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Abstract

This paper presents a tightly-coupled aided inertial navigation system (INS) with point and
plane features, a general sensor fusion framework applicable to any visual and depth sensor
(e.g., RGBD, LiDAR) configuration, in which the camera is used for point feature tracking and
depth sensor for plane extraction. The proposed system exploits geometrical structures (planes)
of the environments and adopts the closest point (CP) for plane parameterization. Moreover,
we distinguish planar point features from non-planar point features in order to enforce point-
on-plane constraints which are used in our state estimator, thus further exploiting structural
information from the environment. We also introduce a simple but effective plane feature
initialization algorithm for feature-based simultaneous localization and mapping (SLAM). In
addition, we perform online spatial calibration between the IMU and the depth sensor as it
is difficult to obtain this critical calibration parameter in high precision. Both Monte-Carlo
simulations and real-world experiments are performed to validate the proposed approach.

1 Introduction and Related Work

Most of current popular approaches for real time 6DOF sensor position and orientation (pose)
estimation rely on inertial measurement units (IMUs), which can provide high frequency but noisy
angular velocity and linear acceleration measurements. In particular, direct integration of these
noisy inertial readings from a MEMS IMU will result in large estimation drifts even within a short
time interval. For this reason, additional measurement information from different sensor modalities
(e.g., optical or event cameras [1, 2, 3, 4, 5, 6, 7], imaging sonars [8, 9] and LiDAR [10]) will be
fused to improve the estimation consistency and accuracy.

To date, most of aided inertial navigation systems (INS) have been focusing on utilizing point
feature measurements for pose estimation or loop closure. Indeed, point features can be easily
detected and reliably tracked in both structured and structure-less environments. Moreover, as
shown in [11, 12], point features can provide enough geometrical constraints for the pose estimation
of aided INS except for global sensor position and yaw. However, with only point features, it
is difficult for the estimator to leverage the structural constraints from environments (e.g., the
Manhattan world and indoor rooms) for improved performance. Therefore, features (e.g., lines and
planes) that contain such structural information should be exploited, which have attracted quite a
few research efforts.

In particular, Hesch et al. [13] used a 2D LiDAR to aid INS for indoor localization by estimating
orthogonal structural planes of the buildings within an EKF framework. In our recent work [10],
however, we proposed a 3D LiDAR aided inertial plane SLAM system (LIPS) within a graph
optimization framework by using continuous-time IMU preintegration [14]. The closest point (CP)
from the plane to the origin was used for plane parameterization, which was shown to have better
performance compared to quaternion plane representation [15]. Unlike LIPS that used only 3D
plane features extracted from sparse LiDAR point clouds, Guo et al. [16] employed both point and
plane features in the RGBD aided INS, which assumed known global orientations of the planes
and modeled the point observations as a direct relative position measurements. Based on these
plane and point measurement models, they performed observability analysis and showed that their
system still has four unobservable directions as expected in vision-aided INS (VINS). Hsiao et al. [17]
recently developed a dense planar inertial SLAM system (DPI-SLAM) with RGBD cameras, within
a loosely-coupled graph optimization using the inertial preintegration, dense visual-odometry and
planar measurements (in quaternion form) as the error constraints, which is solved by using the
iSAM2 [18]. Note that particular geometric planes such as vertical planes are also assumed in [17].

Unlike the aforementioned work, in this paper, we propose a tightly-coupled estimation frame-
work for aided INS with point and plane features, which fuses measurements from a camera and
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a generic depth sensor (e.g., RGBD camera or LiDAR). In particular, the camera can be used for
acquiring feature tracks through image sequences, while the plane features, which contain more
structural information, can be extracted from point cloud generated from the depth sensor. It is
important to note that we divide the detected point features into two types: (i) multi-state con-
straint Kalman filter (MSCKF) [4] feature, and (ii) SLAM point feature, in analogy to [19, 20]. To
limit the state vector size, most of the point features will be treated as MSCKF features and linearly
marginalized via null space operation [4, 21], while only a few point features that are residing on
planes will be kept in state vector as SLAM features. This follows our design idea that, in order
to exploit the structural information available in the environment, whenever possible, we want to
enforce the point-on-plane constraints to further improve estimation. Moreover, in comparison to
extrinsic calibration between the camera and the IMU (for which many algorithms or tools are
available), it is not easy to obtain via offline calibration the accurate rigid-body transformation of
the IMU and depth sensor, and thus we particularly perform online extrinsic calibration between
them. In summary, the main contributions of this work include:

• We develop a tightly-coupled estimator for aided INS with both point and plane features,
applicable to a vision sensor along with a generic depth sensor. The camera can be used for
point feature tracking while the depth sensor is utilized for plane extraction. In addition, the
rigid-body transformation between the IMU and depth sensor is included in the state vector
for online spatial extrinsic calibration.

• To exploit the structural information of the environment, whenever possible, we detect planar
point features that are kept in the state vector, and then enforce point-on-plane constraints
in estimation. In addition, we introduce a simple but effective plane feature initialization
method for state estimation.

• Both Monte-Carlo simulations and real-world experiments with a RGBD camera and IMU
are performed to validate the proposed approach, where in real tests a new noise model is
introduced to better capture the uncertainty of RGBD points.

2 Aided INS with Point and Plane Features

The state vector of the proposed aided INS contains the IMU state xI , the depth sensor calibration
xcalib and the feature state xfeat. For simplicity, we consider one point feature and one plane feature
in the state vector as:

x =
[
x>I x>calib x>feat

]
(1)

where we have defined:

xI =
[
I
Gq̄
> b>g

Gv>I b>a
Gp>I

]>
(2)

xcalib =
[
D
I q̄
> Dp>I

]>
(3)

xfeat =
[
Gp>f

Gp>π
]>

(4)

where I
Gq̄ denotes the JPL quaternion [22] relating to the rotation I

GR from global frame {G}
to IMU frame {I}, GvI and GpI denote the IMU velocity and position in global frame, bg and
ba represents the random walk biases for gyroscope and accelerometer, respectively. D

I q̄ and DpI
represents the rigid-body orientation and translation between the depth frame {D} and the IMU
frame {I}. In addition, Gpf and Gpπ denote the point and plane feature. Note that in this work
we adopt the closest point (CP) representation for planes as advocated in our prior work [10, 23].
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2.1 IMU Motion Model

With IMU measurements, the system motion model can be described as [22]:

I
G

˙̄q(t) =
1

2
Ω
(
Iω(t)

)
I
Gq̄(t)

GṗI(t) = GvI(t),
Gv̇I(t) = Ga(t)

ḃg(t) = nwg, ḃa(t) = nwa(t)

ẋcalib(t) = 06×1, ẋfeat(t) = 06×1 (5)

where ω and a represent angular velocity and linear acceleration, respectively. With denoting b·c

as skew symmetric matrix, we have Ω(ω) =

[
−bωc ω
−ω> 0

]
. The biases bg and ba are driven by

the white Gaussian noises nwg and nwa, respectively. In addition, given the true state x and the
estimated state x̂, the error state is defined as x̃ = x − x̂. Note that the quaternion takes on a
different error state δθ as:

δq̄ = q̄ ⊗ ˆ̄q−1 '
[
1
2δθ

> 1
]>

(6)

where ⊗ represents the multiplication for JPL quaternions [22]. Therefore, the linearized system
model (5) can be written as:

˙̃x(t) = Fc(t)x̃(t) + Gc(t)n(t) (7)

where Fc(t) and Gc(t) represents the continuous-time error state Jacobians and noise Jacobians,
while ng and na are white Gaussian noises contaminating the IMU angular velocity and linear

acceleration readings. n(t) =
[
n>g n>wg n>a n>wa

]>
represents the system noises modeled as a

zero-mean white Gaussian process with autocorrelation E
[
n(t)n>(t)

]
= Qcδ(t− τ).

