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1 Useful Identities

We provide some useful identities that are used in our derivations throughout the report. Given a constant
angular velocity ω between times t1 and t2, the rotation matrix between the two frames Lt1 and Lt2 is given
by the matrix exponential:

Lt2
Lt1

R = exp (−bω(t2 − t1)×c)

= I3×3 −
sin(|ω(t2 − t1)|)

|ω|
bω×c+

1− cos(|ω(t2 − t1)|)
|ω|

bω×c2 (1)

where bω×c =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 The right Jacobian of SO(3), Jr(φ), is defined by (see [1]):

Jr(φ) = I3×3 −
1− cos(‖ φ ‖)
‖ φ ‖2

bφ×c+
‖ φ ‖ −sin(‖ φ ‖)

‖ φ ‖3
bφ×c2 (2)

Given a small angle vector perturbation δφ, we can make the following approximation for the rotation matrix
[2] :

exp (bφ+ δψ×c) ' exp (bφ×c) exp (bJr(φ)δφ×c) (3)

This allows us to map a perturbation of the Lie algebra so(3) to a perturbation on the group of SO(3). The
JPL (natural order) quaternion is used throughout the paper [3, 4], which parametrizes the rotation (1) as
follows:

Lt2
Lt1
q̄ =

 ω
|ω|sin

(
|ω(t2−t1)|

2

)
cos
(
|ω(t2−t1)|

2

)
 . (4)

2 Introduction

Visual-inertial navigation systems (VINS) that fuse visual and inertial information to provide accurate local-
ization, have become nearly ubiquitous in part because of their low cost and light weight (e.g., see [5, 6, 7]).
IMUs provide local angular velocity and linear acceleration measurements, while cameras are a cheap yet
informative means for sensing the the surrounding environment and thus is an ideal aiding source for iner-
tial navigation. In particular, these benefits have made VINS popular in resource-constrained systems such
as micro aerial vehicles (MAVs) [8]. Traditionally, navigation solutions have been achieved via extended
Kalman Filters (EKFs), where incoming proprioceptive (IMU) and exteroceptive (camera) measurements
are processed to propagate and update state estimates, respectively. These filtering methods do not update
past state estimates that have been marginalized out, thus causing them to be highly susceptible to drift due
to the compounding of errors.

Graph-based optimization methods, by contrast, process all measurements taken over a trajectory simul-
taneously to estimate a smooth history of sensor states. These methods achieve higher accuracy due to the
ability to relinearize nonlinear measurement functions and correct previous state estimates [9]. Recently,
graph-based formulations have been introduced that allow the incorporation of IMU measurements into
“preintegrated” factors by performing integration of the system dynamics in a local frame of reference [2,
10, 11]. However, these methods often simplify the required preintegrations by resorting to discrete solu-
tions under the approximation of piece-wise constant accelerations. To improve this IMU preintegration, in
this report, we instead model the IMU measurements as piece-wise constant and rigorously derive closed-
form solutions of the integration equations. Based on that, we offer analytical computations of the mean,
covariance, and bias Jacobians of the preintegrated measurements.
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3 Analytical IMU Preintegration

An IMU typically measures the local angular velocity ω and linear acceleration a of its body, which are
assumed to be corrupted by the Gaussian white noise (nw and na) and the random-walk biases (bw and
ba) [4]:

ωm = ω + bw + nw , am = a + g + ba + na , ḃw = nwg , ḃa = nwa (5)

where g is the gravity vector in the local frame whose global counterpart is constant (e.g., Gg = [0 0 9.81]T ).
The navigation state at time-step k is given by:

xk =
[
Lk
G q̄T bTwk

GvTk bTak
GpTk

]T
(6)

where Lk
G q̄ is the natural order quaternion (i.e., with JPL convention [3]) that describes the rotation from

frame {G} to frame {Lk}, and Gvk and Gpk are the velocity and position of the k-th local frame in the
global (e.g., starting) frame, respectively. The corresponding error state and � operation used in batch
optimization [12] can be written as (note that hereafter the transpose has been omitted for brevity):

