Intermittent GPS-aided VIO: Online Initialization and Calibration

Woosik Lee, Kevin Eckenhoff, Patrick Geneva, and Guoquan Huang Robot Perception and Navigation Group (RPNG) University of Delaware, USA

Visual-Inertial-Odometry (VIO)

- High-quality ego-motion
- Pros Indoor/outdoor

Cons

- Low-cost
- The estimation drifts
- No global localization

	Visual-Inertial-Odometry (VIO)	Global Positioning System (GPS)		
Pros	High-quality ego-motionIndoor/outdoorLow-cost	Drift-free absolute positionLow-cost		
Cons	The estimation driftsNo global localization	 Intermittent measurements – unavailable indoors, under trees, etc Variable accuracy – centimeters to a few hundred meters 		

	Visual-Inertial-Odometry (VIO)	Global Positioning System (GPS)		
Pros	High-quality ego-motionIndoor/outdoorLow-cost	Drift-free absolute positionLow-cost		
Cons	The estimation driftsNo global localization	 Intermittent measurements – unavailable indoors, under trees, etc Variable accuracy – centimeters to a few hundred meters 		

• Complementary sensor characteristics

	Visual-Inertial-Odometry (VIO)	Global Positioning System (GPS)		
Pros	High-quality ego-motionIndoor/outdoorLow-cost	Drift-free absolute positionLow-cost		
Cons	The estimation driftsNo global localization	 Intermittent measurements – unavailable indoors, under trees, etc Variable accuracy – centimeters to a few hundred meters 		

- Complementary sensor characteristics
- GPS-aided VIO: Low-cost, robust, drift-free, indoor/outdoor localization

Motivation: Parameters Needed

• GPS measurement \mathbf{z}_{g_k} at time t_k

$$\mathbf{z}_{g_k} = {^E}\mathbf{p}_{G_k} = {^E}\mathbf{p}_V + {^E}_V \mathbf{R}^V \mathbf{p}_{G_k} + \mathbf{n}_{g_k}$$

Reference transformation between $\{V\}$ and $\{E\}$

$$^{V}\mathbf{p}_{G_{k}} = {}^{V}\mathbf{p}_{I_{k}} + {}^{I_{k}}_{V}\mathbf{R}^{\top I}\mathbf{p}_{G}$$

IMU $\{I\}$ pose at t_{k} Extrinsion in $\{V\}$

 ${E}$: ENU (East-North-Up) frame, GPS reference frame ${V}$: VIO reference frame ${G}$: GPS sensor frame ${I}$: IMU sensor frame ${}^{b}\mathbf{p}_{a}$: Position of *a* in *b* frame ${}^{b}\mathbf{R}$: *a* to *b* frame rotation matrix

Challenges

- $\{{}^E_V \mathbf{R}, {}^E \mathbf{p}_V\}$
 - No initial guess -> Need initialization

- ${E}$: ENU (East-North-Up) frame, GPS reference frame ${V}$: VIO reference frame ${G}$: GPS sensor frame ${I}$: IMU sensor frame ${}^{b}\mathbf{p}_{a}$: Position of *a* in *b* frame ${}^{b}\mathbf{R}$: *a* to *b* frame rotation matrix
- May not have GPS measurement at the beginning (e.g. start indoor)
- Noisy GPS measurement -> Need robust initialization
- $\{{}^{I_k}_V \mathbf{R}^\top, {}^V \mathbf{p}_{I_k}\} \{{}^I \mathbf{p}_G\}$
 - Asynchronicity between GPS and VIO
 - Intermittent GPS measurement
 - Time offset calibration?

Observability Analysis

- Question: Does using GPS make the state fully observable?
- State to analyze

$${}^{V}\mathbf{x} = \begin{bmatrix} I_{k} \bar{q} & V \mathbf{p}_{I_{k}} & E \bar{q} & E \mathbf{p}_{V} & I \mathbf{p}_{G} \end{bmatrix} \qquad {}^{b}_{a} \bar{q} : \text{Quaternion form of } {}^{b}_{a} \mathbf{R}$$

Observability Analysis

- Question: Does using GPS make the state fully observable?
- State to analyze

$${}^{V}\mathbf{x} = egin{bmatrix} {}^{I}_{k}ar{q} & {}^{V}\mathbf{p}_{I_{k}} & {}^{E}_{V}ar{q} & {}^{E}\mathbf{p}_{V} & {}^{I}\mathbf{p}_{G} \end{bmatrix} \qquad {}^{b}_{a}ar{q}$$
 : Quaternion form of ${}^{b}_{a}\mathbf{R}$

