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1 Methodology

In this report, we explain how we can determine leg kinematics parameters by fusing Leg Kinematic
measurements to the Visual-Inertial Navigation System. The Leg kinematic parameters includes
the IMU-Leg spatial-temporal parameters and leg link lengths.

1.1 The State Vector

At time tk, the state vector consists of current inertial state xIk and n historical IMU pose clones
xCk

and the position of the toe if they have a static ground contact as xT represented in the global
frame {G}.

In the case of quadrupeds, if they stand still, all feet are in contact with the ground. While
in a walking gait, either two or three feet are in contact with the ground. For simplicity, we will
describe only one toe.

xk =
[
x⊤
Ik

x⊤
Ck

x⊤
T x⊤

Θ

]⊤
(1)

xIk =
[
Ik
G q̄⊤ Gp⊤

Ik
Gv⊤

Ik
b⊤
g b⊤

a

]⊤
(2)

xCk
=

[
Ik91
G q̄⊤ Gp⊤

Ik91
· · · Ik9n

G q̄⊤ Gp⊤
Ik9n

]⊤
(3)

xT =
[
GpT1 · · · GpTw

]
(4)

xL =
[
L
I R

LpI l1 l2 l3
]

(5)

xΘ =
[
xL1 · · · xLw

LtI
]

(6)

Where,
I
Gq̄ : is the JPL unit quaternion corresponding to the rotation I

GR from Global {G} to IMU frame
{I}
GpIk : is the position of IMU frame from {G} to {I}
GvIk : is the velocity of IMU frame from {G} to {I}
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Figure 1: Kinematics of a general robot leg with four joint frames: abduction {A}, hip {H}, knee {K}, and toe {T},
and three links: hip (l1), thigh (l2) and shank (l3).

bg, ba : are biases of the gyroscope and accelerometer
xT : are the w static toe landmark positions
GpT : is the position of toe T in global frame {G}
xL : are the IMU-LEG spatial parameters and link length parameters for a leg
xΘ : are the kinematic parameters of w Legs along with time offset.

We define x = x̂⊞ x̃, where x is the true state, x̂ as its estimate, x̃ is the error state, and the
operation ⊞ which maps the error state vector to its corresponding manifold [1].

By using the Multi-State Constraint Kalman Filter, we propagate with the IMU measurements
and update the state with visual measurements and Leg encoder measurements. The IMU prop-
agation and the visual sensor update are not the main scope of this paper, so we will describe
in detail how we fuse the Leg kinematic measurements and determine the Kinematic parameters
within the following chapters.

1.2 Leg Kinematic Model

We present a general kinematic model of a single leg, while it can be extended to any legged robot
with an arbitrary number of legs, such as quadrupeds or hexapods. Each leg has three joints, each
joint consisting of an actuator and encoder. Encoders measure absolute angular readings between
two links corrupted with a zero mean white-Gaussian noise.

Fig. 1 illustrates the standard kinematic chain and frame of references of a robot leg. The leg
frame {L} is rigidly connected to the robot’s body frame of reference {I} where the high-level
motion planner, low-level locomotion controller or state estimator is typically operating, which
clearly necessitates finding the leg kinematic relationships for legged robot’s estimation and control.
The leg {L} often aligns with the abduction joint {A} whose orientation is altered by activating
the first joint. As seen from Fig. 1, the three links connect the four joint frames of abduction {A},
hip {H}, knee {K}, and toe {T}. The top three joints are actuated with joint encoders to provide
absolute joint angle measurements:

θm,i = θi + nθi , ∀i ∈ {A,H,K} (7)
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where θi is the true angle and nθi is the white Gaussian noise. Stacking all of them yields the
measurement vector θm.

1.2.1 Forward Kinematics

Foot placement is critical for legged locomotion, which manifestly requires the kinematic chain to
determine the time-varying position of the foot (toe) {T} with respect to the leg {L} and thus the
body {I}:

IpT = IpL + L
I R

⊤ [
LpA + L

AR(ApH + A
HR(HpK + H

KRKpT ))
]

(8)

where the 6DOF rigid transformation between the leg and body frames {IpL,
L
I R} needs to be

estimated, e.g., by leveraging visual-inertial systems, and the other transformations between the
associated joint frames are given by:

LpA = 03×1 ,
L
AR = Exp(θAkA) (9)

ApH = l1k1 , A
HR = Exp(θHkH) (10)

HpK = l2k2 , H
KR = Exp(θKkK) (11)

KpT = l3k3 (12)

In the above expressions, kA, kH , and kK are the rotation axis of the joints. k1, k2, and k3 are
the unit direction vector between the joints. Exp(·) is the SO(3) matrix exponential function to
represent the rotation [2].