x̃k =
[
LkδθG b̃wk

Gṽk b̃ak
Gp̃k

]
(7)

xk = x̂k � x̃k =


Lk
L̂k
δq̄ ⊗ L̂k

G
ˆ̄q

b̂wk + b̃wk
Gv̂k +G ṽk
b̂ak + b̃ak
Gp̂k +G p̃k

 (8)

where the operator ⊗ denotes quaternion multiplication, and Lk
L̂k
δq̄ is the error quaternion whose vector

portion is half the error angle, LkδθG = 2vec
(
Lk
L̂k
δq̄
)

:= 2Lk
L̂k
δq. We here use the following unit quaternion

notation q̄ :=
[
qT q4

]T . The total (full and error) states are then comprised of all these vectors.
To locally combine all the IMU measurements from time-step k to k + 1 without accessing the state

estimates (in particular, the orientation), we can perform the following factorization of the current rotation
matrix and integration of the measurements [13]:

Gpk+1= Gpk + Gvk∆t−
1

2
Gg∆t2 + G

k R

∫ tk+1

tk

∫ s

tk

k
τR (τam − ba − na) dτds︸ ︷︷ ︸

kαk+1

=: Gpk + Gvk∆t−
1

2
Gg∆t2 + G

k Rkαk+1 (9)

Gvk+1= Gvk − Gg∆t+ G
k R

∫ tk+1

tk

k
τR (τam − ba − na) dτ︸ ︷︷ ︸

kβk+1

=: Gvk − Gg∆t+ G
k Rkβk+1 (10)

k+1
G R= k+1

k Rk
GR (11)

where ∆t = tk+1 − tk. It becomes clear that the above integrals have been collected into the preintegrated
measurements, kαk+1 and kβk+1, which are expressed in the k-th local frame. Rearrangement of these
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equations yields:

k
GR

(
Gpk+1 − Gpk − Gvk∆t+

1

2
Gg∆t2

)
= kαk+1 (τam,

τωm,na,nw,ba,bw) (12)

k
GR

(
Gvk+1 − Gvk + Gg∆t

)
= kβk+1 (τam,

τωm,na,nw,ba,bw) (13)
k+1
G Rk

GR
>

= k+1
k R (τωm,nw,bw) , ∀τ ∈ [tk, tk+1] (14)

For the remainder of this paper the biases noted will refer to the those of state k, and are approximated as
constant over the preintegration interval. It is important to note that in the above equations, the preintegrated
measurements are explicitly expressed as the functions of the IMU measurements, noise, and true biases to
show their dependency on these variables, as we will see later that it is this dependency that makes the exact
preintegration impossible. To address this issue, we employ the following first-order Taylor series expansion
with respect to the biases:

k
GR

(
Gpk+1 − Gpk − Gvk∆t+

1

2
Gg∆t2

)
' (15)

kαk+1

(
τam,

τωm,na,nw, b̄a, b̄w
)
+
∂α

∂ba

∣∣∣
b̄a

∆ba +
∂α

∂bw

∣∣∣
b̄w

∆bw

k
GR

(
Gvk+1 − Gvk + Gg∆t

)
' (16)

kβk+1

(
τam,

τωm,na,nw, b̄a, b̄w
)
+
∂β

∂ba

∣∣∣
b̄a

∆ba +
∂β

∂bw

∣∣∣
b̄w

∆bw

k+1
G Rk

GR
>' R (∆bw) k+1

k R
(
τωm,nw, b̄w

)
(17)

where the preintegration functions have been linearized about the current bias estimates, b̄w and b̄a, and
∆bw := bw − b̄w and ∆ba := ba − b̄a are the difference between the true biases and their linearization
points. Note that in the case of the relative rotations, a change in bias is modeled as inducing a further rota-
tion on our preintegrated relative rotation. The corresponding residuals of these preintegrated measurements
for use in graph optimization are given by:

δkαk+1= k
GR

(
Gpk+1 − Gpk − Gvk∆t+

1

2
Gg∆t2

)
− ∂α

∂ba
∆ba −

∂α

∂bw
∆bw − kα̂k+1 (18)

δkβk+1= k
GR

(
Gvk+1 − Gvk + Gg∆t

)
− ∂β

∂ba
∆ba −

∂β

∂bw
∆bw − kβ̂k+1 (19)

k+1δθk= 2vec
(
k+1
G q̄ ⊗ k

Gq̄
−1 ⊗ k+1

k
˘̄q−1 ⊗ q̄ (∆bw)−1

)
(20)

where kα̂k+1 and kβ̂k+1 are the current estimated preintegrated measurements. We have defined k+1
k

˘̄q as the
relative quaternion found through preintegration of the IMU measurements to distinguish from a quaternion
achieved by multiplication of the current state quaternion estimates. Based on the above definitions of
kαk+1 and kβk+1, we have:

kα̇τ = kβτ (21)
kβ̇τ = k

τR (τam − ba − na) (22)

Lastly, the rotation (quaternion) dynamics is given by:

τ
k

˙̄q =
1

2
Ω(ωm − bw − nw)τk q̄ (23)

where Ω(ω) =

[
−bω×c ω
−ω> 0

]
.
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4 Compute Preintegration Mean and Covariance via Linear Systems

We now derive the closed-from solutions for kα̂τ , kβ̂τ and τ ˆ̄qk [see (21), (22) and (23)]. In particular, the
quaternion k+1

k
˘̄q can be found using the zeroth order quaternion integrator [4]. In a similar fashion, we can

find, in closed form, kα̂τ+1 and kβ̂τ+1. We begin by stacking (21) and (22), and taking the expectation to
find the following linear system:[

k ˆ̇ατ
k ˆ̇
βτ

]
=

[
0 I
0 0

] [
kα̂τ
kβ̂τ

]
+

[
0
k
τ R̂

]
(τam − b̄a) (24)

The solution of this linear dynamical system is given by:[
kα̂τ+1
kβ̂τ+1

]
= Φ(tτ+1, tτ )

[
kα̂τ
kβ̂τ

]
+

∫ tτ+1

tτ

Φ(tτ+1, u)

[
0
k
uR̂

]
(uam − b̄a)du (25)

where the state-transition matrix Φ(tτ+1, tτ ) is given by the matrix exponential:

Φ(tτ+1, tτ ) = exp

([
0 I
0 0

]
∆t

)
= I +

[
0 I
0 0

]
∆t+

[
0 0
0 0

]
∆t2 =

[
I I∆t
0 I

]
(26)

where ∆t = tτ+1 − tτ . Substituting the state-transition into (25) yields:[
kα̂τ+1
kβ̂τ+1

]
=

[
I I∆t
0 I

] [
kα̂τ
kβ̂τ

]
+

∫ tτ+1

tτ

[
I I(tτ+1 − u)
0 I

] [
0
k
uR̂

]
â du (27)

=

[
kα̂τ + kβ̂τ∆t

kβ̂τ

]
+

∫ tτ+1

tτ

[
(tτ+1 − u)kuR̂â

k
uR̂â

]
du (28)

=

[
kα̂τ + kβ̂τ∆t

kβ̂τ

]
+

[
k
τ+1R̂

∫ tτ+1

tτ
(tτ+1 − u)τ+1

u R̂â du
k
τ+1R̂

∫ tτ+1

tτ
τ+1
u R̂â du

]
(29)

where â = uam − b̄a. Using ω̂ = uωm − b̄w, δt = tτ+1 − u and the matrix exponential of a skew
symmetric matrix (1), as well as the Rodrigues’ SO(3) rotation formula, we analytically compute the prein-
tegration measurement evolution from time tτ to tτ+1 as follows (the detailed derivations can be found in
our supplementary material):[

kα̂τ+1
kβ̂τ+1

]
=

[
kα̂τ + kβ̂τ∆t

kβ̂τ

]
+

[
k
τ+1R

∫ ∆t
0 (δt)(I− sin(|ω̂|(δt))

|ω̂| bω̂×c+ 1−cos(|ω̂|δt)
|ω̂|2 bω̂×c2)(â)dδt

k
τ+1R̂

∫ ∆t
0 (I− sin(|ω̂|(δt))

|ω̂| bω̂×c+ 1−cos(|ω̂|δt)
|w|2 bω̂×c2)(â)dδt

]
(30)

