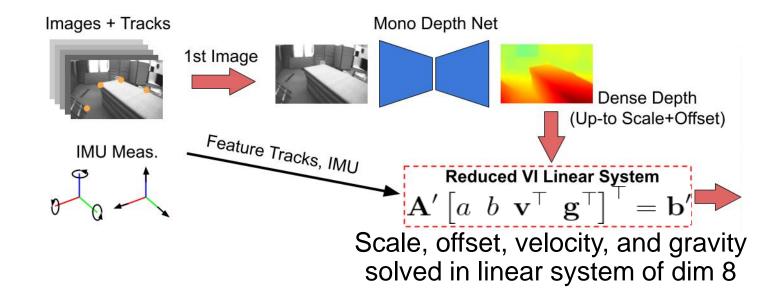
$$\mathbf{p}_{f_i} = z_i \ \boldsymbol{\theta}_{f_i} \\ = (ad_i + b) \ \boldsymbol{\theta}_{f_i}$$



- Key idea: leverage learned monocular depth to reduce the linear system
 - Propose new model of 3D landmarks w.r.t. learned affine-invariant depth d_i

$$\mathbf{p}_{f_i} = z_i \; \boldsymbol{\theta}_{f_i}$$

 $= (ad_i + b) \; \boldsymbol{\theta}_{f_i}$ Only estimate a , b to
represent all landmarks

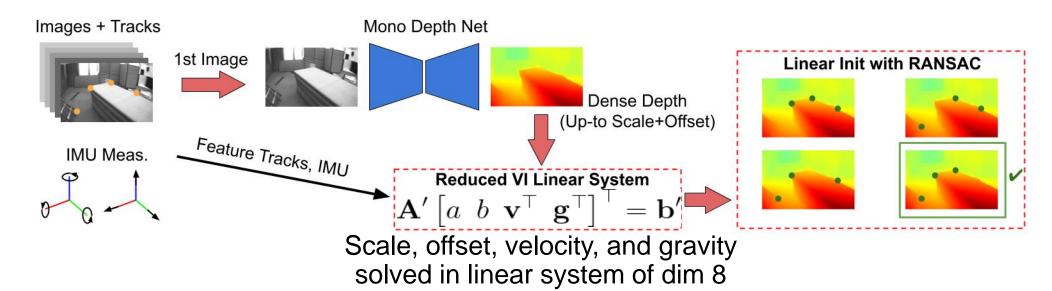


- Key idea: leverage learned monocular depth to reduce the linear system
 - Propose new model of 3D landmarks w.r.t. learned affine-invariant depth d_i

$$\mathbf{D}_{f_i} = z_i \; \boldsymbol{\theta}_{f_i}$$

 $= (ad_i + b) \; \boldsymbol{\theta}_{f_i}$ Only estimate a , b to
represent all landmarks

Because of the reduced system, RANSAC is practical
 Minimal problem reduced from 6+3M for M landmarks to 8

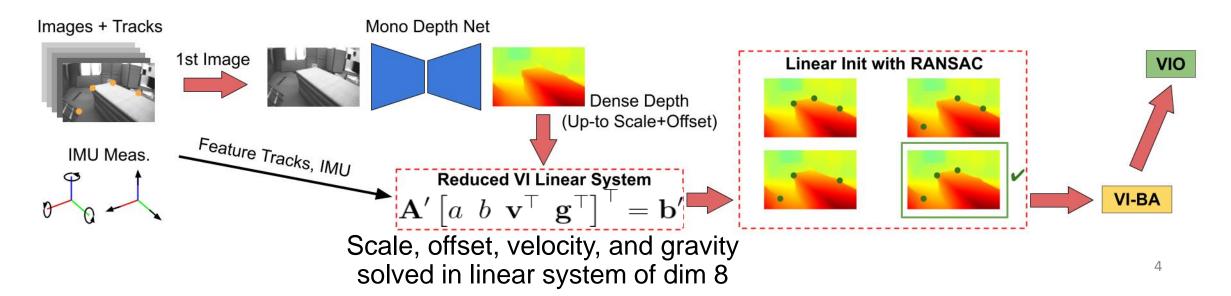


- Key idea: leverage learned monocular depth to reduce the linear system
 - Propose new model of 3D landmarks w.r.t. learned affine-invariant depth d_i

$$\mathbf{p}_{f_i} = z_i \ \boldsymbol{\theta}_{f_i}$$

 $= (ad_i + b) \ \boldsymbol{\theta}_{f_i}$ Only estimate a, b to
represent all landmarks

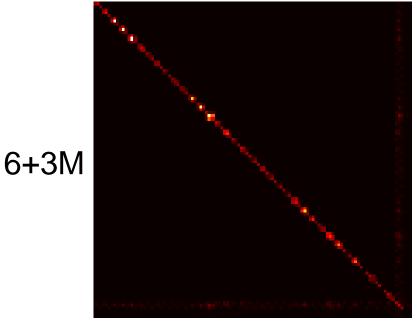
Because of the reduced system, RANSAC is practical
 Minimal problem reduced from 6+3M for M landmarks to 8