1.2.2 Kinematic Parameters Determination

It becomes evident from the leg forward kinematic chain (8) that the rigid transformation {IpL,
L
I R}

is one of the key parameters required to calibrate accurately. Moreover, note that the leg is assumed
to be aligned with the abduction actuator/encoder, which could be temporally (not only spatially)
different from the body’s IMU due to improper hardware triggering, transmission delays, or clock
synchronization errors. This necessitates to also estimate the timeline misalignment (time offset)
between the body’s IMU and the leg’s encoders. Note also that this temporal disparity may vary
over time due to sensing latency or communication delays stemming from computational overload.

We thus model this varying time offset ItL as:

Itk = Ltk +
LtI (13)

where Itk and Ltk are the timestamps when measurement was stamped in the body IMU and leg
encoder’s clocks.

On the other hand, we do assume the leg encoders are all synchronized, which is a reasonable
and common assumption in practice in order to synchronize all actuators. However, we do need
to determine the lengths of three-link segments xLI = [l1 l2 l3]

⊤, as they are required to capitalize
the leg kinematics (8) and may undergo variations due to contact-induced deformation during
operations (e.g., walking).

2 Determining Kinematic Parameters

2.0.1 VINS-based Motion Tracking of Floating Base

As a common practice, we assume the legged robot system is represented by the IMU states on
the robot’s body or floating base, to which the locomotion control is applied. We leverage our
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MSCKF-based VINS [3] to track its motion efficiently. Specifically, the IMU state (2) evolves over
time with the IMU kinematics, using incoming linear acceleration Iak, and angular velocity Iωk,
which is given by (see [4]):

xIk+1
= fI(xIk ,

Iak,
Iωk,nI) (14)

Where nI = [n⊤
a n⊤

g n⊤
wa n⊤

wg]
⊤ contains the zero-mean white Gaussian noises and random walks

of the biases. We detect and track static environmental features over images with optical flow.
The bearing measurement zCk

of a feature pf at timestep k is the perspective projection of its 3D
global position Gpf onto the image plane:

zCk
= hc(xCk

, Ckpf ) + nCk
(15)

Ckpf = C
I R

Ik
GR(Gpf − GpIk) +

CpI (16)

where {CI R, CpI} is the IMU-camera extrinsic transformation which is assumed to be known other-
wise can be calibrated either online or offline [5], and nCk

is the white Gaussian measurement noise.
We now employ the MSCKF to efficiently update the state with these visual measurements [3].

2.0.2 Estimating Legged Kinematics

Provided the motion tracking (i.e., “odometry”) of the robot’s body as described in the preceding
section and given the legged kinematic constraint in Eq. (8), one may simply build a decoupled
SLAM estimator by including the kinematic parameters and the static toes (as landmarks) as part of
the state vector along with the robot body/IMU states in order to identify the kinematics. However,
as decoupling the legged kinematics from the body’s motion tracking may cause information loss,
we propose to tightly couple the kinematic parameters into the VINS estimator so that the body’s
motion tracking can also benefit from the legged kinematics.

Specifically, the forward legged kinematics (8) reveals the relationship of the toe position in the
body frame, IpTk

, with the joint encoder measurements and the kinematic parameters (which are
included in our state vector (1)). On the other hand, we can also represent the toe position in
terms of the body pose and the global toe position (both of which are part of the state vector (1))
as follows:

IpTk
= Ik

GRGpT − Ik
GRGpIk (17)

To infer a legged kinematic measurement model that can be used in the proposed tightly-coupled
MSCKF update, we equate (8) and (17) and build the following implicit measurement (note that
we drop off the time index for simplicity):

zℓ := 0 = I
GR

GpT − I
GR

GpI − IpL − (18)
L
I R

⊤ [
LpA+

L
AR(ApH+A

HR(HpK+H
KRKpT ))

]
=: hℓ(x,θm)

where θm denotes the stacked joint encoder measurements which are corrupted by zero-mean white
Gaussian noise nℓ = [nθ1 nθ2 nθ3 ]

⊤ (see (7)). The residual of this inferred legged measurement (18)
can be obtained by linearizing it with respect to the state x and encoder measurement noise nℓ as:

rℓ = zℓ − ẑℓ = −ẑℓ = Hxx̃+Gnnℓ (19)
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where the two Jacobians are respectively defined byHx =
[
∂hℓ

∂I
Gθ

∂hℓ

∂GpI

∂hℓ

∂GpT

∂hℓ

∂I tL

∂hℓ

∂L
I θ

∂hℓ

∂LpI

∂hℓ
∂l1

∂hℓ
∂l2

∂hℓ
∂l3

]
and Gn =

[
∂hℓ
∂nθA

∂hℓ
∂nθH

∂hℓ
∂nθK

]
, and are given by:

∂hℓ

∂I
Gθ

= ⌊IGR(GpT − GpI)⌋ (20)

∂hℓ

∂GpI
= −I

GR ,
∂hℓ

∂GpT
= I

GR (21)

∂hℓ

∂ItL
= −⌊IkGR(GpT − GpIk)⌋

Ikω + Ik
GRGvIk (22)

∂hℓ

∂L
I θ

= −L
I R

⊤⌊(LpI − LpT )⌋ ,
∂hℓ

∂LpI
= L

I R
⊤ (23)

∂hℓ

∂l1
= −L

I R
⊤L
ARk2,

∂hℓ

∂l2
= −L

I R
⊤L
AR

A
HRk3,

∂hℓ

∂l3
= −L

I R
⊤L
AR

A
HRH

KRk3 (24)

∂hℓ

∂nθA

= −L
I R

⊤L
AR⌊ApH + A

HR(HpK + H
KRKpT )⌋Jr(θAkA)kA (25)

∂hℓ

∂nθH

= −L
I R

⊤L
AR

A
HR⌊HpK + H

KRKpT ⌋Jr(θHkH) nθHkH (26)

∂hℓ

∂nθK

= −L
I R

⊤L
AR

A
HRH

KR⌊KpT ⌋Jr(θKkK)nθKkK (27)

Where ⌊·⌋ is the skew-symmetric matrix. These Jacobians are critical to ensure accurate and
consistent estimation, and their detailed derivations are shown below:

hℓ =
I
GR(GpT − GpI) +

I
LR

LpI − L
I R

⊤ [
LpA+

L
AR(ApH+A

HR(HpK+H
KRKpT ))

]
hℓ =

I
GR(GpT − GpI) +

L
I R

⊤(LpI − LpT )

For eq. (20)

hℓ =
I
GR(GpT − GpI) +

L
I R

⊤(LpI − LpT )

ĥℓ + h̃ℓ ≈ (I3x3 − ⌊IGδθ⌋)IGR̂(GpT − GpI) +
L
I R

⊤(LpI − LpT )

ĥℓ + h̃ℓ =
I
GR̂(GpT − GpI) +

L
I R

⊤(LpI − LpT )− ⌊IGδθ⌋IGR̂(GpT − GpI)

h̃ℓ = ⌊IGR̂(GpT − GpI)⌋IGδθ
∂hℓ

∂I
Gθ

= ⌊IGR(GpT − GpI)⌋

For eq. (21)

hℓ =
I
GR(GpT − GpI) +

L
I R

⊤(LpI − LpT )

ĥℓ + h̃ℓ ≈ I
GR(GpT − Gp̂I − Gp̃I) +

L
I R

⊤(LpI − LpT )

ĥℓ + h̃ℓ =
I
GR(GpT − Gp̂I) +

L
I R

⊤(LpI − LpT )− I
GR

Gp̃I

h̃ℓ = −I
GR

Gp̃I

h̃ℓ = −L
I R

I
GR

Gp̃I

∂hℓ

∂GpI
= −I

GR
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hℓ =
I
GR(GpT − GpI) +

L
I R

⊤(LpI − LpT )

ĥℓ + h̃ℓ ≈ I
GR(Gp̂T + Gp̃T − GpI) +

L
I R

⊤(LpI − LpT )

ĥℓ + h̃ℓ =
I
GR(Gp̂T − GpI) +

L
I R

⊤(LpI − LpT ) +
I
GR

Gp̃T

h̃ℓ =
I
GR

Gp̃T

∂hℓ

∂GpT
= I

GR

For eq.(23)

hℓ =
I
GR(GpT − GpI) +

L
I R

⊤(LpI − LpT )

ĥℓ + h̃ℓ ≈ I
GR(GpT − GpI) + ((I3 − ⌊LI δθ⌋)LI R̂)⊤(LpI − LpT )

ĥℓ + h̃ℓ =
I
GR(GpT − GpI) +

L
I R̂

⊤(I3 + ⌊LI δθ⌋)(LpI − LpT )

ĥℓ + h̃ℓ =
I
GR(GpT − GpI) +

L
I R̂

⊤(LpI − LpT ) +
L
I R̂

⊤⌊LI δθ⌋(LpI − LpT )

h̃ℓ =
L
I R̂

⊤⌊LI δθ⌋(LpI − LpT )

∂hℓ

∂L
I θ

= −L
I R

⊤⌊(LpI − LpT )⌋

hℓ =
I
GR(GpT − GpI) +

L
I R

⊤(LpI − LpT )