=
[
kα̂τ + kβ̂τ∆t

kβ̂τ

]

+

[
k
τ+1R̂( (∆t2)

2 I + |ω̂|∆tcos(|ω̂|∆t)−sin(|w|∆t)
|ω̂|3 bω̂×c+ (|ω̂|∆t)2−2cos(|ω̂|∆t)−2(|ω̂|∆t)sin(|ω̂|∆t)+2

2|ω̂|4 bω̂×c2)(â)
k
τ+1R̂(∆tI− 1−cos(|ω̂|(∆t))

|ω̂|2 bω̂×c+ (|ω̂|∆t)−sin(|ω̂|∆t)
|ω̂|3 bω̂×c2)(â)

]
(31)

When ω̂ is very small, these equations are unstable. We therefore examine the limits as ω̂ tends to zero:

lim
|ω̂|→0

[
kα̂τ+1
kβ̂τ+1

]
=

[
kα̂τ + kβ̂τ∆t

kβ̂τ

]
+

[
k
τ+1R̂(∆t2

2 I− ∆t3

3 bω̂×c+ ∆t4

8 bω̂×c
2)(â)

k
τ+1R̂(∆tI− ∆t2

2 bω̂×c+ ∆t3

6 bω̂×c
2)(â)

]
(32)
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5 State-Transition Matrix

In order to use these measurements, we must have the covariances associated with their error quantities. To
do this, we examine the time evolution of the corresponding error states:

kδα̇τ = kδβτ (33)
kδβ̇τ = k

τ R̂ (I + bτδθk×c) (τam − ba − na)−kτ R̂
(
τam − b̂a

)
(34)

= k
τ R̂ (−∆ba − na) +k

τ R̂bτδθk×c
(
τam − b̂a

)
(35)

˙τδθk = −
⌊(
ω̂ − b̂w

)
×
⌋
τδθk −∆bw − nw (36)

where we have used the standard error associated with JPL-convention quaternions, τ q̄k = δq̄ ⊗ τ ˆ̄qk, and

δq̄ '
[
δθ
2
1

]
. This yields the following linearized system describing our error states:

kδα̇τkδβ̇τ
τδθ̇k

 =

03×3 I3×3 03×3

03×3 03×3 −kτ R̂b
(
τam − b̄a

)
×c

03×3 03×3 −b
(
τωm − b̄w

)
×c

kδατkδβτ
τδθk

+

03×3 03×3

−kτ R̂ 03×3

03×3 −I3×3

[na
nw

]
(37)

⇒ ṙ = Fr + Gn (38)

We ignore the error terms associated with bias, as the biases are being evaluated at their current estimates,
essentially linearizing the measurements and their corresponding errors about those points. Under the ap-
proximation that F (38) does not change over a measurement time interval [tτ , tτ+1], the discrete-time state
transition matrix, can be written as:

Φ(tτ+1, tτ ) = exp(F(∆t)) = I3×3 + F∆t+
1

2
(F∆t)2 + ... (39)

where ∆t = tk+1 − tk. In order to find the analytical expression, we need to look at the powers of F.