To propagate the covariance Pk|k at time step k, the state transition matrix Φ(k+1,k) from time

tk to tk+1 can be computed by solving Φ̇(k+1,k) = Fc(tk)Φ(k+1,k) with identity initial condition.
Thus, the discrete-time noise covariance and the propagated covariance can be written as:

Qk =

∫ tk+1

tk

Φ(k,τ)Gc(τ)QcG
>
c (τ)Φ>(k,τ)dτ (8)

Pk+1|k = Φ(k+1,k)Pk|kΦ
>
(k+1,k) + Qk (9)

2.2 Point Feature Measurements

The perspective projection which maps a point feature Gpf onto the camera’s image plane is given
by:

z(p) =
[
Cx
Cz

Cy
Cz

]>
+ n(p) (10)

Cpf = C
I RI

GR
(
Gpf − GpI

)
+ CpI (11)

where Cpf = [Cx, Cy, Cz]> denotes the point in camera frame {C}. C
I R and CpI represents

the known extrinsic calibration between the camera and IMU. Hence, the Jacobians of the point
measurement z(p) with respect to the state vector (1) can be computed as follows:

HC =
∂z̃(p)

∂C p̃f

[
∂C p̃f
∂x̃I

∂C p̃f
∂x̃calib

∂C p̃f
∂x̃feat

]
(12)
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where we have:

∂z̃(p)

∂C p̃f
=

1
C ẑ2

[
C ẑ 0 C x̂
0 C ẑ C ŷ

]
(13)

∂C p̃f

∂x̃I
=
[
C
I R̂bIGR̂(Gp̂f − Gp̂I)c 03×9 −CI R̂I

GR̂
]

(14)

∂C p̃f

∂x̃calib
= 03×6,

∂C p̃f

∂x̃feat
=
[
C
I R̂I

GR̂ 03

]
(15)

2.3 Plane Feature Measurements

For a plane pπ, given the normal direction nπ and the distance dπ from the plane to origin, pπ can
be represented by the closest point [10, 23] from the plane to origin as:

pπ = dπnπ (16)

Since plane features can be directly extracted from the point clouds acquired by the depth sensor
(e.g., RGBD and LiDAR), we assume a direct plane measurement:

z(π) = Dpπ + n(π) = Ddπ
Dnπ + n(π) (17)[

Dnπ
Ddπ

]
=

[
D
I R 03×1

Dp>I
D
I R 1

] [
I
GR 03×1
−Gp>I 1

] [Gnπ
Gdπ

]
(18)

where n(π) is the plane measurement noise with covariance Rπ. Note that it is not trivial to model
this measurement noise n(π) inferred from point-cloud measurements which we will explain in detail
next.

2.3.1 Plane Extraction from Point Clouds

Given a point cloud, Dpf i, i = 1 . . .m corresponding to a plane, we define each point measurements
as:

Dpfmi = Dpf i + nf i, nf i ∼ N (03×1,Rf i) (19)

where Dpf i is the true value of point i’s position in the depth sensor’s frame. Note that Rf i is the
point measurement covariance which is crucial for modeling the uncertainty of the plane feature.
We will explain our choice for Rf i based on the chosen sensor in our experiments [see (50)]. We
can define the distance from the point Dpf i to plane Dpπ as:

di =
Dp>π

Dpfmi

‖Dpπ‖
−
∥∥Dpπ

∥∥ (20)

where Dpπ(= Ddπ
Dnπ) is in CP form. As in our prior work [10], we can formulate a maximum

likelihood estimation (MLE) to extract the plane Dpπ as:

arg min
Dpπ

m∑
i=1

‖di‖2R−1
di

(21)
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The linearizion of (20) and the covariance Rdi can be written as:

d̃i ' Hri
Dp̃π + Hninf i (22)

