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Introduction N

> Tracking the motion of a sensor platform moving in an unknown environment is a well-
studied problem (Simultaneous Localization and Mapping)

> Being able to additionally perceive moving objects is critical in many applications such
as obstacle avoidance and autonomous surveillance

> Goal: using cameras and an IMU, simultaneously track the ego-motion of the platform
and the 3D pose of a moving rigid body




VIO/Target Tracking

> Standard visual-inertial odometry: estimate the orientation, position, velocity, gyro
bias, and accelerometer bias of the IMU
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> Target states: orientation, position, and a set of motion parameters
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> In total, estimate both states in a single Extended Kalman Filter
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> Need to define how states evolve (propagation) and measurement function (update)



Pro pagation RS

> Propagate IMU state using noisy gyroscope and accelerometer readings:

Xy — f (XIk’wIk:k+1 ) aIic:kJrl)

> Target propagates as a function of its current state and model noises:

Tii1 =g (Tk) +nr
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Propagation R

> Example motion model: constant local velocity

> To handle errors in motion assumption, model these parameters as random walks
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Update A

> Tracking platform’s cameras capture images of both the environment and the target
of interest

> Camera bearing measurements to environmental features are used in the standard

manner
i
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> Target measurements consist of 3D bearing measurements to points contained on
the rigid body surface



Update A

> Due to rigid body assumption, feature position in the target frame remains fixed

> Target measurements are a function of the camera pose, target pose, and the target
feature position

> Positions for the target’s pointcloud added to the state to be estimated
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Noise Choice

>

Assumption of current system: accurate noise values for motion model are

available T :
VT =1y, Wr = Ny

Performed simulation where a stereo visual-inertial rig followed a planar moving
target. Performed a parameter sweep over different assumed motion noise levels

“Good” choice of noise parameters leads to improved VIO performance in EKF,

poor choice leads to d&lgso sed r%?é%fxry Error (m/deg)

ot Target IMU
0.001 | 1.883 / 8.944 || 1.839 / 8.687 || «———  Severely Degraded
0.005 | 0.259 / 1.547 | 0.254 / 1.566
0.010 | 0.220 / 1.322 | 0.217 / 1.388
0.050 | 0.203 / 1.313 |_0.199 / 1.341 || «——— Tmproved
0.100 | 0.197 / 1.291 | 0.194 / 1.293
0.500 | 0.235 / 1.370 | 0.232 / 1.378
VIO X [ X 0.231 / 1.397 | <—— Standard VIO




Coupled Estimation
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> Tightly-coupled VIO and target tracking (red) can lead to improved performance given

correct target motion models over standard VIO (blue)

> Overconfident motion models cause estimator to become inconsistent (black)
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Coupled Estimation

> Schmidt Kalman Filter (SKF): Does not update part of state while consistently tracking
correlations

> Using SKF to not update standard navigation states during target measurements leads
to robust VIO

R: robot states

EKE T: target states SKE
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Coupled Estimation
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>

>

Schmidt Kalman Filter (SKF): Does not update part of state while consistently tracking

correlations

Using SKF to not update standard navigation states during target measurements leads

to robust VIO

Absolute Trajectory Error (m/deg)

o Target IMU
0.001 | 0.234 / 1.720 | 0.231 / 1.397
0.005 | 0.234 / 1.524 | 0.231 / 1.397
0.010 | 0.234 / 1.511 | 0.231 / 1.397
0.050 | 0.234 / 1.399 | 0.231 / 1.397
0.100 | 0.234 / 1.413 | 0.231 / 1.397
0.500 | 0.234 / 1.617 | 0.231 / 1.397
VIO X [ X 0.231 / 1.397




Target Detection

> Based on U-Net architecture, mask used to classify features on/off the moving target

> 279 images were hand labeled for training and validation (90/10 split)

Feature Extraction Feature Tracking Mask Prediction
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Visual Tracking Estimation Output




Results Py

>

Proposed Schmidt-EKF-based method outperforms tightly-coupled method in
presence of overconfident target model:

Schmidt-EKF RMSE: 0.153m / 1.091° IMU, 0.183m / 3.443° Target

>

Tightly-coupled EKF RMSE: 0.409m / 1.640° IMU, 0.492m / 3.037° Target

>
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Conclusion

> Investigated the effect of tight-coupling of visual-inertial ego-motion and target
tracking performance

> Showed that while a proper noise model for the target led to improved localization
performance, overconfident model selection led to severely degraded estimation

> Utilized Schmidt Kalman Filtering to prevent target measurements from updating the
IMU state, while still conservatively modeling all correlations

> Proposed solution validated in real-world visual-inertial moving object experiments