F =

03×3 I3×3 03×3

03×3 03×3 E
03×3 03×3 bd×c

 , with E = −k
τ R̂
⌊(

am − b̂a

)
×
⌋

and d = −(ωm − b̂w) (40)

Based on this, we have:

F2 =

03×3 I3×3 03×3

03×3 03×3 E
03×3 03×3 bd×c

03×3 I3×3 03×3

03×3 03×3 E
03×3 03×3 bd×c

 =

03×3 03×3 E
03×3 03×3 Ebd×c
03×3 03×3 bd×c2

 (41)

F3 =

03×3 03×3 E
03×3 03×3 Ebd×c
03×3 03×3 bd×c2

03×3 I3×3 03×3

03×3 03×3 E
03×3 03×3 bd×c

 =

03×3 03×3 Ebd×c
03×3 03×3 Ebd×c2
03×3 03×3 bd×c3

 (42)

F4=

03×3 03×3 Ebd×c
03×3 03×3 Ebd×c2
03×3 03×3 bd×c3

03×3 I3×3 03×3

03×3 03×3 E
03×3 03×3 bd×c

 =

03×3 03×3 Ebd×c2
03×3 03×3 Ebd×c3
03×3 03×3 bd×c4

 (43)

F5 = · · ·

By close inspection, it is not difficult to see that the discrete-time state transition matrix takes the form [14]:

Φ(tτ+1, tτ ) =

Φ11 Φ12 Φ13

03×3 Φ22 Φ23

03×3 03×3 Φ33

 (44)
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Based on (40)-(43), we find each entry of the state transition matrix as follows:

Φ11 = Φ22 = I3×3 (45)

Φ12 = I3×3∆t (46)

Φ13 =
1

2
E(∆t)2 +

1

3!
Ebd×c(∆t)3 +

1

4!
Ebd×c2(∆t)4 + · · · (47)

Φ21 = Φ31 = Φ32 = 03×3 (48)

Φ23 = E∆t+
1

2
Ebd×c∆t2 +

1

3!
Ebd×c2∆t3 +

1

4!
Ebd×c3∆t4 + · · · (49)

Φ33 = I3×3 + bd×c∆t+ bd×c2∆t2 + · · · (50)

We now first turn our attention to Φ13. Using bd×c3 = −|d|2bd×c, we can write it as:

Φ13 =
1

2
E(∆t)2 +

1

3!
Ebd×c(∆t)3 +

1

4!
Ebd×c2(∆t)4 − 1

5!
|d|2Ebd×c(∆t)5 − 1

6!
|d|2Ebd×c2(∆t)6 +

1

7!
|d|4Ebd×c(∆t)7 + ...

=
1

2
E(∆t)2 + E(

1

3!
(∆t)3 − 1

5!
|d|2(∆t)5 + ...)bd×c+ E(

1

4!
(∆t)4 − 1

6!
|d|2(∆t)6 + ...)bd×c2

=
1

2
E(∆t)2 +

E

|d|3
(|d|∆t− sin(|d|∆t))bd×c+

E

|d|4
(cos(|d|∆t)− 1 +

1

2
(|d|∆t)2)bd×c2 (51)

Similarly, we repeat this process for Φ23:

Φ23 = E∆t+
1

2
Ebd×c∆t2 +

1

3!
Ebd×c2∆t3 − 1

4!
|d|2Ebd×c∆t4 + ...

= E∆t+ E(
1

2
∆t2 − 1

4!
|d|2∆t4 + ...)bd×c+ E(

1

3!
∆t3 − 1

5!
|d|2∆t5 + ...)bd×c2

= E∆t+
E

|d|2
(1− cos(|d|∆t))bd×c+

E

|d|3
(|d|∆t− sin(|d|∆t))bd×c2 (52)

Lastly, Φ33 is simply computed based on the Rodriques’ formula (1):

Φ33 = exp(bd×c∆t) = I3×3 +
sin(|d|∆t)
|d|

bd×c+
1− cos(|d|∆t)

|d|2
bd×c2 (53)

When ω, similarly when d, becomes small the above equations will become numerically unstable due to
|d|, and thus ω, appearing in the denominator. We therefore look to take the limit as |d| approaches zero.

lim
|d|→0

Φ13 = E(
1

2
I3×3(∆t)2 +

∆t3

6
bd×c+

∆t4

24
bd×c2) (54)

lim
|d|→0

Φ23 = E(∆tI3×3 +
∆t2

2
bd×c+

∆t3

6
bd×c2) (55)

lim
|d|→0

Φ33 = I3×3 + ∆tbd×c+
∆t2

2
bd×c2 (56)
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6 Discrete Covariance Propagation