Hdi =
∂d̃i
∂Dp̃π

=
1

Dd̂π

Dp̂>f i

(
I3 − Dn̂π

Dn̂>π

)
− Dn̂>π (23)

Hni =
∂d̃i
∂nf i

= Dn>π , Rdi = HniRf iH
>
ni (24)

With these Jacobians and residuals, we can solve (21) by Levenberg-Marquardt algorithm and
obtain the plane estimate Dp̂π and its covariance by:

Rπ =

(
m∑
i=1

H>di

(
HniRf iH

>
ni

)−1
Hdi

)−1
(25)

2.3.2 Plane Measurement Jacobians

In order to perform the plane measurement update, we also need to compute the plane measurement
Jacobians with respect to the state vector (including extrinsic calibration between the depth sensor
and IMU):

Hπ =
∂z̃(π)

∂x̃
=
[
∂z̃(π)

∂x̃I
∂z̃(π)

∂x̃calib
∂z̃(π)

∂x̃feat

]
(26)

where based on the chain rule of differentiation, we have:

∂z̃(π)

∂x̃I
=

∂z̃(π)

∂
[
Dñπ
Dd̃π

] ∂
[
Dñπ
Dd̃π

]
∂
[
I ñπ
I d̃π

] ∂
[
I ñπ
I d̃π

]
∂x̃I

(27)

∂z̃(π)

∂x̃calib
=

∂z̃(π)

∂
[
Dñπ
Dd̃π

] ∂
[
Dñπ
Dd̃π

]
∂x̃calib

(28)

∂z̃(π)

∂Gx̃feat
=
[
∂z̃(π)

∂Gp̃f

∂z̃(π)

∂Gp̃π

]
=
[
03

∂z̃(π)

∂Gp̃π

]
(29)

∂z̃(π)

∂Gp̃π
=

∂z̃(π)

∂
[
Dñπ
Dd̃π

] ∂
[
Dñπ
Dd̃π

]
∂
[
Gñπ
Gd̃π

] ∂
[
Gñπ
Gd̃π

]
∂Gp̃π

(30)

The detailed derivations can be found in Appendix A.

2.3.3 Data Association for Plane Features

When a new plane measurement comes in, we employ the Mahalanobis distance test to decide
whether it corresponds to a new plane or a currently estimated one. Given the current covariance
Pk|k, the Mahalanobis distance for the new plane measurement is computed as:

rm =
(
z̃(π)

)> (
HπPk|kH

>
π + Rπ

)−1
z̃(π) (31)
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where rm subjects to χ2 distribution. If rm is smaller than a lower threshold λmin, this plane will
be considered as an existing plane in the state vector. If it is larger than a higher threshold λmax,
this plane will be treated as a new plane and initialized in the state vector.

After computing measurement Jacboians and residuals, the standard EKF update [24] can be
used to update state estimate and covariance.

3 Plane Feature Initialization

Inspired by [11, 25], we propose a simple but effective plane feature initialization algorithm within
the EKF framework. Given the current state xk and its covariance Pk|k, a new plane Gpπ is
observed and needs to be added into the state. The plane measurement and its linearizion can be
re-written as:

z(π) = h

([
xk
Gpπ

])
+ n(π) (32)

z̃(π) ' Hxx̃k + Hf
Gp̃π + n(π) (33)

where Hx and Hf represents the Jacobians w.r.t. the current state xk and the new plane feature.
Before initialization, the covariance for the new plane feature is treated as∞ and has no correlation
with existing state. Thus, the augmented prior covariance for xk and Gpπ can be written as:

Pk+1|k =

[
Pk|k 0

0 ∞

]
(34)

The initialization problem can be reformulated as maximum likelihood estimation (MLE):

min
xk,Gpπ

∥∥∥∥z(π) − h

([
x

Gpπ

])∥∥∥∥2
R−1
π

+

∥∥∥∥[ x̃
Gp̃π

]∥∥∥∥2
P−1
k+1|k

(35)

By taking first order derivative and setting it zero, the optimal state correction can be solved as:

Λ

[
x̃

Gp̃π

]
=

[
H>x
H>f

]
R−1π z̃(π) (36)

where Λ denotes the information matrix of the new state (including the plane) and is computed
by:

Λ =

[
H>x R−1π Hx + P−1k|k H>x R−1π Hf

H>f R−1π Hx H>f R−1π Hf

]
(37)

Therefore, the covariance Pk+1|k+1 of the new state can be written as:

Pk+1|k+1 = Λ−1 =

[
Pxx Pxπ

P>xπ Pππ

]
(38)

where Pxx and Pππ denote the covariances of current state and plane Gpπ, respectively. Pxπ denotes
the correlation between the current state and the plane. Since we get the plane measurements from
the point cloud, Hf is square and invertible. Hence, we can continue to simplify the above equation
based on the block matrix inversion:

Pππ = H−1f

(
R + HxPk|kH

>
x

)
H−>f (39)

Pxπ = −Pk|kH
>
x H−>f , Pxx = Pk|k (40)
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Hence, the covariance matrix can be finally written as:

Pk+1|k+1 =
[

Pk|k −Pk|kH
>
x H−1f

−H−>f HxPk|k H−1f

(
Rπ + HxPk|kH

>
x

)
H−>f

]
(41)

And the updated state correction can be written as:[
x̃

Gp̃π

]
=
(
Pk+1|k+1

)−1 [H>x
H>f

]
R−1π z̃(π) =

[
0

H−1f z̃(π)

]
(42)

It is important to note that as compared to [11], for the new plane feature initialization, we only
need to compute the inverse of the plane feature Jacobian,a 3× 3 matrix. If Hf is invertible, from
both (41) and (42), the initialization will not update the existing state. Instead, only the plane
feature covariance and correlation with existing state are created during the feature initialization.

4 Point-on-Plane Constraints

For those point features in the state vector, we wish to exploit the structure of the environment
by enforcing a point-on-plane constraint whenever possible. Specifically, assuming a point pf is on
the plane pπ, we have the following point-on-plane constraint:

g(x) :=
p>f pπ
‖pπ‖

− ‖pπ‖ = 0 (43)

Instead of hard constraints, we treat it as a probabilistic compensation for the feature uncertainty
of the planar model. The cost term used by the estimator is given by:

min
x
‖g(x)‖2

σ−2
g

(44)

where σg is the variance we assign to the point-on-plane constraints, which is set to be 0.01m in
our experiments.

We identify the correspondence between point feature Gpf and the new coming plane based on
Mahalanobis distance test (44). For clarity, we denote Dpπm , z(π) as the new plane measurement.
Then the distance from the pf to this new plane pπ can be defined in the depth frame as:

dm =
Dp>πm

Dpf

‖Dpπm‖
−
∥∥Dpπm

∥∥ (45)

Dpf = D
I RI

GR
(
Gpf − GpI

)
+ DpI (46)

With that, we compute the Mahalanobis distance as:

rp = d>m

(
HmxPk|kH

>
mx + HmnRπH

>
mn

)−1
dm (47)

where Hmx and Hmn are Jacobans w.r.t. the state and the plane noise nπ, respectively. The detail
derivation can be found Appendix B. Also, based on χ2 distribution, we can set a threshold. If rp
is smaller than the threshold, we will accept this point-on-plane constraint. Then, similar to [26],
this constraint (43) can be treated as additional measurement and be used to update the state
estimate and covariance.
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Figure 1: Simulation results: Averaged NEES and RMSE values of the IMU poses (orientation and position) of the
proposed aided INS with point and/or plane features.

