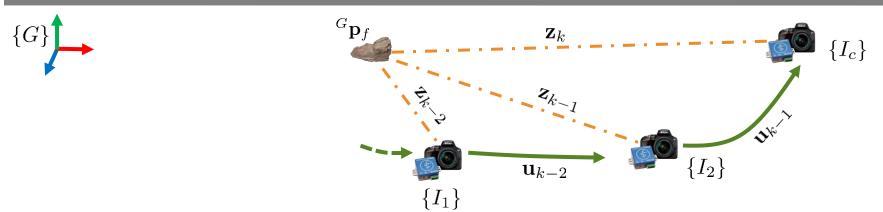
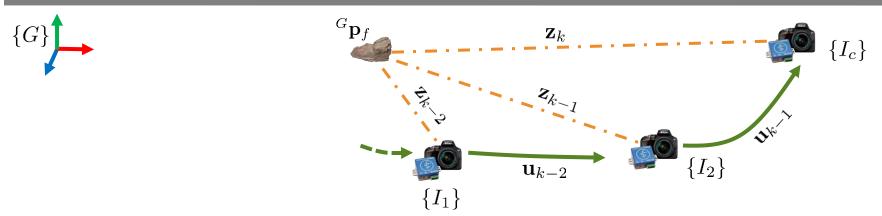

Map-based Visual-Inertial Localization: A Numerical Study


Patrick Geneva and Guoquan Huang

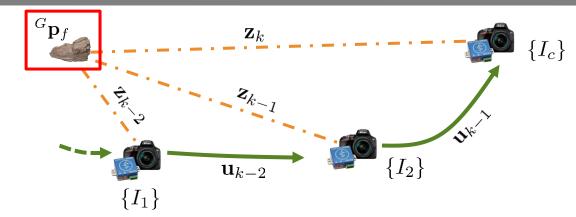
Robot Perception and Navigation Group (RPNG) University of Delaware (UD), Newark, DE, USA

Motivation


- Leverage prior map to improve visual-inertial estimator performance
 - Prior points map with 2D-to-3D meas
 - Prior keyframes map with 2D-to-2D meas
- <u>Contribution</u>: Summary of different techniques for incorporating loop-closures
 - 1. Extended Kalman filters (EKF)
 - 2. Schmidt-Kalman filters (SKF)
 - 3. Measurement inflation models (INF)
- <u>Contribution</u>: Investigate accuracy, consistency, computational complexity, and memory

• Local sliding window of states with observations

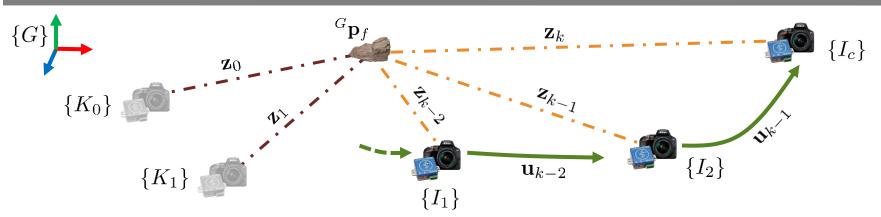
[1] Geneva, Patrick, James Maley, and Guoquan Huang. "An efficient schmidt-ekf for 3D visual-inertial SLAM." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019. [2] Geneva, Patrick, Kevin Eckenhoff, and Guoquan Huang. "A linear-complexity EKF for visual-inertial navigation with loop closures." 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019.


• Local sliding window of states with observations

 $\mathbf{r} = \mathbf{H}_I \tilde{\mathbf{x}}_{I_{1..c}} + \mathbf{H}_f{}^G \tilde{\mathbf{p}}_f$

 Point-based map (2D-to-3D) measurement function of feature

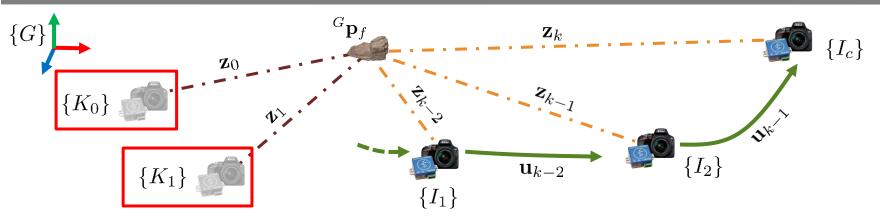
^[1] Geneva, Patrick, James Maley, and Guoquan Huang. "An efficient schmidt-ekf for 3D visual-inertial SLAM." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019. [2] Geneva, Patrick, Kevin Eckenhoff, and Guoquan Huang. "A linear-complexity EKF for visual-inertial navigation with loop closures." 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019.


