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Figure 1: Overview of the proposed NeRF-VINS, where {G} is the global VIO frame, {N} is the map frame, {K}
denotes the NeRF rendered image. {I} and {C} are IMU and camera frame, respectively. For full algorithm refer to
Alg. 1

This document supplements our paper, cited in [1], by offering further insights and results
regarding our proposed system.

In section 1, we describe our estimator choice followed by how we fuse NeRF Map measurements
in detail along with system algorithm 1.

1 NeRF-Visual Inertial Navigation System Estimator Choice

In the realm of visual-inertial localization, two primary paradigms emerge, each with distinct trade-
offs in terms of accuracy and computational efficiency. One approach adopts a graph optimization-
based methodology, where visual and inertial measurements are formalized as a graph, and iterative
optimization techniques are employed to estimate the camera pose, landmarks (features), and IMU
states. This paradigm, exemplified by works such as [2], excels in accuracy, as it directly fuses
visual and inertial information in an iterative manner. However, it tends to be computationally
demanding due to the iterative optimization process. Conversely, another approach is filter-based,
integrating camera and IMU measurements within a filter framework. This approach is known for
its computational efficiency while maintaining a reasonable level of accuracy. Notably, the multi-
state constraint Kalman filter (MSCKF) and its variants, as presented in [3], [4], [5], are popular
choices within this paradigm. Unlike some traditional filter-based methods, MSCKF efficiently
handles the integration of camera and IMU data while retaining the ability to provide accurate
estimates. It’s important to clarify that while MSCKF is a form of an EKF, its distinction lies in
its efficient handling of features without explicitly incorporating them into the state vector. This
feature-efficiency trade-off sets it apart from traditional EKF SLAM approaches that can experience
cubic growth in numerical complexity as the number of features increases. This key advantage posi-
tions MSCKF as an efficient choice within the filter-based paradigm for visual-inertial localization.
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It’s important to note that both paradigms have their strengths and weaknesses, and the choice
between them should consider the specific requirements of the application, weighing the trade-offs
between accuracy and computational efficiency. While the graph optimization-based approach of-
fers higher accuracy, it often requires more computational resources due to its iterative nature. In
contrast, the filter-based approach, especially exemplified by MSCKF, balances accuracy and ef-
ficiency, making it a compelling choice for resource-constrained real-time visual-inertial localization.

Given the choice of the estimator, we now focus on the formulation of the estimator which is
built on top of OpenVINS [6].

At time tk, the system state xk consists of the current inertial navigation states xIk , historical
IMU poses (clones) xTk

, and a subset of 3D environmental point features, xf :

xk =
[
x⊤
Ik

x⊤
Tk

x⊤
f

]⊤
(1)

xIk =
[
Ik
G q̄⊤ Gp⊤

Ik
Gv⊤

Ik
b⊤
g b⊤

a

]⊤
(2)

xTk
=

[
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Ik
. . .
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G q̄⊤ Gp⊤
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]⊤
(3)

xf =
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. . . Gp⊤
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]⊤
(4)

where I
Gq̄ is the unit quaternion (IGR in rotation matrix form) that represents the rotation from

the global {G} to the IMU frame {I}; GpI ,
GvI , and

Gpfi are the IMU position, velocity, and i’th
point feature position in {G}; bg and ba are the gyroscope and accelerometer biases.

xIk =
[
Ik
G q̄⊤ Gp⊤

Ik
Gv⊤

Ik
b⊤
g b⊤

a

]⊤
(5)

(6)

We choose to store IMU clones instead of camera clones because IMU data offers advantages like
high frequency, low latency, and robustness in challenging scenarios, which are crucial for accurate
and responsive localization.

1.1 IMU Measurement Model

IMUs measure accelerations and angular rates at a higher frequency (400 Hz) than cameras (30
Hz). By integrating IMU data, we estimate the device’s position and velocity changes between
camera frames. This prediction step aids tracking and pose estimation, especially in scenarios with
limited or no visual feature information, making IMU an ideal choice for propagation. The IMU
kinematics are used to evolve the state from time tk to tk+1:

I
G
˙̄q(t) =

1

2
Ω(ω(t))IGq̄(t) (7)

GṗI(t) =
GvI(t) (8)

Gv̇I(t) =
I(t)
G R⊤a(t) (9)

ḃg(t) = nwg(t) (10)

ḃa(t) = nwa(t) (11)

where ω(t) = [ω1 ω2 ω3]
⊤ and a(t) are the angular velocity and acceleration in the IMU local

frame {I}; Ω(ω(t)) =

[
−⌊ω⌋ ω
−ω⊤ 0

]
where ⌊·⌋ is the skew-symmetric matrix. nwg and nwa are white
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Algorithm 1 NeRF Map-based VINS