Linear System Structure

- Our linear system is considerably smaller than the baseline one
- Replacing M landmark positions with a, b reduces the size to 8

Baseline $\mathbf{A}^{\top}\mathbf{A}$



EuRoC Results

Table: Scale error (%)

 Tested on EuRoC Vicon room datasets with 5 KFs over a 0.5sec window (avg over hundreds of initializations), and using MiDaS [1] network

Comparisons

- DS 3D: Baseline initialization (Dong-Si [2]) with 3D landmarks
- **DS + DP:** Our reimplementation of [3] (mono depth priors in VI-BA)

Algorithm	Avg.	Algorithm	Average
DS 3D DS + DP	57.6 58.8	DS 3D DS + DP	1.592 / 0.028 1.523 / 0.027
Ours w/o RANSAC Ours	17.3 5.8	Zhou [3] Ours w/o RANSAC Ours	- / 0.024 1.467 / 0.026 1.419 / 0.022

Table: ATE (deg / m)

[1] R. Ranftl et. al, "Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer," in TPAMI 2022.
[2] T.-C. Dong-Si and A. I. Mourikis, "Estimator initial-ization in vision-aided inertial navigation with unknown camera-imu calibration," in IROS 2012
[3] Y. Zhou et. al, "Learned Monocular Depth Priors in Visual-Inertial Initialization," in ECCV 2022.

EuRoC Results

Table: Scale error (%)

 Tested on EuRoC Vicon room datasets with 5 KFs over a 0.5sec window (avg over hundreds of initializations), and using MiDaS [1] network

Comparisons

- DS 3D: Baseline initialization (Dong-Si [2]) with 3D landmarks
- **DS + DP:** Our reimplementation of [3] (mono depth priors in VI-BA)

	- (/-)		
Algorithm	Avg.	Algorithm	Average
DS 3D	57.6	DS 3D	1.592 / 0.028
DS + DP	58.8	DS + DP	1.523 / 0.027
Ours w/o RANSAC	17.3	Zhou [3]	- / 0.024
Ours	5.8	Ours w/o RANSAC	1.467 / 0.026
		Ours	1.419 / 0.022

Table: ATE (deg / m)

[1] R. Ranftl et. al, "Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer," in TPAMI 2022.

[2] T.-C. Dong-Si and A. I. Mourikis, "Estimator initial-ization in vision-aided inertial navigation with unknown camera-imu calibration," in IROS 2012
 [3] Y. Zhou et. al, "Learned Monocular Depth Priors in Visual-Inertial Initialization," in ECCV 2022.

TUM-VI Results

- On the TUM-VI dataset, we tested initialization with 5 KFs and only a 300ms window
- Found reasonable performance of MiDaS [1] network on fisheye images despite being trained on rectified

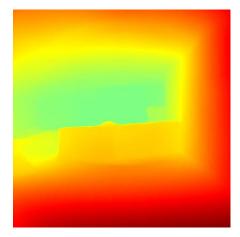
Table:	Init w	indow	AT	E and
scale	error	(deg /	m	(%))

Algorithm	Average		
DS 3D	1.243 / 0.018 (9.20)		
DS + DP	1.276 / 0.020 (8.73)		
Ours	1.274 / 0.011 (6.47)		

Table: VIO ATE using init conditions (deg / m)

Algorithm	Average
DS 3D	1.381 / 0.133
DS + DP	1.384 / 0.122
Ours	1.214 / 0.059

Example input and depth



TUM-VI Results

- On the TUM-VI dataset, we tested initialization with 5 KFs and only a 300ms window
- Found reasonable performance of MiDaS [1] network on fisheye images despite being trained on rectified

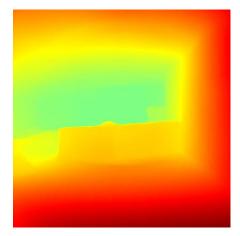
Table:	Init w	indow	ATE	E and
scale	error	(deg /	m ((%))

Algorithm	Average	<u>.</u>
DS 3D	1.243 / 0.018	(9.20)
DS + DP	1.276 / 0.020	(8.73)
Ours	1.274 / 0.011	(6.47)

Table: VIO ATE using init conditions (deg / m)

Algorithm	Average
DS 3D	1.381 / 0.133
DS + DP	1.384 / 0.122
Ours	1.214 / 0.059

Example input and depth



TUM-VI Results

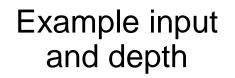
- On the TUM-VI dataset, we tested initialization with 5 KFs and only a 300ms window
- Found reasonable performance of MiDaS [1] network on fisheye images despite being trained on rectified