Using the expressions for the state-transition matrix, the covariance propagation for our preintegrated mea-
surements takes the form:

Ptk = 09×9 (57)

Ptτ+1 = Φ(tτ+1, tτ )PtτΦ(tτ+1, tτ )> + Qd (58)

Qd =

∫ tτ+1

tτ

Φ(tτ+1, u)G(u)QcG
>(u)Φ>(tτ+1, u)du (59)

=
∫ tτ+1

tτ

Φ11 Φ12 Φ13

03×3 Φ22 Φ23

03×3 03×3 Φ33

03×3 03×3

−kuR̂ 03×3

03×3 −I3×3

[σ2
aI3×3 03×3

03×3 σ2
wI3×3

] [
03×3 −ukR̂ 03×3

03×3 03×3 −I3×3

]Φ>11 03×3 03×3

Φ>12 Φ>22 03×3

Φ>13 Φ>23 Φ>33

 du

=

∫ tτ+1

tτ

Φ11 Φ12 Φ13

03×3 Φ22 Φ23

03×3 03×3 Φ33

03×3 03×3 03×3

03×3 σ2
aI3×3 03×3

03×3 03×3 σ2
wI3×3

Φ>11 03×3 03×3

Φ>12 Φ>22 03×3

Φ>13 Φ>23 Φ>33

 du
=

∫ tτ+1

tτ

 σ2
aΦ12Φ

>
12 + σ2

wΦ13Φ
>
13 σ2

aΦ12Φ
>
22 + σ2

wΦ13Φ
>
23 σ2

wΦ13Φ
>
33

(σ2
aΦ12Φ

>
22 + σ2

wΦ13Φ
>
23)> σ2

aΦ22Φ
>
22 + σ2

wΦ23Φ
>
23 σ2

wΦ23Φ
>
33

(σ2
wΦ13Φ

>
33)> (σ2

wΦ23Φ
>
33)> σ2

wΦ33Φ
>
33

 du (60)

Defining δt = tk+1 − u, each of these integration entries can be written as
∫ tτ+1

tτ
f(tτ+1 − u)du =∫ ∆t

0 f(δt)dδt. Using the expressions for the state-transition matrix, the discrete time noise covariance can
be found:

Q11 = σ2
aI3×3

∆t3

3
+ σ2

wE

(
∆t5

20
I3×3 −

1

60|d|7
(

120(|d|∆t)− 240sin(|d|∆t) + 20(|d|∆t)3

−3(|d|∆t)5 + 120(|d|∆t)cos(|d|∆t)
)
bd×c2

)
E>

Q12 = σ2
a

∆t2

2
I3×3 + σ2

wE

(
∆t4

8
I3×3 +

3sin(|d|∆t)− 2(|d|∆t)− (|d|∆t)cos(|d|∆t)
|d|5

bd×c

+
8cos(|d|∆t)− 4(|d|∆t)2 + (|d|∆t)4 + 8(|d|∆t)sin(|d|∆t)− 8

8|d|6
bd×c2

)
E>

Q13 = σ2
wE

(
I3×3

1

6
∆t3 +

2cos(|d|∆t) + |d|∆tsin(|d|∆t)− 2

|d|4
bd×c

+
6|d|∆t− 12sin(|d|∆t) + (|d|∆t)3 + 6|d|∆tcos(|d|∆t)

6|d|5
bd×c2

)
Q22 = σ2

a∆tI3×3 + σ2
wE

(
∆t3

3
I3×3 +

6sin(|d|∆t)− 6(|d|∆t) + (|d|∆t)3

3|d|5
bd×c2

)
E>

Q23 = σ2
wE

(
∆t2

2
I3×3 +

sin(|d|∆t)− (|d|∆t)
|d|3

bd×c −
4sin2( |d|∆t2 )− (|d|∆t)2

2|d|4
bd×c2

)
Q33 = ∆tσ2

wI3×3

Q21 = Q>12

Q31 = Q>13

Q32 = Q>23

When ω, similarly when d, becomes small the above equations will become numerically unstable due to
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|d|, and thus ω, appearing in the denominator. We therefore look to take the limit as |d| approaches zero.