Propagation: Section 1.1
• Propagate the IMU navigation state estimate x̂k+1|k based on (15), and the state covariance based

on (16).
Feature Tracking: For an incoming image

• Perform stochastic cloning of the current state [7]
• Extract visual key points and descriptors from the current real image and match to previous real

image
• Render NeRF image at the current camera pose + 10cm offset in x-axis and extract keypoints and

match with current real image (see Fig. 2)
Update: Section 1.2.3

• Perform MSCKF update for VIO and NeRf features (i.e those that have lost their tracks)
• Initialize new SLAM features if needed and perform EKF update

Gaussian noise that drive the IMU biases. A canonical three-axis IMU provides linear acceleration
and angular velocity measurements, Iam and Iωm, expressed in the local IMU frame {I} modeled
as:

am(t) = a(t) + I
GR(t)Gg + ba(t) + na(t) (12)

ωm(t) = ω(t) + bg(t) + ng(t) (13)

where Gg ≃ [0, 0,−9.8]⊤ is the gravitational acceleration expressed in {G}, ng and na are zero-
mean white Gaussian noise. I

GR denotes the rotation matrix from global frame to local IMU frame.
The IMU nonlinear kinematics can be formulated as a function of:

xIk+1
= fI

(
xIk ,

Iak,
Iωk,nI

)
(14)

where nI = [n⊤
g n⊤

a n⊤
wg n⊤

wa]
⊤. Linearize the IMU kinematics Eq. (14) we can get:

x̃k+1 = Φkx̃k +GknI (15)

where Φk is the linearized state translation matrix and Gk is the noise Jacobian.
The computed Φk and Gk is used to propagate the covariance from tk to tk+1

Pk+1|k = Φ(tk+1,tk)Pk|kΦ(tk+1,tk)
⊤ +GkQdGk

⊤ (16)

1.2 Measurement Model

Our camera observes environmental features as it moves along its trajectory. For a feature we
consider the following relation to our state:

1.2.1 Camera Measurement Model

zCk
=

[
un
vn

]
+ nCk

(17)

= h(xTk
,GPf ) + nCk

(18)

= Λ(Ckpf ) + nCk
(19)

Ckpf = C
I R

Ik
GR(Gpf − GpIk) +

CpI (20)
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where Λ([x y z]⊤) = [x/z y/z]⊤, and zn,k is the normalized feature bearing. nCk
is the white

Gaussian noise. Here we can assume we know the camera distortion parameters to recover the
normalized pixel coordinates, zn,k, and that the extrinsic transform between the camera and IMU,
{CI R, CpI}, is known with reasonable accuracy.

Linearizing Eq. (17) gives the following measurement residual:

rCk
= zCk

− hc(x̂Tk
,Gp̂f ) ≃ HT x̃Tk

+Hf
Gp̃f + nCk

(21)

where HT and Hf are the Jacobian matrix of the measurement with respect to each state.

1.2.2 NeRF Measurement Model

When a camera image reading is received, a NeRF render is triggered at a pose with a small
horizontal positional offset (e.g., 10 cm, as in our experiments) from the current camera pose. This
strategy draws inspiration from human perception, emulating the principles of stereo vision where
two eyes yield subtly distinct viewpoints, thereby enhancing triangulation accuracy. Furthermore,
this method capitalizes on the considerable image overlap, promoting resilient feature matching even
when camera is static—an essential component for precise location estimation. Once the rendering
is completed, descriptor-based feature matching is performed to the current image, where a 2D-
to-2D prior keyframe measurement model is leveraged [8]. For example, consider that from the
rendered image we get a bearing measurement, zNk

, which is related to the state as:

zNk
= hn

(
Gnpf

)
+ nNk

=: Λ(Kpf ) + nNk
(22)

Kpf = Npf + sNKR(NpG + N
GRGpf ) (23)

where s is the scale factor of the map and nNk
is the zero mean Gaussian noise. Note that we model

the bearing as only a function of the feature Gpf , and consider the map transform {s,GNR,NpG} to
be known and the rendered camera pose {NKR,KpN} to have some known orientation and position
error {GN θ̃,N p̃G}

Thus, we have the following linearized model:

rNk
= zNk

− hn(
Gp̂f ) = sHΛ

K
NRN

GRGp̃f + n′
Nk

(24)

where ⌊·×⌋ is the skew-symmetric matrix and

n′
Nk

= sHΛ
K
NR(⌊NGRGpf×⌋NG θ̃ + N p̃G) + nNk

(25)

1.2.3 EKF Update

For features that are tracked longer than the current sliding window, initialized into the active
state as SLAM features and perform EKF udpate. Note that SLAM features will not remain active
forever, instead they will be marginalized out for computational savings. On the other hand, for
features that are short lived are considered as MSCKF features and updated accordingly [3]. The
measurement linearized model can be used to update the features in the state or can be stacked
with the real image measurements (26) to perform (SLAM or MSCKF) EKF update.[

z̃Ck

z̃Nk

]
=

[
Hi

0

]
x̃C +

[
HC

f

HN
f

]
Gp̃f +

[
nCk

n′
Nk

]
(26)

(27)
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Figure 2: Assuming NeRF Map image {K1} features matches to actively tracked feature of cloned frames {C1,C2},
additional NeRF feature measurements are added to the feature tracks to form an implicit loop closure constraint.