ĥℓ + h̃ℓ ≈ I
GR(GpT − GpI) +

L
I R

⊤(Lp̂I +
Lp̃I − LpT )

h̃ℓ =
L
I R

⊤Lp̃I

∂hℓ

∂IpL
= L

I R
⊤

For eq.(24)

hℓ =
I
GR(GpT − GpI) +

L
I R

⊤LpI − L
I R

⊤ [
LpA + L

AR(ApH + A
HR(HpK + H

KRKpT ))
]

hℓ =
I
GR(GpT − GpI) +

L
I R

⊤LpI − L
I R

⊤ [
LpA + L

AR(l1k2 +
A
HR(HpK + H

KRKpT ))
]

ĥℓ + h̃ℓ ≈ I
GR(GpT − GpI) +

L
I R

⊤LpI − L
I R

⊤
[
LpA + L

AR((l̂1 + l̃1)k2 +
A
HR(HpK + H

KRKpT ))
]

h̃ℓ = −L
I R

⊤L
ARk2 l̃1

∂hℓ

∂l1
= −L

I R
⊤L
ARk2

hℓ =
I
GR(GpT − GpI) +

L
I R

⊤LpI − L
I R

⊤ [
LpA + L

AR(ApH + A
HR(HpK + H

KRKpT ))
]

hℓ =
I
GR(GpT − GpI) +

L
I R

⊤LpI − L
I R

⊤ [
LpA + L

AR(ApH + A
HR(l2k3 +

H
KRKpT ))

]
ĥℓ + h̃ℓ ≈ I

GR(GpT − GpI) +
L
I R

⊤LpI − L
I R

⊤
[
LpA + L

AR(ApH + A
HR((l̂2 + l̃2)k3 +

H
KRKpT ))

]
h̃ℓ = −L

I R
⊤L
AR

A
HRk3 l̃2

∂hℓ

∂l2
= −L

I R
⊤L
AR

A
HRk3

hℓ =
I
GR(GpT − GpI) +

L
I R

⊤LpI − L
I R

⊤ [
LpA + L

AR(ApH + A
HR(HpK + H

KRKpT ))
]
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hℓ =
I
GR(GpT − GpI) +

L
I R

⊤LpI − L
I R

⊤ [
LpA + L

AR(ApH + A
HR(HpK + H

KRl3k3))
]

ĥℓ + h̃ℓ ≈ I
GR(GpT − GpI) +

L
I R

⊤LpI − L
I R

⊤
[
LpA + L

AR(ApH + A
HR(HpK + H

KR(l̂3 + l̃3)k3))
]

h̃ℓ = −L
I R

⊤L
AR

A
HRH

KRk3 l̃3

∂hℓ

∂l3
= −L

I R
⊤L
AR

A
HRH

KRk3

For eq.(25)

hℓ =
I
GR(GpT − GpI) +

L
I R

⊤LpI − L
I R

⊤ [
LpA + L

AR(ApH + A
HR(HpK + H

KRKpT ))
]

hℓ =
I
GR(GpT − GpI) +

L
I R

⊤LpI − L
I R

⊤ [
LpA + L

AR
ApT

]
ĥℓ + h̃ℓ ≈ I

GR(GpT − GpI) +
L
I R

⊤LpI − L
I R

⊤ [
LpA + L

AR(I3 + ⌊−Jr(θAkA) nθAkA⌋)ApT

]
h̃ℓ = −L

I R
⊤L
AR⌊ApT ⌋(Jr(θAkA) nθAkA)

∂hℓ

∂nθA

= −L
I R

⊤L
AR⌊ApH + A

HR(HpK + H
KRKpT )⌋Jr(θAkA)kA

For eq.(26)

hℓ =
I
GR(GpT − GpI) +

L
I R

⊤LpI − L
I R

⊤ [
LpA + L

AR(ApH + A
HR(HpK + H

KRKpT ))
]

hℓ =
I
GR(GpT − GpI) +

L
I R

⊤LpI − L
I R

⊤ [
LpA + L

AR(ApH + A
HRHpT )

]
ĥℓ + h̃ℓ ≈ I

GR(GpT − GpI) +
L
I R

⊤LpI − L
I R

⊤ [
LpA + L

AR(ApH + A
HR(I3 + ⌊−Jr(θHkH) nθHkH⌋)HpT )

]
h̃ℓ = −L

I R
⊤L
AR

A
HR⌊HpT ⌋(Jr(θHkH) nθHkH)

∂hℓ

∂nθH

= −L
I R

⊤L
AR

A
HR⌊HpK + H

KRKpT ⌋Jr(θHkH) nθHkH

For eq.(27)

hℓ =
I
GR(GpT − GpI) +

L
I R

⊤LpI − L
I R

⊤ [
LpA + L

AR(ApH + A
HR(HpK + H

KRKpT ))
]

ĥℓ + h̃ℓ ≈ I
GR(GpT − GpI) +

L
I R

⊤LpI

− L
I R

⊤ [
LpA + L

AR(ApH + A
HR(HpK + H

KR(I3 + ⌊−Jr(θKkK)nθKkK⌋)KpT ))
]

