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Motivation

• State estimation is crucial for 
many applications

• Algorithm complexity and 
accuracy are key to providing 
useable results at the edge
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Wearables and Health Tracking

Nano Aerial Vehicles

Autonomous DrivingExtraterrestrial Robots 

Warehouse RoboticsMicro Aerial Vehicles

AR / VR Experiences

Human Pose Tracking



Visual-Inertial 3D Motion Tracking

• Visual-inertial sensor can 
provide low-cost and light-
weight 3D localization

• Need to have state estimation 
algorithms which can fuse this 
information

• Visual-inertial navigation 
systems (VINS) can provide the 
solution
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Problem: Visual-Inertial Estimation

• Goal: To estimate poses                                                            and inertial 
state                                                         given the inertial readings             
and bearings                of environmental features
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Visual-Inertial Research: Embracing Open Source

• Wide range of systems available for visual-inertial research

• None provide a feature complete filter system with the accuracy of 
batch-based methods for use on resource constrained platforms
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OpenVINS

• An open platform for VINS research 
(OpenVINS) which achieves state-of-
the-art performance

• On manifold sliding window Kalman 
filter with modular type system for 
state management
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https://github.com/rpng/open_vins
https://docs.openvins.com/



Key Feature – Type-Based State Management

• Each estimation variable is a type

• Indexes automatically managed 
during operations (augmentation, 
marginalization, cloning, etc.)

• Intuitive syntax for covariance 
access
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Key Feature – Online Calibration

• Calibration of camera intrinsics and extrinsics
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Key Feature – Online Calibration

• Calibration of camera intrinsics and extrinsics

• Additionally, temporal offset between IMU and camera                          
is performed

• Crucial for practical deployments handling of poor initial values
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Camera Clock

IMU Clock



Key Feature – First-Estimates Jacobians

• Temporal SLAM landmarks 
with First-Estimate 
Jacobians with six different 
representations

• Detailed documentation
and derivations facilitating 
future research
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Key Feature – System Evaluation

• Many standard error 
metrics with plotting
• ATE, RPE, NEES, RMSE

• Monte-Carlo run support

• Timing analysis scripts for 
evaluating performance
• Per-frame, CPU load 
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Key Feature – Simulation

• Complete visual-inertial simulation 
from a given trajectory

• Crucial to algorithm verification
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Validation – Calibration

• System able to handle poor initial 
calibration and still have low error and be 
consistent

• If we take the calibration as being “true” 
then error quickly grows and estimate 
becomes inconsistent
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Simulated Trajectory



Validation – Real-world EurocMav Dataset

• Monocular system with temporal 
SLAM features able to 
outperform state-of-the-art 
open sourced systems

13[1] Burri, M., Nikolic, J., Gohl, P., Schneider, T., Rehder, J., Omari, S., Achtelik, M.W. and Siegwart, R., 2016. The 
EuRoC micro aerial vehicle datasets. The International Journal of Robotics Research, 35(10), pp.1157-1163.



Validation – Real-world EurocMav Dataset

• Relative pose error (RPE) shows 
improvement over state-of-the-art

• Timing results:**
• EurocMav VIO: 4.3x realtime

• EurocMav SLAM: 2.7x realtime
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** Timed on an Intel(R) Xeon(R) CPU E3-1505M v6 @3.00GHz processor in single threaded execution



Validation – Other Datasets
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UZH-FPV Dataset
High speed > 12.5 m/s

** OpenVINS placed first in 2019 competition **
TUM VI Dataset

Indoor Handheld Motion

[1] Delmerico, J., Cieslewski, T., Rebecq, H., Faessler, M. and Scaramuzza, D., 2019, May. Are we ready for autonomous drone racing? the 
UZH-FPV drone racing dataset. In 2019 International Conference on Robotics and Automation (ICRA) (pp. 6713-6719). IEEE.
[2] Schubert, D., Goll, T., Demmel, N., Usenko, V., Stückler, J. and Cremers, D., 2018, October. The TUM VI benchmark for evaluating visual-
inertial odometry. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 1680-1687). IEEE.



Conclusion

• Presented Work
• Introduced state-of-the-art open platform (OpenVINS) for visual inertial research

• Support for online camera intrinsic, extrinsic, and time offset calibration

• Detailed documentation with thorough validation in simulation and realworld
experiments 
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• Current Roadmap
• DONE: Maplab integration for offline BA (released as ov_maplab project)
• DONE: Naïve secondary pose graph (released as ov_secondary project)
• FUTURE: Incorporate motion constraints (e.g. zero velocity)

• FUTURE: Sliding window BA, with SFM initialization
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https://github.com/rpng/open_vins
https://docs.openvins.com/


