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Introduction

• Visual-Inertial Odometry (VIO) requires accurate initial conditions to run

• State-of-the-art systems require 2sec, large parallax and many features to init
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Introduction

• Visual-Inertial Odometry (VIO) requires accurate initial conditions to run

• State-of-the-art systems require 2sec, large parallax and many features to init

• This work
• Propose a new initialization method for monocular VIO using learned monocular depth

• Our method is shown to be faster, more accurate, and more robust, initializing in only 
300ms with low parallax and as low as 15 features
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Baseline Monocular Visual-Inertial Initialization

• State-of-the-art monocular initialization methods [1] use image tracks 
and IMU measurements in a VI-SfM to solve for initial conditions

• Large number (M) features required to initialize

Landmarks, velocity, and gravity solved 
in linear system of dim 6+3M 

[1] T.-C. Dong-Si and A. I. Mourikis, “Estimator initialization in vision-aided inertial navigation with unknown camera-imu calibration,” in IROS 2012 3
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Proposed Initialization Method

• Key idea: leverage learned monocular depth to reduce the linear system
• Propose new model of 3D landmarks w.r.t. learned affine-invariant depth
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Linear System Structure

• Our linear system is considerably smaller than the baseline one

• Replacing M landmark positions with    ,     reduces the size to 8

Baseline

6+3M

6+3M
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EuRoC Results

• Tested on EuRoC Vicon room datasets with 5 KFs over a 0.5sec window 
(avg over hundreds of initializations), and using MiDaS [1] network

• Comparisons
• DS 3D: Baseline initialization (Dong-Si [2]) with 3D landmarks

• DS + DP: Our reimplementation of [3] (mono depth priors in VI-BA)

Table: Scale error (%)

[1] R. Ranftl et. al, “Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer,” in TPAMI 2022.

[2] T.-C. Dong-Si and A. I. Mourikis, “Estimator initial-ization in vision-aided inertial navigation with unknown camera-imu calibration,” in IROS 2012

[3] Y. Zhou et. al, “Learned Monocular Depth Priors in Visual-Inertial Initialization,” in ECCV 2022.

[3]

Table: ATE (deg / m)
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TUM-VI Results

• On the TUM-VI dataset, we tested initialization with 5 
KFs and only a 300ms window

• Found reasonable performance of MiDaS [1] network 
on fisheye images despite being trained on rectified

Table: Init window ATE and 
scale error (deg / m (%))

Table: VIO ATE using init
conditions (deg / m)

Example input 
and depth

[1] R. Ranftl et. al, “Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer,” in TPAMI 2022. 7
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Robustness to Outliers

• We tested our method’s robustness 
to outlier measurements

• Added large random noise to the 
measurements for different outlier 
percentages

Table: Init window ATE (deg / m)
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Robustness to Outliers

• We tested our method’s robustness 
to outlier measurements

• Added large random noise to the 
measurements for different outlier 
percentages

• Our method is more robust to 

outliers than the baseline
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Robustness to Tracking Failure

• We simulated tracking failure by reducing the number of features 
available to the VI-SfM

Table: % of successful initializations

9



Robustness to Tracking Failure

• We simulated tracking failure by reducing the number of features 
available to the VI-SfM

• Our method is more robust to tracking failure than the baselines

• Can initialize with only 15 features

Table: % of successful initializations

9



Robustness to Tracking Failure
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• Our system can quickly initialize with only 15 features

• Baseline fails to initialize in reasonable amount of time
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Conclusion
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• Proposed a new state-of-the-art mono visual-inertial initialization method

• Learned monocular depth is leveraged in linear init step

• Small linear system makes RANSAC practical

• Shown to outperform strong baselines
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