- Found 4 unobservable directions corresponding to:
 - Rotation along the axis of gravity between $\{V\}$ and $\{E\}$
 - Translation between $\{V\}$ and $\{E\}$

The system still retains 4 unobservable direction inherited from VIO system, due to estimation of the frame transformation

Proposed Fully Observable System

• Transform the state and its covariance to the ENU frame $\{E\}$

$$\mathbf{x} = g({}^{V}\mathbf{x}, {}^{E}_{V}\bar{q}, {}^{E}\mathbf{p}_{V}) = \begin{bmatrix} {}^{I_{k}}\bar{q} & {}^{\mathbf{E}}\mathbf{p}_{I_{k}} & {}^{E}_{V}\bar{q} & {}^{E}\mathbf{p}_{V} & {}^{I}\mathbf{p}_{G} \end{bmatrix}$$
$$\tilde{\mathbf{x}} = \Psi^{V}\tilde{\mathbf{x}}, \quad \mathbf{P}_{\oplus} = \Psi\mathbf{P}_{\ominus}\Psi^{\top}$$

• Marginalize $\{ {}^{E}_{V} \bar{q}, {}^{E} \mathbf{p}_{V} \}$ term and get the following state

 $marg(\mathbf{x}) \to {}^{E}\mathbf{x} = \begin{bmatrix} I_{k} \bar{q} & {}^{E}\mathbf{p}_{I_{k}} & {}^{I}\mathbf{p}_{G} \end{bmatrix}, \quad marg(\mathbf{P}_{\oplus}) \to {}^{E}\mathbf{P}$

The system is now fully observable

1) VIO can be independently initialized without GPS measurement

- Multi-State Constraint Kalman filter (MSCKF) state \mathbf{x}_k :

2) Collect GPS measurements and sparse IMU keyframes

- Collect GPS measurements $\{{}^{E}\mathbf{p}_{G_{1}}, \cdots, {}^{E}\mathbf{p}_{G_{n}}\}$
- Sparse IMU key frames bound the GPS measurement $\{^{V}\mathbf{p}_{I_{1}}, \cdots, ^{V}\mathbf{p}_{I_{n}}\}$

- 3) Compute 4 d.o.f. transformation between $\{V\}$ and $\{E\}$
 - Use ${}^{I}\mathbf{p}_{G}$ and the IMU keyframes to compute GPS pose in $\{V\}$

$${}^{V}\mathbf{p}_{G_{i}} = {}^{V}\mathbf{p}_{I_{i}} + {}^{I_{i}}_{V}\mathbf{R}^{\top I}\mathbf{p}_{G} \rightarrow \{{}^{V}\mathbf{p}_{G_{1}}, \cdots, {}^{V}\mathbf{p}_{G_{n}}\}$$

- Compute $\{ {}^{E}_{V} \bar{q}, {}^{E} \mathbf{p}_{V} \}$ that aligns $\{ {}^{E} \mathbf{p}_{G_{1}}, \cdots, {}^{E} \mathbf{p}_{G_{n}} \}$ and $\{ {}^{V} \mathbf{p}_{G_{1}}, \cdots, {}^{V} \mathbf{p}_{G_{n}} \}$ by solving quadratic constraint least-squares problem

- 4) Post process
 - Perform delayed initialization to further correct $\{ {}^{E}_{V} \bar{q}, {}^{E} \mathbf{p}_{V} \}$
 - Marginalize all the keyframes
 - Transform the state to ENU $\{E\}$ reference frame
 - Marginalize $\{ {}^{E}_{V} \bar{q}, {}^{E} \mathbf{p}_{V} \}$ from the state

10

GPS-VIO Initialization: Simulation Results

TABLE I: Average position and orientation errors over ten runs for different initialization distances and GPS noise values in units of meters/degree.

$\operatorname{dist} \sigma$	0.1m	0.5m	1m	2m	5m
5m	1.59 / 0.65	7.08 / 3.20	14.32 / 6.56	29.37 / 69.84	69.17 / 92.37
10m	1.39 / 0.52	5.23 / 2.23	10.22 / 4.39	19.80 / 47.79	45.02 / 91.85
20m	0.90 / 0.29	2.68 / 1.08	5.02 / 2.07	9.78 / 4.08	25.49 / 49.75
50m	0.55 / 0.08	0.77 / 0.16	1.09 / 0.30	1.88 / 0.61	4.58 / 1.49
100m	0.51 / 0.09	0.49 / 0.06	0.55 / 0.12	0.85 / 0.24	2.18 / 0.63

The larger GPS noise magnitude, less accurate initialization

GPS-VIO Initialization: Simulation Results

TABLE I: Average position and orientation errors over ten runs for different initialization distances and GPS noise values in units of meters/degree.