Figure 3: Pipeline computation time running on Jetson Orin

1.3 Image Rendering and Optimization

Rendering NeRF images remains a computationally expensive operation, especially on embedded
devices like the Jetson AGX Orin. It takes approximately 660 ms (2Hz) to render an image with
dimensions 424 × 240. To improve render speed and minimize loop-closure latency, we use a
two-step process. First, we generate NeRF to render at half the original resolution, resulting in
images sized at 212 × 140 pixels. While this reduces computational overhead, it also introduces a
lower image resolution. The significance of this lower resolution becomes evident when we consider
feature matching between the NeRF-rendered images and real images. Feature matching relies on
the precise alignment of distinctive points, or keypoints, in two images. Lowering the resolution
can cause a misalignment of these keypoints, leading to inaccurate matching and, subsequently,
compromising the performance of our visual-inertial navigation system. To address this, we employ
an up-sampling technique using FSRCNN [9] to restore the NeRF renders to their original size.
This up-sampling process not only enhances the visual quality of the images but also aligns them
with the higher-resolution real images, ensuring that feature matching is performed accurately.
By striking this balance between computational speed and image quality, not only accelerates
the rendering process but also preserves the fidelity necessary for feature matching. We further
enhance performance by reducing resolution levels and the hashing size of the model in InstantNGP
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(a) DBoW (b) NetVLAD (c) Ours

Figure 4: Qualitative study of failure cases of classical place recognition method. Green and Red lines indicate inliers
and outliers, respectively. Input image (left of each column) and retrieved at full resolution , rendered for the NeRF
case. These are full resolution images rendered offline.

[10]. Additionally, we minimize multiple copy times to the CPU by directly transferring images to
our frontend superpoint-based descriptors for fast extraction. The rendering is run on a separate
thread to prevent blocking of the real-time VINS. The SuperPoint feature matching network has
been modified to use a lightweight ResNet18 [11] and optimized to support a 16-bit floating point
using the TensorRT pipeline [12] to further improve performance. This secondary thread which
performs rendering and matching runs at an adequate speed of 10 to 15Hz on the Jetson to aid in
real-time estimation (Fig 3).

2 Additional Results

Unlike the results presented in the paper, the rendered images depicted in Fig. 4 are at full
resolution (848×480). If rendering speed is not a constraint, we tend to observe a higher percentage
of inliers. This observation is logical because NeRF consistently delivers better matches, and higher
resolution facilitates higher quality feature detections, resulting in a higher percentage of inliers.
Exploring this avenue further, particularly in experimenting with Gaussian splatting [13], holds
promise, given its inherently fast rendering capabilities.

Table 1: HLoc and DBoW failure rates

table 01 table 02 table 03 table 04 table 05 table 06 table 07

table 01 only 0/2506 1039/2914 142/7006 12/6068 1777/6164 1251/2767 1182/4784
table 01+table 05 0/2506 1039/2914 142/7006 12/6068 0/6164 0/2767 0/4784
DBoW+2Dto2D 6/2205 1542/2613 1650/6705 142/5768 4722/5863 1977/2466 3340/4484

TODO: include oV 2 clones, 3 clones setup

2.1 Failure Rates of Different Localization Pipelines

We present failure rates of HLoc and DBoW in Tab. 1. The NeRF map is trained on a subset of the
table01 dataset and was used to test table 2, 3, 4 and Table5 has different environment. Therefore,
the map was created using table 5 and used to test table 5, 6, and 7 labeled as ”table01+table05”.
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”table01 only” indicates table1 map is used to test the rest of the tables. Errors larger than 5 degrees
and 0.1 meters are considered as failure case for HLoc (degree/meter), for reference, failure cases
in the current DBoW Pipeline DBoW+2Dto2D are also recorded. The failure definition in the
current pipeline is when query images cannot find 30 matches with the top 5 retrieved images, it is
considered as a failure case. The total is different since the current pipeline skips the first several
seconds for proper initialization of our system.