 $\{G\}$

- Local sliding window of states with observations
- Point-based map (2D-to-3D) measurement function of feature

 $\mathbf{r} = \mathbf{H}_{I}\tilde{\mathbf{x}}_{I_{1..c}} + \mathbf{H}_{f}{}^{G}\mathbf{j}$ 3D feature in prior map

[1] Geneva, Patrick, James Maley, and Guoquan Huang. "An efficient schmidt-ekf for 3D visual-inertial SLAM." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019. [2] Geneva, Patrick, Kevin Eckenhoff, and Guoquan Huang. "A linear-complexity EKF for visual-inertial navigation with loop closures." 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019.



- Local sliding window of states with observations
- $\mathbf{r} = \mathbf{H}_I \tilde{\mathbf{x}}_{I_{1..c}} + \mathbf{H}_f{}^G \tilde{\mathbf{p}}_f$

- Point-based map (2D-to-3D) measurement function of feature
- Keyframe-based map (2D-to-2D) use map observations and keyframe 6dof poses

$$\mathbf{r} = \mathbf{H}_{I}\tilde{\mathbf{x}}_{I_{1..c}} + \mathbf{H}_{K}\tilde{\mathbf{x}}_{K_{0,1}} + \mathbf{H}_{f}{}^{G}\tilde{\mathbf{p}}_{f}$$

^[1] Geneva, Patrick, James Maley, and Guoquan Huang. "An efficient schmidt-ekf for 3D visual-inertial SLAM." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019. [2] Geneva, Patrick, Kevin Eckenhoff, and Guoquan Huang. "A linear-complexity EKF for visual-inertial navigation with loop closures." 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019.

Local sliding window of states with observations

$$\mathbf{r} = \mathbf{H}_I \tilde{\mathbf{x}}_{I_{1..c}} + \mathbf{H}_f{}^G \tilde{\mathbf{p}}_f$$

- Point-based map (2D-to-3D) measurement function of feature
- Keyframe-based map (2D-to-2D) use map observations and keyframe 6dof poses

$$\mathbf{r} = \mathbf{H}_{I}\tilde{\mathbf{x}}_{I_{1..c}} + \mathbf{H}_{K}\tilde{\mathbf{x}}_{K_{0,1}} + \mathbf{H}_{f}{}^{G}\tilde{\mathbf{p}}_{f}$$

Keyframe poses in prior map

^[1] Geneva, Patrick, James Maley, and Guoquan Huang. "An efficient schmidt-ekf for 3D visual-inertial SLAM." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019. [2] Geneva, Patrick, Kevin Eckenhoff, and Guoquan Huang. "A linear-complexity EKF for visual-inertial navigation with loop closures." 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019.

• Prior maps can be leveraged at even high noise levels to improve accuracy

	Prior	Algo.	ATE (deg / m)	NEES (3)
VIO	-	-	$2.603 \ / \ 0.271$	$3.524\ /\ 1.591$
D	$0.5^{\circ}, 3 \mathrm{cm}$	EKF SKF	$\begin{array}{c} 0.324 \ / \ 0.090 \\ 0.374 \ / \ 0.099 \end{array}$	2.933 / 3.327 2.758 / 3.248
2D-to-2D	$1.0^{\circ}, 6 \mathrm{cm}$	EKF SKF	$\begin{array}{c} 0.442 \ / \ 0.105 \\ 0.518 \ / \ 0.130 \end{array}$	3.236 / 3.698 2.806 / 3.466
	$3.0^{\circ}, 12 \mathrm{cm}$	EKF SKF	$\begin{array}{c} 0.629 \ / \ 0.127 \\ 0.941 \ / \ 0.167 \end{array}$	$\begin{array}{c} 4.353 \ / \ 5.335 \\ 3.009 \ / \ 3.585 \end{array}$
D	$3\mathrm{cm}$	EKF SKF	$\begin{array}{c} 0.051 \ / \ 0.010 \\ 0.064 \ / \ 0.021 \end{array}$	5.975 / 6.586 2.898 / 3.188
2D-to-3L	$6\mathrm{cm}$	EKF SKF	$\begin{array}{c} 0.068 \ / \ 0.014 \\ 0.087 \ / \ 0.036 \end{array}$	8.224 / 9.292 2.863 / 3.210
	$12 \mathrm{cm}$	EKF SKF	$0.079 \ / \ 0.015$ $0.122 \ / \ 0.065$	9.321 / 9.472 2.761 / 3.175