5 Simulation Results

We first validate the proposed tightly-coupled INS with point and plane features in Monte-Carlo
simulations. Similar to our previous work [12], we simulate a 3D sinusoidal trajectory that an
IMU-stereo camera sensor rig travels along. The sensor rig collects IMU readings, projective point
measurements as well as direct CP plane measurements from a pre-generated map. We run Monte-
Carlo simulations with the proposed estimator for the following scenarios: (i) using point features
only, (ii) using plane features only, and (iii) using both features. The average normalized estimation
error square (NEES) and root mean square error (RMSE) [27] are used to evaluate the accuracy and
consistency of IMU pose estimation, which are shown in Fig. 1. These results clearly demonstrate
that the system performs better when both point and plane features are used, compared to other two
cases when only one type of feature is used. Note that in this simulation, the online calibration and
point-on-plane constraints are not applied, while they will be validated in the real-world experiments
presented next.

6 Experimental Results

To further validate the proposed system, we perform proof-of-concept experiments using a RGBD
camera (Intel Realsense ZR3001) which can provide IMU readings, monocular images and dense
point clouds. Note that we did not use the depth correspondence between the optical image pixel
and the depth image. Instead, we treat the images and point clouds as separate independent

1https://software.intel.com/en-us/realsense/zr300
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Figure 2: Proof-of-concept indoor experiment setup for the proposed aided INS with point and plane features. ArUco
makers [31] are placed in the workspace to serve as planar point features and thus to create point-on-plane constraints.

measurements. FAST [28] features from the monocular image were extracted and then tracked
with optical flow [29]. Plane features were extracted through segmentation of the acquired point
clouds [30]. Then these point and plane features were fed into our estimator. During the tests, the
ZR300 sensor traveled through an indoor environment (see Fig. 2 and 3).

Since the point cloud of ZR300 is generated by compounding the measurements from infrared
cameras and color cameras, it is not trivial to model the point cloud noise covariance Rf i in (19). A

point Dpf i =
[
Dxi

Dyi
Dzi
]>

from the point cloud is generated by fusing the bearing information

(ui =
Dxi
Dzi

, vi =
Dyi
Dzi

) from the color camera and depth information Dzi from the infrared cameras.

1

0

y 
(m
)

-1

0
-2-0.5

0.5

z
 
(
m
)

x (m)

0

1

0.5

1

0.5

y 
(m
)

0

0.2

0.4

z
 
(
m
)

0

0.6

0

x (m)

0.8

0.5 -0.5
1
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y 
(m
)

00
0.2
0.4

-1

z
 
(
m
)

0.6
0.8

x (m)

-0.5 -1
0
0.5

Figure 3: Estimated trajectories of three real-world experiments. From left to right is: Trajectory 1 (37m), Trajectory
2 (20m), and Trajectory 3 (28.5m). The green square and red diamond represent the starting and ending point,
respectively. Note that the trajectory length is estimated by accumulating the position changes between every two
consecutive frames.
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Hence, we can have:

Dpfmi = (Dzi + nz)

ui + nu
vi + nv

1

 (48)

'
Dx̂iDŷi
Dẑi

+

Dẑi 0 ûi
0 Dẑi v̂i
0 0 1


︸ ︷︷ ︸

Hfni

nunv
nz

 (49)

where nu, nv ∼ N (0, σ2pixel) represent normalized image pixel noise with variance σ2pixel, nz ∼
N (0, σ2zi) represents the depth measurement noise with σzi = αDzi. Note that in our experiments,
we take α = 0.04 since the point cloud from ZR300 is too noisy. Hence, the point measurement
covariance for RGBD sensor can be modeled as:

Rf i = Hfni

σ2pixel 0 0

0 σ2pixel 0

0 0 σ2zi

H>fni (50)

In our experiments, we implemented two types of point features: 1) the MSCKF features which
were marginalized and, thus only pose information from these feature measurements was fused into
the estimator; 2) SLAM point features which were extracted from the fiducial tags (see Fig. 2) and
kept in the state vector.