2.2 Minimum Test Setup

The more features (in our case slam features) and clones (historical IMU states) we use the more
the state size grows and can become computationally expensive to perform an update. To test the
limits of our system we used minimum clones to push the limits of our pipeline with just 2 clones
with no slam features. See Tab. 2 for results, even with just 2 clones and no slam features our
pipeline was stable enough to provide drift free localization. The higher the clones the more stable
the system when there are no feature matches and hence contributing to better overall accuracy
of our system. We also included 12 clones setup and different slam configuration of our baseline
system (i.e openvins) and optimization based method VINS-fusion with and without loop closures
for comparison. We noticed that for map based localization descriptor based matching works the
best instead of the optical flow like KLT (nerf feat0 slam 5clones klt). Approaches that optimize
the photometric loss such as KLT tend to not perform well if images have large baseline in between
them and tend to be sensitive to large motions and viewpoints. For this reason we opted for
descriptor based matching.

Table 2: ATE Table (degree / m) noise nk = 1 was used

table 01 table 02 table 03 table 04 table 05 table 06 table 07 Average

nerf feat 0slam 2clones 0.425 / 0.012 0.470 / 0.008 0.362 / 0.009 0.415 / 0.020 0.765 / 0.108 0.574 / 0.041 0.707 / 0.015 0.553 / 0.039
nerf feat 0slam 5clones 0.443 / 0.013 0.437 / 0.010 0.357 / 0.009 0.366 / 0.030 0.439 / 0.028 0.543 / 0.038 0.739 / 0.015 0.475 / 0.022
nerf feat 0slam 5clones klt 0.550 / 0.021 1.528 / 0.051 0.416 / 0.024 0.438 / 0.027 0.464 / 0.026 0.608 / 0.031 0.824 / 0.019 0.650 / 0.028
nerf feat 0slam 8clones 0.450 / 0.013 0.444 / 0.008 0.365 / 0.009 0.364 / 0.017 0.433 / 0.027 0.602 / 0.040 0.743 / 0.015 0.470 / 0.019
openvins 0slam 0.832 / 0.057 1.058 / 0.029 1.291 / 0.063 0.672 / 0.066 1.078 / 0.067 0.725 / 0.047 1.712 / 0.079 1.053 / 0.059
openvins 25slam 0.458 / 0.036 0.964 / 0.033 1.068 / 0.035 0.822 / 0.038 1.394 / 0.057 0.821 / 0.038 1.321 / 0.055 0.978 / 0.042
openvins 50slam 0.692 / 0.044 0.546 / 0.025 1.079 / 0.058 1.192 / 0.035 0.523 / 0.026 0.988 / 0.039 0.889 / 0.041 0.844 / 0.038
mono vinsfusion vio 1.619 / 0.058 1.319 / 0.030 1.468 / 0.076 1.748 / 0.056 1.122 / 0.034 0.978 / 0.053 1.670 / 0.093 1.870 / 0.079
mono vinsfusion loop 0.662 / 0.035 0.980 / 0.066 0.611 / 0.046 0.764 / 0.029 0.903 / 0.019 0.592 / 0.019 1.534 / 0.039 0.864 / 0.036

Table 3: RPE Table

8m 16m 24m 32m 40m 48m

nerf feat 0slam 2clones 0.482 / 0.034 0.477 / 0.031 0.521 / 0.039 0.475 / 0.035 0.512 / 0.039 0.482 / 0.038
nerf feat 0slam 5clones 0.479 / 0.029 0.469 / 0.024 0.513 / 0.031 0.464 / 0.024 0.500 / 0.028 0.481 / 0.024
nerf feat 0slam 5clones klt 0.612 / 0.041 0.638 / 0.035 0.668 / 0.043 0.561 / 0.035 0.558 / 0.039 0.510 / 0.030
nerf feat 0slam 8clones 0.477 / 0.028 0.472 / 0.023 0.505 / 0.030 0.459 / 0.023 0.487 / 0.027 0.475 / 0.022
openvins 0slam 0.786 / 0.046 1.113 / 0.062 1.522 / 0.077 1.738 / 0.097 1.874 / 0.110 1.858 / 0.125
openvins 25slam 0.698 / 0.039 0.976 / 0.046 1.278 / 0.054 1.543 / 0.060 1.717 / 0.065 1.899 / 0.074
openvins 50slam 0.673 / 0.038 0.859 / 0.044 1.060 / 0.049 1.247 / 0.050 1.424 / 0.059 1.515 / 0.067
mono vinsfusion vio 0.863 / 0.050 1.461 / 0.075 2.192 / 0.110 3.075 / 0.145 4.197 / 0.181 5.586 / 0.208
mono vinsfusion loop 0.553 / 0.044 0.615 / 0.032 0.699 / 0.051 0.703 / 0.033 0.749 / 0.052 0.847 / 0.044
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