- Prior maps can be leveraged at even **high noise** levels to improve accuracy
- Point-based 2D-to-3D provide the most accuracy improvements compared to 2D-to-2D

	Prior	Algo.	ATE (deg / m)	NEES (3)
VIO	-	-	$2.603 \ / \ 0.271$	$3.524\ /\ 1.591$
D	$0.5^{\circ}, 3 \mathrm{cm}$	EKF SKF	$\begin{array}{c} 0.324 \ / \ 0.090 \\ 0.374 \ / \ 0.099 \end{array}$	2.933 / 3.327 2.758 / 3.248
2D-to-2D	$1.0^{\circ}, 6 \mathrm{cm}$	EKF SKF	$\begin{array}{c} 0.442 \ / \ 0.105 \\ 0.518 \ / \ 0.130 \end{array}$	3.236 / 3.698 2.806 / 3.466
	$3.0^{\circ}, 12 \mathrm{cm}$	EKF SKF	$0.629 \ / \ 0.127$ $0.941 \ / \ 0.167$	$\begin{array}{c} 4.353 \ / \ 5.335 \\ 3.009 \ / \ 3.585 \end{array}$
D	$3\mathrm{cm}$	EKF SKF	$0.051 \ / \ 0.010$ $0.064 \ / \ 0.021$	5.975 / 6.586 2.898 / 3.188
2D-to-3D	$6\mathrm{cm}$	EKF SKF	$\begin{array}{c} 0.068 \ / \ 0.014 \\ 0.087 \ / \ 0.036 \end{array}$	8.224 / 9.292 2.863 / 3.210
	$12 \mathrm{cm}$	EKF SKF	$0.079 \ / \ 0.015$ $0.122 \ / \ 0.065$	9.321 / 9.472 2.761 / 3.175

- Prior maps can be leveraged at even high noise levels to improve accuracy
- Point-based 2D-to-3D provide the most accuracy improvements compared to 2D-to-2D
- Keyframes 2D-to-2D reduce computation for large number of features

	Prior	Algo.	ATE (deg / m)	NEES (3)
VIO	-	-	$2.603 \ / \ 0.271$	$3.524\ /\ 1.591$
D	$0.5^{\circ}, 3 \mathrm{cm}$	EKF SKF	$\begin{array}{c} 0.324 \ / \ 0.090 \\ 0.374 \ / \ 0.099 \end{array}$	2.933 / 3.327 2.758 / 3.248
2D-to-2D	$1.0^{\circ}, 6 \mathrm{cm}$	EKF SKF	$\begin{array}{c} 0.442 \ / \ 0.105 \\ 0.518 \ / \ 0.130 \end{array}$	3.236 / 3.698 2.806 / 3.466
	$3.0^{\circ}, 12 \mathrm{cm}$	EKF SKF	$0.629 \ / \ 0.127$ $0.941 \ / \ 0.167$	$\begin{array}{c} 4.353 \ / \ 5.335 \\ 3.009 \ / \ 3.585 \end{array}$
D	$3\mathrm{cm}$	EKF SKF	$0.051 \ / \ 0.010$ $0.064 \ / \ 0.021$	5.975 / 6.586 2.898 / 3.188
2D-to-3D	$6 \mathrm{cm}$	EKF SKF	$\begin{array}{c} 0.068 \ / \ 0.014 \\ 0.087 \ / \ 0.036 \end{array}$	8.224 / 9.292 2.863 / 3.210
	$12 \mathrm{cm}$	EKF SKF	$0.079 \ / \ 0.015$ $0.122 \ / \ 0.065$	9.321 / 9.472 2.761 / 3.175

- Prior maps can be leveraged at even high noise levels to improve accuracy
- Point-based 2D-to-3D provide the most accuracy improvements compared to 2D-to-2D
- Keyframes 2D-to-2D reduce computation for large number of features
- SKF is computationally **efficient** and **consistent**