We denote the starting and ending points of the trajectory as Gps and Gpe, respectively. Then,
the distance dse between the two points can be computed as:

dse =
∥∥Gps − Gpe

∥∥
2

(51)

Since we ran 3 different trajectories and for each trajectory, the sensor returned to approximately
the same position. Therefore, dse is used to evaluate the accuracy of the proposed algorithm.
For each trajectory, we ran the proposed algorithm with 3 different setups2: i) with SLAM plane
features only; ii) with both SLAM point and plane features; iii) with both SLAM point and plane
features and point-on-plane constraints. We ran 10 times for each setup and computed the average
dse, which are shown in Table 1. The introduction of SLAM point features greatly improved the
performance than the case with the SLAM plane features only. In addition, adding the point-on-
plane geometrical constraints further improved the system estimation accuracy.

7 Conclusions and Future Work

In this paper, we have presented a tightly-coupled EKF based aided INS with point and plane
features in order to better exploit the available geometrical information in structured environments.
In the proposed system, a camera is used for point feature tracking and a depth sensor for plane
feature extraction, while online spatial calibration between the IMU and the depth sensor is also
performed. In particular, we detect point features which reside on the plane features and enforce
point-on-plane constraints in the EKF update in order to further exploit the structure information
of the environment. In addition, a plane SLAM feature initialization scheme is proposed and
compared to existing work, and we analytically show that given full plane measurement from point

2All these setups use MSCKF point features.
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Table 1: Experiment results for 3 trajectories. The values in table represent the distances from the ending point to
the starting point of estimated trajectories.

Unit (m) Trajectory 1 Trajectory 2 Trajectory 3

MSCKF+Plane 0.2682 0.2607 0.8432

MSCKF+Pt+Plane 0.0539 0.1113 0.3608

MSCKF+Pt-On-Plane 0.0461 0.1095 0.3363

cloud, the plane initialization will not update the existing states. Both Monte-Carlo simulations
and real-world experiments with a RGBD camera were performed to verify our algorithm. In the
experiments, we also introduced a point noise model which can better capture the uncertainty of
the RGBD points. In the future we will integrate online temporal (time offset) calibration between
IMU and the depth sensor. Moreover, we will develop more robust algorithms for plane feature
data association without relying on the VIO.
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Appendix A: Plane Measurement Jacobians

The plane measurement Jacobians can be computed as:

∂z̃(π)

∂x̃I
=

∂z̃(π)

∂
[
Dñπ
Dd̃π

] ∂
[
Dñπ
Dd̃π

]
∂x̃I

(52)

=
[
Dd̂I3

Dn̂π
] [ D

I R̂bIGR̂Gn̂πc 03×9 03

−I p̂>DbIGR̂Gn̂πc 01×9 −Gn̂>π

]
∂z̃(π)

∂x̃calib
=

∂z̃(π)

∂
[
Dñπ
Dd̃π

] ∂
[
Dñπ
Dd̃π

]
∂x̃calib

(53)

=
[
Dd̂I3

Dn̂π
] [ bDI R̂I n̂πc 03

−I n̂>π DI R̂>bDp̂Ic Dn̂>π
D
I R̂>

]
∂z̃(π)

∂Gp̃π
=

∂z̃(π)

∂
[
Dñπ
Dd̃π

] ∂
[
Dñπ
Dd̃π

]
∂
[
Gñπ
Gd̃π

] ∂
[
Gñπ
Gd̃π

]
∂Gp̃π

(54)

=
∂z̃(π)

∂
[
Dñπ
Dd̃π

]
[

D
GR̂ 03×1
−Gp̂>D 1

][ 1
Gd̂π

(
I3 − Gn̂π

Gn̂>π
)

Gn̂>π

]

Appendix B: Jacobians for Point-on-Plane Constraints

We have two cases for the point-on-plane constraints: (i) Dpπ is a new plane and will be initialized,
and (ii) Dpπ corresponds to a plane feature already in the state.