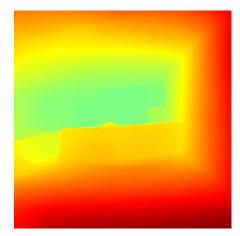
Table:	Init w	indow	ATE	E and
scale	error	(deg /	′ m (%))

Algorithm	Average
DS 3D	1.243 / 0.018 (9.20)
DS + DP	1.276 / 0.020 (8.73)
Ours	1.274 / 0.011 (6.47)

Table: VIO ATE using init conditions (deg / m)

Algorithm	Average
DS 3D	1.381 / 0.133
DS + DP	1.384 / 0.122
Ours	1.214 / 0.059





Robustness to Outliers

- We tested our method's robustness to outlier measurements
- Added large random noise to the measurements for different outlier percentages

Table:	Init	window	ATE	(deg /	′ m)
--------	------	--------	-----	--------	------

Outliers	Algorithm	Average	
5%	DS 3D Ours w/o RANSAC Ours	1.257 / 0.017 1.242 / 0.014 1.047 / 0.014	
10%	DS 3D Ours w/o RANSAC Ours	1.280 / 0.016 1.474 / 0.012 0.957 / 0.011	
25%	DS 3D Ours w/o RANSAC Ours	1.995 / 0.021 2.413 / 0.025 1.409 / 0.014	
45%	DS 3D Ours w/o RANSAC Ours	2.929 / 0.035 4.035 / 0.039 2.663 / 0.030	

Robustness to Outliers

- We tested our method's robustness to outlier measurements
- Added large random noise to the measurements for different outlier percentages
- Our method is more robust to outliers than the baseline

Outliers	Algorithm	Average	
5%	DS 3D Ours w/o RANSAC Ours	1.257 / 0.017 1.242 / 0.014 1.047 / 0.014	
10%	DS 3D Ours w/o RANSAC Ours	1.280 / 0.016 1.474 / 0.012 0.957 / 0.011	
25%	DS 3D Ours w/o RANSAC Ours	1.995 / 0.021 2.413 / 0.025 1.409 / 0.014	
45%	DS 3D Ours w/o RANSAC Ours	2.929 / 0.035 4.035 / 0.039 2.663 / 0.030	

Robustness to Tracking Failure

 We simulated tracking failure by reducing the number of features available to the VI-SfM

Table: % of successful initializations

Algorithm	60 feats	45 feats	30 feats	15 feats
DS 3D	81.25	17.50	33.75	2.50
DS 3D + DP	78.75	16.25	32.50	2.50
Ours w/o RANSAC	100.00	98.75	97.50	55.00
Ours	100.00	95.00	96.25	47.50

Robustness to Tracking Failure

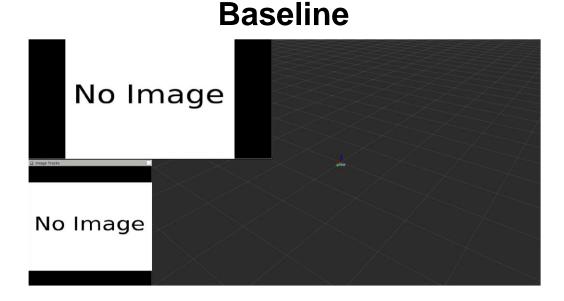
- We simulated tracking failure by reducing the number of features available to the VI-SfM
- Our method is more robust to tracking failure than the baselines
 - Can initialize with only 15 features

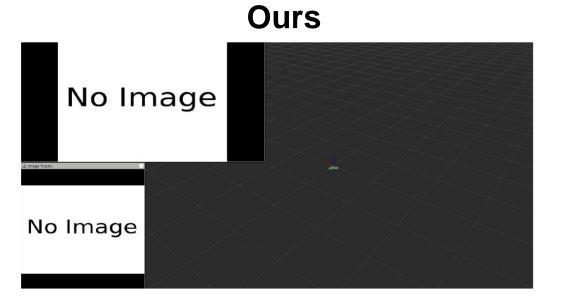
Algorithm	60 feats	45 feats	30 feats	15 feats
DS 3D	81.25	17.50	33.75	2.50
DS 3D + DP	78.75	16.25	32.50	2.50
Ours w/o RANSAC	100.00	98.75	97.50	55.00
Ours	100.00	95.00	96.25	47.50

Table: % of successful initializations

Robustness to Tracking Failure

- Our system can *quickly* initialize with only 15 features
- Baseline fails to initialize in reasonable amount of time





Conclusion

- Proposed a new state-of-the-art mono visual-inertial initialization method
- Learned monocular depth is leveraged in linear init step
- Small linear system makes RANSAC practical
- Shown to outperform strong baselines

Nathaniel Merrill nmerrill@udel.edu