ĥℓ = −L
I R

⊤L
AR

A
HRH

KR⌊KpT ⌋Jr(θKkK)nθKkK

∂hℓ

∂nθK

= −L
I R

⊤L
AR

A
HRH

KR⌊KpT ⌋Jr(θKkK)nθKkK

(28)

For the derivatives of parameter in the SO(3), we use the Baker-Campbell-Hausdorff formula
for approximations for small angles ψ

Exp(θ +ψ) ≈ Exp(Jl(θ)ψ)Exp(θ)

≈ Exp(θ)Exp(Jr(θ)ψ) = R(I3 − ⌊Jr(θ)ψ⌋) (29)

where the derivation of Jacobians of Jl(·) and Jl(·) are the following:

Jl(ϕ) = I+
1− cos (∥ϕ∥)

∥ϕ∥2
⌊ϕ⌋+ ∥ϕ∥ − sin (∥ϕ∥)

∥ϕ∥3
⌊ϕ⌋2

Jr(ϕ) = I− 1− cos (∥ϕ∥)
∥ϕ∥2

⌊ϕ⌋+ ∥ϕ∥ − sin (∥ϕ∥)
∥ϕ∥3

⌊ϕ⌋2
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Time Offset: The encoder measurement received at time Ltk in Leg clock time was in fact
occurred in IMU clock time Itk and can be written as Itk = Ltk + LtI . Using the current best
estimate of the time offset Lt̂I , we can write the Leg clock time in corresponding IMU clock time as
It′k = Ltk+

Lt̂I and considering the time offset error we can write as It′k = Itk+
Lt̃I . The Jacobians

are derived as follows:

(30)

We model this time offset in IMU pose estimate with the following first-order approximation
by accounting for the time-offset estimation error:

I(I t′k)
G R =

I(I tk+
L t̃I)

G R

≈ (I− ⌊I(I tk)ω(Lt̃I)⌋)I(
I tk)

G R

= (I− ⌊Ikω(Lt̃I)⌋)IkGR
GpI = GpI(I tk+L t̃I)

≈ GpI(I tk)
+ GvI(I tk)

Lt̃I

= GpIk +
GvIk

Lt̃I

hℓ =
I
GR(GpT − GpI) +

L
I R

⊤(LpI − LpT )

ĥℓ + h̃ℓ ≈ (I− ⌊Ikω(Lt̃I)⌋)IkGR(GpT − GpIk +
GvIk

Lt̃I) +
L
I R

⊤(LpI − LpT )

= Ik
GR(GpT − GpIk) +

L
I R

⊤(LpI − LpT )− ⌊Ikω(Lt̃I)⌋IkGR(GpT − GpIk)

+ Ik
GRGvIk

Lt̃I + ⌊Ikω(Lt̃I)⌋IkGRGvIk
Lt̃I

h̃ℓ = −⌊IkGR(GpT − GpIk)⌋
IkωLt̃I +

Ik
GRGvIk

Lt̃I

∂hℓ

∂ItL
= −⌊IkGR(GpT − GpIk)⌋

Ikω + Ik
GRGvIk

A crucial aspect of this linearization is to properly compute Jacobian Gn with respect to the
encoder noise. It is important to note that when evaluating the above linearization, we employ
the first estimates Jacobian (FEJ) methodology [6, 7, 8], of the toe landmarks GpT , to ensure
estimation consistency.

In general scenarios, at this point, we are ready to use the above-legged measurement resid-
ual (19), together with the visual measurement residual as in VINS (see (15)), to perform tightly-
coupled EKF update of both the body’s motion states and the leg’s kinematic parameters. In the
following, we take special care for toe landmarks when a legged robot performs different motion
gaits, which are of practical significance.

Note that the above EKF update with the leg measurements is only valid while the toe is in
contact at the same point; otherwise, it could hurt our estimation performance. This reveals the
fact that robust and accurate contact detection during walking is crucial for fusing leg information,
with various contact detection methods being investigated [9, 10]. However, we take advantage of
the proper legged kinematic model and consistent covariance estimates available from our MSCKF,
and adopt the Mahalanobis distance test. Specifically, we perform the following threshold check to
see if the toe is in the same position:

r̃⊤ℓk(Hk Pk|k H⊤
k +GnR

′Gn
⊤)−1 r̃ℓk < χ2 (31)
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Table 1: Simulation parameters and prior single standard deviations were drawn from perturbations of measurements
and initial states.