$\operatorname{dist} \sigma$	0.1m	0.5m	1m	2m	5m	
5m 10m 20m 50m 100m	1.59 / 0.65 1.39 / 0.52 0.90 / 0.29 0.55 / 0.08 0.51 / 0.09	7.08 / 3.20 5.23 / 2.23 2.68 / 1.08 0.77 / 0.16 0.49 / 0.06	14.32 / 6.56 10.22 / 4.39 5.02 / 2.07 1.09 / 0.30 0.55 / 0.12	29.37 / 69.84 19.80 / 47.79 9.78 / 4.08 1.88 / 0.61 0.85 / 0.24	69.17 / 92.37 45.02 / 91.85 25.49 / 49.75 4.58 / 1.49 2.18 / 0.63	The longer trajectory used, more accurate initialization

GPS-VIO Initialization: Simulation Results

TABLE I: Average position and orientation errors over ten runs for different initialization distances and GPS noise values in units of meters/degree.

$\operatorname{dist} \sigma$	0.1m	0.5m	1m	2m	5m
5m	1.59 / 0.65	7.08 / 3.20	14.32 / 6.56	29.37 / 69.84	69.17 / 92.37
10m	1.39 / 0.52	5.23 / 2.23	10.22 / 4.39	19.80 / 47.79	45.02 / 91.85
20m	0.90 / 0.29	2.68 / 1.08	5.02 / 2.07	9.78 / 4.08	25.49 / 49.75
50m	0.55 / 0.08	0.77/0.16	1.09 / 0.30	1.88 / 0.61	158/149
100m	0.51 / 0.09	0.49 / 0.06	0.55 / 0.12	0.85 / 0.24	2.18 / 0.63

The longer trajectory used, more accurate initialization

The larger GPS noise magnitude, less accurate initialization

The larger GPS noise requires longer trajectory for the initialization

Initialization

GPS Measurement Update/Calibration

GPS measurement function

$$\mathbf{z}_{g_k} := {^E}\mathbf{p}_{G_k} = {^E}\mathbf{p}_{I_k} + {^I_k}\mathbf{R}^{\top I}\mathbf{p}_G$$

- The measurement is asynchronous/intermittent to the VIO system: No $\{{}_{E}^{I_{k}}\mathbf{R}, {}^{E}\mathbf{p}_{I_{k}}\}$ in the state
- GPS measurement can be delayed or sensor clocks mismatch: Need time offset model/calibration

 t_k

GPS Measurement Update/Calibration

GPS measurement function

$$\mathbf{z}_{g_k} := {^E}\mathbf{p}_{G_k} = {^E}\mathbf{p}_{I_k} + {^I_k}\mathbf{R}^{\top I}\mathbf{p}_G$$

- Linear interpolation to get IMU pose at t_k & model the time offset
 - The bounding IMU poses at t_a and t_b $(t_a < t_k < t_b)$

$${}^{I_k}_E \mathbf{R} = \operatorname{Exp}\left(\lambda \operatorname{Log}\left({}^{I_b}_E \mathbf{R}^{I_a}_E \mathbf{R}^{\top}\right)\right) {}^{I_a}_E \mathbf{R}, \quad {}^E \mathbf{p}_{I_k} = (1-\lambda)^E \mathbf{p}_{I_a} + \lambda^E \mathbf{p}_{I_b}$$
$$\lambda = \frac{(t_k + {}^I t_G - t_a)}{(t_b - t_a)}$$

Exp() and Log() are the SO(3) matrix exponential and logarithm functions

 $^{E}\mathbf{p}_{G_{k}}$

 t_k

 $1 - \lambda$

System initialized without GPS

Fig. 4: The calibration errors respect to the size of GPS measurement noise.

- Can calibrate large initial errors
- Convergence affected by GPS noise magnitude

Errors are bounded by 3 σ bound – Consistent!

Localization Indoor to Outdoor

Conclusion

- Proved the state contains VIO to ENU reference frame transformation has 4 unobservable directions by the observability analysis.
- Proposed the state transformation that removes the transformation parameters and become **fully observable**.
- Proposed the GPS-VIO initialization procedure that is robust, observable, and can handle intermittent GPS measurements
- Proposed asynchronous GPS measurement update method and spatiotemporal calibration method

Thank you

Woosik Lee

woosik@udel.edu