B.1: Case I

When the plane is first time observed, the Jacobians of the dm w.r.t. the state vector can be written
as:

Hmx =
∂d̃m
∂x̃

=
[
∂d̃m
∂x̃I

∂d̃m
∂x̃calib

∂d̃m
∂x̃feat

]
(55)

Where we have:

∂d̃m
∂x̃I

=
∂d̃m
∂Dp̃f

∂Dp̃f

∂x̃I
(56)

= Dn̂>π
D
I R̂

[
bIGR̂

(
Gp̂f − Gp̂I

)
c 03×9 −IGR̂

]
(57)

∂d̃m
∂x̃calib

=
∂d̃m
∂Dp̃f

∂Dp̃f

∂x̃calib
(58)

= Dn̂>π
[
bDI R̂I

GR̂
(
Gp̂f − Gp̂I

)
c I3

]
(59)

∂d̃m
∂x̃calib

=
∂d̃m
∂Dp̃f

∂Dp̃f

∂x̃feat
=
[
Dn̂>π

D
I R̂I

GR̂ 01×3
]

(60)

The Jacobians for the noise can be described as:

Hmn =
∂d̃m

∂n(π)
=

1
Dd̂π

Dp̂>f

(
I3 − Dn̂π

Dn̂>π

)
− Dn̂>π (61)
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B.2: Case II

If plane Gpπ is already in the state vector, we still have (61). The components of (55) need to be
computed as:

∂d̃m
∂δθI

=
∂d̃m
∂Dp̃f

∂Dp̃f

∂δθI
+

∂d̃m
∂Dp̃π

∂Dp̃π
∂δθI

(62)

= Dn̂>π
D
I R̂bIGR̂

(
Gp̂f − Gp̂I

)
c+

∂d̃m
∂Dp̃π

[
Dd̂πI3

Dn̂π
] [ D

I R̂bIGR̂Gn̂πc
−I p̂>DbIGR̂Gn̂πc

]
(63)

∂d̃m
∂Gp̃I

=
∂d̃m
∂Dp̃f

∂Dp̃f

∂Gp̃I
+

∂d̃m
∂Dp̃π

∂Dp̃π
∂Gp̃I

(64)

= −Dn̂>π
D
I R̂I

GR̂ +
∂d̃m
∂Dp̃π

∂Dp̃π

∂
[
Dñπ
Dd̃π

]
[

03

−Gn̂>π

]
∂d̃m
∂δθD

=
∂d̃m
∂Dp̃f

∂Dp̃f

∂δθD
+

∂d̃m
∂Dp̃π

∂Dp̃π
∂δθD

(65)

= Dn̂>π bDI R̂I p̂fc+
∂d̃m
∂Dp̃π

∂Dp̃π

∂
[
Dñπ
Dd̃π

][ bDI R̂I n̂πc
−I n̂>π DI R̂>bDp̂Ic

]

∂d̃m
∂Dp̃I

=
∂d̃m
∂Dp̃f

∂Dp̃f

∂Dp̃I
+

∂d̃m
∂Dp̃π

∂Dp̃π
∂Dp̃I

(66)

= Dn̂>π I3 +
∂d̃m
∂Dp̃π

∂Dp̃π

∂
[
Dñπ
Dd̃π

]
[

03
I n̂>π

D
I R̂>

]
∂d̃m
∂Gp̃f

=
∂d̃m
∂Dp̃f

∂Dp̃f

∂Gp̃f
= Dn̂>π

D
I R̂I

GR̂ (67)

∂d̃m
∂Gp̃π

=
∂d̃m
∂Dp̃π

∂Dp̃π
∂Gp̃π

(68)

∂d̃m
∂Dp̃π

=
1

Dd̂π

(
Dp̂>f − Dn̂>π

Dp̂f
Dn̂>π − Dd̂π

Dn̂>π

)
(69)

∂Dp̃π
∂Gp̃π

=
∂Dp̃π

∂
[
Dñπ
Dd̃π

][ D
GR̂ 03×1
−Gp̂>D 1

][ 1
Gd̂π

(
I3 − Gn̂π

Gn̂>π
)

Gn̂>π

]
(70)
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