Parameter Value Parameter Value

Cam Freq. (Hz) 10 IMU Freq. (Hz) 400
Leg Freq. (Hz) 50 Num. Clones 11
Pixel Proj. (px) 1 Leg White Noise (m) 2.0e-02

Gyro. White Noise 5.4e-04 Gyro. Rand. Walk 1.6e-05
Accel. White Noise 7.3e-03 Accel. Rand. Walk 6.6e-04

Num. Legs 4 Leg Toff. Ptrb. (sec) 8.0e-03
Leg Ext (Ori). Ptrb. (rad) 0.015 Leg Ext (Pos). Ptrb. (m) 3.0e-02

Table 2: Jueying Lite 2 quadruped real-world experiment parameters, and prior single standard deviations were
drawn from perturbations of measurements and initial states.

Parameter Value Parameter Value

Cam Freq. (Hz) 25 IMU Freq. (Hz) 200
Leg Freq. (Hz) 50 Num. Clones 11
Pixel Proj. (px) 1 Leg encoder Noise (rad) 0.005

Link Length. Ptrb. (m) 0.010 Leg Toff. Ptrb. (sec) 0.003
Leg Ext (Ori). Ptrb. (rad) 0.017 Leg Ext (Pos). Ptrb. (m) 0.010

where Pk|k is the covariance of the augmented state, Hk consists of the Jacobians, and χ is the
threshold for the test. When the test fails, we consider the toe is lifted from the ground and
marginalize GpT from the state. On the other hand, the measurement will be used to update the
state as a contact constraint via the legged kinematics.

3 Simulation Results

To verify the proposed online kinematic determination, we extended the visual-inertial simulator
based on OpenVINS [3] to simulate quadruped motion and generate leg measurements. Note that
we here focus on evaluating only the kinematic parameters of the spatial rigid transformation
between the robot’s body and leg and the time offset between the body IMU and leg encoders,
which are body-leg spatiotemporal parameters. During the simulation, the position of the toe in
the leg frame, LpTk

, is directly simulated with additive white noise perturbations. We include our
initial perturbation of spatiotemporal parameters to get the kinematic measurements as in (8). We
performed 25 Monte-Carlo runs with different initial perturbations, see Tab. 1, and have shown a
single representative leg result in Fig. 2. It is clear that the proposed method is able to accurately
recover the spatiotemporal parameters within 20 seconds, and the estimated uncertainty (dashed
lines are the estimator’s 3σ bound) captures the true error distribution.

4 Experimental Results

We have also evaluated on two quadruped robots, Jueying Lite 2 and Ghost Vision 60, which are
equipped with a stereo camera and an IMU, along with four 3-link chain legs (see Fig.1). Two
different motion scenarios are captured: (1) Dance in which toe contacts remain for the whole
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Figure 2: Extrinsic calibration errors (solid) and 3σ bound (dotted) for 25 different runs under random motion. Each
solid line denotes a run with a different realization of the measurement noise and the initial values.

Table 3: Parameter repeatability over 25 runs with different initial conditions (see Table 2 for initial distributions) for
Jueying Lite 2 quadruped. All values reported are a single standard deviation after a 30-second dance for “Dance”
dataset and a 30-second dance followed by two minutes of walk in “Dance walk” dataset.

Leg0 Rot (deg) Leg0 Pos (cm) Leg0 Intrinsic (cm) Toff (ms)

Dance 0 0.18± 0.20, 0.87± 0.11,−1.10± 0.22 7.74± 0.11,−10.02± 0.13, 7.89± 0.07 7.30± 0.06, 19.00± 0.09, 21.00± 0.08 −1.35± 1.55
Dance 1 1.25± 0.11, 1.01± 0.09,−0.34± 0.16 8.23± 0.09,−10.01± 0.16, 8.18± 0.08 7.00± 0.10, 19.00± 0.09, 22.00± 0.14 −2.0± 0.77
Dance 2 0.09± 0.05, 0.94± 0.07,−1.58± 0.06 8.97± 0.08,−10.29± 0.15, 8.32± 0.06 8.33± 0.14, 19.00± 0.06, 22.00± 0.06 −1.21± 1.14

Dance Walk 1 −1.19± 0.31,−2.9± 0.12,−1.18± 0.29 9.82± 0.33,−10.44± 0.26, 6.86± 0.27 10.0± 0.30, 21.0± 0.16, 24.0± 0.15 −0.50± 0.64
Dance walk 2 −0.54± 0.32,−3.93± 0.19,−1.21± 0.23 9.40± 0.23,−9.44± 0.23, 5.50± 0.17 9.20± 0.18, 20.09± 0.20, 23.00± 0.28 0.09± 0.73
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Figure 3: Roll, Pitch, Yaw motion of robot’s base during Dance motion of Jueying Lite 2 Quadruped

Figure 4: Real world Estimation results of the time offset parameter for the Dance dataset on Left : JYE Robot
and Right : Ghost Robot.

