

RP

G

Kevin Eckenhoff, Patrick Geneva, Nathaniel Merrill, and Guoquan Huang University of Delaware

ICRA 2020

Introduction

- Tracking the motion of a sensor platform moving in an unknown environment is a wellstudied problem (Simultaneous Localization and Mapping)
- Being able to additionally perceive moving objects is critical in many applications such as obstacle avoidance and autonomous surveillance
- Goal: using cameras and an IMU, simultaneously track the ego-motion of the platform and the 3D pose of a moving rigid body

VIO/Target Tracking

 Standard visual-inertial odometry: estimate the orientation, position, velocity, gyro bias, and accelerometer bias of the IMU

$$\mathbf{x}_I = \begin{bmatrix} I \\ G \mathbf{q}^\top & G \mathbf{p}_I^\top & G \mathbf{v}_I^\top & \mathbf{b}_g^\top & \mathbf{b}_a^\top \end{bmatrix}^\top$$

> Target states: orientation, position, and a set of **motion parameters**

$$\mathbf{T} = \begin{bmatrix} T & \bar{q}^{\top} & G \mathbf{p}_T^{\top} & \eta^{\top} \end{bmatrix}^{\top}$$

> In total, estimate both states in a single Extended Kalman Filter

$$\mathbf{x} = egin{bmatrix} \mathbf{x}_I^ op & \mathbf{T}^ op\end{bmatrix}^ op$$

> Need to define how states evolve (**propagation**) and measurement function (**update**)

Propagation

> Propagate IMU state using noisy gyroscope and accelerometer readings:

$$\mathbf{x}_{I_{k+1}} = \mathbf{f}\left(\mathbf{x}_{I_k}, \omega_{I_{k:k+1}}, \mathbf{a}_{I_{k:k+1}}\right) \quad \mathbf{y}_{I_{k:k+1}}^{\omega_I}$$

> Target propagates as a function of its **current state** and **model noises**:

 \mathbf{a}_I

Propagation

Example motion model: constant local velocity

> To handle errors in motion assumption, model these parameters as random walks

$$^{T}\dot{\mathbf{v}}_{T}=\mathbf{n}_{v},\ \dot{\omega}_{T}=\mathbf{n}_{w}$$

$$\mathbf{n}_{v} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{Q}_{v}
ight) \quad \mathbf{n}_{w} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{Q}_{w}
ight)$$

Update

- Tracking platform's cameras capture images of both the environment and the target of interest
- Camera bearing measurements to environmental features are used in the standard manner

 Target measurements consist of 3D bearing measurements to points contained on the rigid body surface

Update

- > Due to rigid body assumption, feature position in the target frame remains fixed
- Target measurements are a function of the camera pose, target pose, and the target feature position
- > Positions for the target's pointcloud **added to the state** to be estimated

Noise Choice

- Assumption of current system: accurate noise values for motion model are available $^{T}\dot{\mathbf{v}}_{T} = \mathbf{n}_{v}, \ \dot{\omega}_{T} = \mathbf{n}_{w}$
- Performed simulation where a stereo visual-inertial rig followed a planar moving target. Performed a parameter sweep over different assumed motion noise levels
- "Good" choice of noise parameters leads to improved VIO performance in EKF, poor choice leads to decreased accuracy Absolute Trajectory Error (m/deg)

σ_t	Target	IMU		
0.001	1.883 / 8.944	1.839 / 8.687] ←───	Severely Degraded
0.005	$0.259 \ / \ 1.547$	$0.254 \ / \ 1.566$		
0.010	0.220 / 1.322	0.217 / 1.388		
0.050	$0.203 \ / \ 1.313$	$0.199 \ / \ 1.341$	◄	Improved
0.100	$0.197 \ / \ 1.291$	$0.194 \ / \ 1.293$		
0.500	$0.235 \ / \ 1.370$	$0.232 \ / \ 1.378$		
VIO	× / ×	$0.231 \ / \ 1.397$		Standard VIO

Coupled Estimation NIVERSITYOF

Tightly-coupled VIO and target tracking (red) can lead to improved performance given ≻ correct target motion models over standard VIO (blue)

AWARF

Overconfident motion models cause estimator to become **inconsistent** (black) ≻

Coupled Estimation

- Schmidt Kalman Filter (SKF): Does not update part of state while consistently tracking correlations
- Using SKF to not update standard navigation states during target measurements leads to robust VIO

Coupled Estimation

- Schmidt Kalman Filter (SKF): Does not update part of state while consistently tracking correlations
- Using SKF to not update standard navigation states during target measurements leads to robust VIO

Absolute Trajectory Error (m/deg)

σ_t	Target	IMU
0.001	$0.234 \ / \ 1.720$	$0.231 \ / \ 1.397$
0.005	$0.234\ /\ 1.524$	$0.231 \ / \ 1.397$
0.010	$0.234\ /\ 1.511$	$0.231 \ / \ 1.397$
0.050	$0.234\ /\ 1.399$	$0.231 \ / \ 1.397$
0.100	$0.234 \ / \ 1.413$	$0.231 \ / \ 1.397$
0.500	$0.234\ /\ 1.617$	$0.231 \ / \ 1.397$
VIO	× / ×	$0.231 \ / \ 1.397$

Target Detection

- > Based on U-Net architecture, mask used to classify features **on/off the moving target**
- > 279 images were hand labeled for training and validation (90/10 split)

Feature Extraction Feature Tracking Mask Prediction

Results

Results

- Proposed Schmidt-EKF-based method outperforms tightly-coupled method in presence of overconfident target model:
 - Schmidt-EKF RMSE: 0.153m / 1.091° IMU, 0.183m / 3.443° Target
 - > Tightly-coupled EKF RMSE: 0.409m / 1.640° IMU, 0.492m / 3.037° Target

Conclusion

- Investigated the effect of tight-coupling of visual-inertial ego-motion and target tracking performance
- Showed that while a proper noise model for the target led to improved localization performance, overconfident model selection led to severely degraded estimation
- Utilized Schmidt Kalman Filtering to prevent target measurements from updating the IMU state, while still conservatively modeling all correlations
- > Proposed solution validated in **real-world** visual-inertial moving object experiments