	Prior	Algo.	ATE (deg / m)	NEES (3)
VIO	-	-	$2.603 \ / \ 0.271$	$3.524\ /\ 1.591$
D	$0.5^{\circ}, 3 \mathrm{cm}$	EKF SKF	$\begin{array}{c} 0.324 \ / \ 0.090 \\ 0.374 \ / \ 0.099 \end{array}$	2.933 / 3.327 2.758 / 3.248
2D-to-2D	$1.0^{\circ}, 6 \mathrm{cm}$	EKF SKF	$\begin{array}{c} 0.442 \ / \ 0.105 \\ 0.518 \ / \ 0.130 \end{array}$	3.236 / 3.698 2.806 / 3.466
	$3.0^{\circ}, 12 \mathrm{cm}$	EKF SKF	$\begin{array}{c} 0.629 \ / \ 0.127 \\ 0.941 \ / \ 0.167 \end{array}$	$\begin{array}{c} 4.353 \ / \ 5.335 \\ 3.009 \ / \ 3.585 \end{array}$
D	$3\mathrm{cm}$	EKF SKF	$\begin{array}{c} 0.051 \ / \ 0.010 \\ 0.064 \ / \ 0.021 \end{array}$	$5.975 \ / \ 6.586$ $2.898 \ / \ 3.188$
2D-to-3D	$6 \mathrm{cm}$	EKF SKF	$\begin{array}{c} 0.068 \ / \ 0.014 \\ 0.087 \ / \ 0.036 \end{array}$	8.224 / 9.292 2.863 / 3.210
	$12 \mathrm{cm}$	EKF SKF	$0.079 \ / \ 0.015$ $0.122 \ / \ 0.065$	$\begin{array}{c} 9.321 \ / \ 9.472 \\ 2.761 \ / \ 3.175 \end{array}$

- Prior maps can be leveraged at even high noise levels to improve accuracy
- Point-based 2D-to-3D provide the most accuracy improvements compared to 2D-to-2D
- Keyframes 2D-to-2D reduce computation for large number of features
- SKF is computationally **efficient** and **consistent**
- Inflation methods are relatively invariant to their chosen parameters and can handle **large maps**

	Prior	Algo.	ATE (deg / m)	NEES (3)
VIO	-	-	$2.603 \ / \ 0.271$	$3.524\ /\ 1.591$
D	$0.5^{\circ}, 3 \mathrm{cm}$	EKF SKF	$\begin{array}{c} 0.324 \ / \ 0.090 \\ 0.374 \ / \ 0.099 \end{array}$	2.933 / 3.327 2.758 / 3.248
2D-to-2D	$1.0^{\circ}, 6 \mathrm{cm}$	EKF SKF	$\begin{array}{c} 0.442 \ / \ 0.105 \\ 0.518 \ / \ 0.130 \end{array}$	$\begin{array}{c} 3.236 \ / \ 3.698 \\ 2.806 \ / \ 3.466 \end{array}$
	$3.0^{\circ}, 12 \mathrm{cm}$	EKF SKF	$0.629 \ / \ 0.127$ $0.941 \ / \ 0.167$	$\begin{array}{c} 4.353 \ / \ 5.335 \\ 3.009 \ / \ 3.585 \end{array}$
D	$3\mathrm{cm}$	EKF SKF	$\begin{array}{c} 0.051 \ / \ 0.010 \\ 0.064 \ / \ 0.021 \end{array}$	5.975 / 6.586 2.898 / 3.188
2D-to-3D	$6\mathrm{cm}$	EKF SKF	$\begin{array}{c} 0.068 \ / \ 0.014 \\ 0.087 \ / \ 0.036 \end{array}$	8.224 / 9.292 2.863 / 3.210
	$12 \mathrm{cm}$	EKF SKF	$0.079 \ / \ 0.015$ $0.122 \ / \ 0.065$	$\begin{array}{c} 9.321 \ / \ 9.472 \\ 2.761 \ / \ 3.175 \end{array}$

Conclusion

- Recommendations:
 - SKF-based estimators should be used for small workspaces to ensure accurate, consistent, and efficient estimation
 - Keyframe-based maps can be leveraged to reduce the computational cost while still reducing drift
 - Large environments and map sizes should use inflation methods can be leveraged with conservative inflation values
- Future work:
 - Evaluate on large-scale realworld datasets
 - Evaluate on resource constrained platforms