Table 4: Absolute Trajectory Error (ATE) of each algorithm on Jueying Lite 2. The best results are highlighted in
bold font.

Leg-VINS wo. Kine Leg-VINS w. Kine

Dance Walk 1 6.596 / 0.387 5.466 / 0.437
Dance Walk 2 7.258 / 0.681 6.314 / 0.495
Dance Walk 3 13.317 / 1.158 10.497 / 0.822
Dance Walk 4 6.736 / 0.550 6.509 / 0.433

Average 8.476 / 0.694 7.196 / 0.547

Table 5: Ghost Vision 60 quadruped real-world experiment parameters, and prior single standard deviations were
drawn from perturbations of measurements and initial states.

Parameter Value Parameter Value

Cam Freq. (Hz) 30 IMU Freq. (Hz) 500
Leg Freq. (Hz) 230 Num. Clones 11
Pixel Proj. (px) 1 Leg encoder Noise (rad) 0.006

Link Length. Ptrb. (m) 0.04 Leg Toff. Ptrb. (sec) 0.004
Leg Ext (Ori). Ptrb. (rad) 0.043 Leg Ext (Pos). Ptrb. (m) 0.03
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Figure 5: Real world Estimation results of the legged kinematic parameters for the Dance dataset on Ghost Vision
60 Robot. Each color denotes runs with different initial guesses of the calibration parameters (a total of 25 runs).
Top row : Orientation results, Mid row : Position results, Bottom row : Link lengths Calibration results.
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Figure 6: Real world Estimation results of the legged kinematic parameters for the Dance dataset on JYE Robot.
Each color denotes runs with different initial guesses of the calibration parameters (a total of 25 runs). Top row :
Orientation results, Mid row : Position results, Bottom row : Link lengths Calibration results.
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Figure 7: Trajectories of Dance and Dance Walk datasets of JYE Robot are shown in this figure.

Table 6: Parameter repeatability over 25 runs with different initial conditions (see Table 5 for initial distributions) for
Ghost Vision 60 quadruped. All values reported are a single standard deviation after a 30-second dance for “Dance”
dataset and a 30-second dance followed by two minutes of walk in “Dance walk” dataset.

Leg0 Rot (deg) Leg0 Pos (cm) Leg0 Intrinsic (cm) Toff (ms)

Dance 2 2.67± 1.63,−5.86± 1.57,−0.97± 0.69 29.57± 0.99,−11.48± 0.58,−2.35± 0.42 10.34± 0.01,−32.67± 0.02, 33.64± 000 8.54± 0.87
Dance 3 1.18± 1.17,−5.38± 1.28,−0.23± 0.47 28.71± 0.82,−9.87± 0.55,−3.19± 0.71 11.41± 0.02,−32.49± 0.01, 33.64± 000 16.003± 2.41
Dance 4 2.59± 2.47,−8.86± 1.02,−1.06± 0.84 28.68± 0.53,−9.68± 0.47,−2.42± 0.51 9.71± 0.02,−31.95± 0.012, 33.64± 000 15.01± 1.43

Dance Walk 1 2.03± 6.71,−13.56± 0.82, 0.66± 1.39 30.87± 1.09,−13.16± 0.80,−1.47± 2.43 9.46± 0.06,−39.48± 0.01, 33.64± 000 −3.58± 0.44
Dance walk 2 −1.24± 3.25,−6.57± 0.94,−0.40± 0.76 28.69± 0.71,−10.21± 0.40,−3.37± 0.61 11.99± 0.03,−30.65± 0.01, 33.64± 000 3.44± 0.65

duration and enables evaluation of the calibration repeatability, and (2) Dance-Walk where after a
dancing motion, the robot walks within a motion capture room so that we can quantify the impact
of good and bad calibration of localization performance after parameter identification. For Dancing
motion, we provided different combinations of roll, pitch, and yaw commands while keeping their
feet stationary at all times. There is no particular dancing motion required, any combination that
thoroughly excites the joints and body will suffice. A reference plot of robot’s bodies roll, pitch,
yaw during dance motion is shown with reference to measurements in Fig. 3. All Dance sequences
are about 25-40 seconds and Dance-Walk sequences are about 2 minutes; their trajectory plots can
be seen in Fig. 7.

We evaluated the proposed method with Dance sequence to first see the performance without
being affected by the contact detection problem. The kinematic results are shown in Fig. 6 and Fig.

Table 7: Absolute Trajectory Error (ATE) of each algorithm on Ghost Vision 60. The best results are highlighted in
bold font.

Leg-VINS wo. Kine Leg-VINS w. Kine

Dance Walk 2 125.302 / 1.690 125.096 / 1.719
Dance Walk 4 120.378 / 1.887 121.463 / 1.920
Dance Walk 5 136.779 / 2.153 133.740 / 2.128
Dance Walk 6 124.580 / 2.170 124.030 / 2.171

Average 126.760 / 1.975 126.083 / 1.984
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Table 8: Parameter repeatability over 25 runs with different initial conditions (see Table 2 for initial distributions) for
Jueying Lite 2 quadruped. All values reported are a single standard deviation after a 30-second dance for “Dance”
dataset and a 30-second dance followed by two minutes of walk in “Dance walk” dataset.

Jueying Lite 2 Leg0 Rot (deg) Leg0 Pos (cm) Leg0 Intrinsic (cm) Toff (ms)

Dance 0 0.18± 0.20, 0.87± 0.11,−1.10± 0.22 7.74± 0.11,−10.02± 0.13, 7.89± 0.07 7.30± 0.06, 19.00± 0.09, 21.00± 0.08 −1.35± 1.55
Dance 1 1.25± 0.11, 1.01± 0.09,−0.34± 0.16 8.23± 0.09,−10.01± 0.16, 8.18± 0.08 7.00± 0.10, 19.00± 0.09, 22.00± 0.14 −2.0± 0.77
Dance 2 0.09± 0.05, 0.94± 0.07,−1.58± 0.06 8.97± 0.08,−10.29± 0.15, 8.32± 0.06 8.33± 0.14, 19.00± 0.06, 22.00± 0.06 −1.21± 1.14

Dance Walk 1 −1.19± 0.31,−2.9± 0.12,−1.18± 0.29 9.82± 0.33,−10.44± 0.26, 6.86± 0.27 10.0± 0.30, 21.0± 0.16, 24.0± 0.15 −0.50± 0.64
Dance walk 2 −0.54± 0.32,−3.93± 0.19,−1.21± 0.23 9.40± 0.23,−9.44± 0.23, 5.50± 0.17 9.20± 0.18, 20.09± 0.20, 23.00± 0.28 0.09± 0.73

Ghost Vision 60 Leg0 Rot (deg) Leg0 Pos (cm) Leg0 Intrinsic (cm) Toff (ms)

Dance 2 2.67± 1.63,−5.86± 1.57,−0.97± 0.69 29.57± 0.99,−11.48± 0.58,−2.35± 0.42 10.34± 0.01,−32.67± 0.02, 33.64± 000 8.54± 0.87
Dance 3 1.18± 1.17,−5.38± 1.28,−0.23± 0.47 28.71± 0.82,−9.87± 0.55,−3.19± 0.71 11.41± 0.02,−32.49± 0.01, 33.64± 000 16.003± 2.41
Dance 4 2.59± 2.47,−8.86± 1.02,−1.06± 0.84 28.68± 0.53,−9.68± 0.47,−2.42± 0.51 9.71± 0.02,−31.95± 0.012, 33.64± 000 15.01± 1.43

Dance Walk 1 2.03± 6.71,−13.56± 0.82, 0.66± 1.39 30.87± 1.09,−13.16± 0.80,−1.47± 2.43 9.46± 0.06,−39.48± 0.01, 33.64± 000 −3.58± 0.44
Dance walk 2 −1.24± 3.25,−6.57± 0.94,−0.40± 0.76 28.69± 0.71,−10.21± 0.40,−3.37± 0.61 11.99± 0.03,−30.65± 0.01, 33.64± 000 3.44± 0.65

5 for Jueying Lite 2 and Ghost Vision 60 respectively and the timeoffset results are shown in Fig.
4. For each run, we perturb the manufacturer-provided calibration (URDF) by the values in Tab.
2 and Tab. 5, and can see that most parameters quickly converged after 25 seconds of calibration
start. The converged values are near our best estimate and have a low variance compared to prior
perturbation variance, indicating the proposed system’s fast and reliable identification performance.
To quantify the repeatability, we look at the variance of the final estimated value in Tab. 8 for
a representative leg on each dataset. This shows that we are able to calibrate within sub-degree,
sub-centimeter, and 1-2ms repeatability using the proposed estimator. The Dance Walk datasets
do have higher variance, which we attribute to evaluation after walking, which is affected by the
contact detection accuracy. We did find that the time offset varied over each dataset, which is
consistent with the observation by Yang et al. [11] within the visual-inertial temporal calibration
context for the Realsense T265 stereo camera.

We further evaluate the estimation performance on all sequences (Dance Walk 1-4 ), in terms of
localization accuracy, by comparing estimation with and without fusing legged kinematics (tagged
Leg-VINS w. Kine and Leg-VINS wo. Kine, respectively). Note that we set the same initial
kinematic values for all compared methods. The Absolute Trajectory Errors (ATE) [12] are shown
in Tab. 7, which clearly show that the proposed Leg-VINS w. Kine improves the localization
accuracy by properly incorporating the legged kinematic constraints.
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