lim
|d|→0

Q11 = σ2
aI

∆t3

3
+ σ2

wE(
∆t5

20
I +

∆t7

504
bd×c2)E> (61)

lim
|d|→0

Q12 = σ2
a

∆t2

2
I + σ2

wE(
∆t4

8
I− ∆t5

60
bd×c+

∆t6

144
bd×c2)E> (62)

lim
|d|→0

Q13 = σ2
wE(I

1

6
∆t3 − ∆t4

12
bd×c+

∆t5

40
bd×c2) (63)

lim
|d|→0

Q22 = σ2
a∆tI + σ2

wE(
∆t3

3
I +

∆t5

60
bd×c2)E> (64)

lim
|d|→0

Q23 = σ2
wE(

I∆t2

2
− ∆t3

6
bd×c+

∆t4

24
bd×c2) (65)

lim
|d|→0

Q33 = ∆tσ2
wI (66)

(67)

7 Bias Jacobians

Changes in biases are modeled as adding corrections to our preintegration measurements through the use of
bias Jacobians [see (15) and (16)], it is critical to compute these Jacobians accurately. In particular, as seen
from (31) that each update term is linear in the estimated acceleration, â = am − b̄a, we can find the bias
Jacobians of kαk+1 and kβk+1 with respect to ba as follows:[

∂α
∂ba
∂β
∂ba

]
=:

[
Hα(τ + 1)
Hβ(τ + 1)

]
=

[
Hα(τ) + Hβ(τ)∆t

Hβ(τ)

]
(68)

−

kτ+1R
(

∆t2

2 I3×3 + |w|∆tcos(|w|∆t)−sin(|w|∆t)
|w|3 bω̂×c+ (|w|∆t)2−2cos(|w|∆t)−2(|w|∆t)sin(|w|∆t)+2

2|w|4 bω̂×c2
)

k
τ+1R

(
∆tI3×3 − 1−cos(|ω|(∆t))

|w|2 bω̂×c+ (|w|∆t)−sin(|ω|∆t)
|w|3 bω̂×c2

) 

lim
|w|→0

[
Hα(τ + 1)
Hβ(τ + 1)

]
=

[
Hα(τ) + Hβ(τ)∆t

Hβ(τ)

]
−

[
k
τ+1R(∆t2

2 I− ∆t3

3 bω̂×c+ ∆t4

8 bω̂×c
2)

k
τ+1R(∆tI− ∆t2

2 bω̂×c+ ∆t3

6 bω̂×c
2)

]
(69)

Similarly, the Jacobians with respect to the gyro bias ∂α
∂bw

=: Jα, ∂β
∂bw

=: Jβ can be found by taking the
derivative with respect to each of gyro bias entries. That is, we seek the entries of
Jα =

[
∂kατ+1

∂bw1

∂kατ+1

∂bw2

∂kατ+1

∂bw3

]
and Jβ =

[
∂kβτ+1

∂bw1

∂kβτ+1

∂bw2

∂kβτ+1

∂bw3

]
. For each entry we derive the

following:

∂kατ+1

∂bwi
=
∂kατ
∂bwi

+
∂kβτ∆t

∂bwi

+
∂

∂bwi

(
k
τ+1R(

(∆t2)

2
I +
|ω̂|∆tcos(|ω̂|∆t)− sin(|ω̂|∆t)

|ω̂|3
bω̂×c

+
(|ω̂|∆t)2 − 2cos(|ω̂|∆t)− 2(|ω̂|∆t)sin(|ω̂|∆t) + 2

2|ω̂|4
bω̂×c2)

)
(â) (70)
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The first two terms can be found with the previous derivatives. Defining êi as the unit vector in the ith
direction, the third term can be found as:

∂kτ+1R( (∆t)2

2 I + f1bω̂×c+ f2bω̂×c2)

∂bwi
=
∂kτ+1R

∂bwi

(
(∆t)2

2
I + f1bω̂×c+ f2bω̂×c2

)
+ k
τ+1R

(
∂f1

∂bwi
bω̂×c − f1bêi×c+

∂f2

∂bwi
bω̂×c2 − f2(bêi×cbω̂×c+ bω̂×cbêi×c)

)
(71)

where f1 and f2 are the corresponding coefficients in (70), and their derivatives are computed as:

∂f1

∂bwi
=
ω>êi(|ω̂|2∆t2sin(|ω̂|∆t)− 3sin(|ω̂|∆t) + 3|ω̂|∆tcos(|ω̂|∆t))

|ω̂|5
(72)

∂f2

∂bwi
=
ω>êi((|ω̂|∆t)2 − 4cos(|ω̂|∆t)− 4(|ω̂|∆t)sin(|ω̂|∆t) + (|ω̂|∆t)2cos(|ω̂|∆t) + 4)

|ω̂|6
(73)

For small ω̂,

lim
|w|→0

∂f1

∂bwi
= −ω̂i

∆t5

15
(74)

lim
|w|→0

∂f2

∂bwi
= ω̂i

∆t6

72
(75)

Similarly, we have (see (31)):

∂kβτ+1

∂bwi
=
∂kβτ
∂bwi

+
∂kτ+1R

∂bwi

(
∆tI + f3bω̂×c+ f4bω̂×c2

)
+ k
τ+1R̂

(
∂f3

∂bwi
bω̂×c − f3bêi×c+

∂f4

∂bwi
bω̂×c2 − f4(bêi×cbω̂ ×+bω̂×cbêi×c)

)
â (76)

where

∂f3

∂bwi
=
ω>êi(2(cos(|ω̂|∆t)− 1) + (|ω̂|∆t)sin(|ω̂|∆t))

|ω̂|4
(77)

∂f4

∂bwi
=
ω>êi(2(|ω̂|∆t) + (|ω̂|∆t)cos(|ω̂|∆t)− 3sin(|ω̂|∆t))

|ω̂|5
(78)

For small ω̂,

lim
|w|→0

∂f3

∂bwi
= −ω̂i

∆t4

12
(79)

lim
|w|→0

∂f4

∂bwi
= ω̂i

∆t5

60
(80)

We now show how to derive the derivative of the rotation matrix with respect to a change in bias, i.e.,
∆bw = bw − b̄w:

τ1
k R = (kτ1R)> = (exp(bωm1 − b̄w −∆bw×c∆t))> (81)

' (exp(bωm1 − b̄w×c∆t)exp(b−Jr1∆bw×c∆t))> (82)

= exp(bJr1∆bw×c∆t)(exp(−bωm1 − b̄w×c∆t) (83)

= exp(bJr1∆bw×c∆t)τ1k R̂ (84)

' (I3×3 + Jr1∆bw×c∆t)τ1k R̂ (85)
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where Jri is the right Jacobian of SO(3), see equation (2). This decomposition can be done for every
measurement interval:

τi+1
τi R ' (I3×3 + Jri∆bw×c∆t)τi+1

τi R̂ (86)

We can now look at what happens when we compound measurements. In particular, at the second-step τ2,
we have the following:

τ2
k R = τ2

τ1R
τ1
k R (87)

' (I3×3 + bJr2∆bw×c∆t)τ2τ1R̂(I3×3 + bJr1∆bw×c∆t)τ1k R̂ (88)

= (I3×3 + bJr2∆bw×c∆t)(I3×3 + bτ2τ1R̂Jr1∆bw×c∆t)τ2k R̂ (89)

= (I3×3 + b(Jr2 + τ2
τ1R̂Jr1)∆bw×c∆t)τ2k R̂ (90)

Here we have used the property that Rbw×cR> = bRw×c for a rotation matrix. Repeating this process
for time-step τ3 yields:

τ3
k R = τ3

τ2R
τ2
k R (91)

' (I3×3 + bJr3∆bw×c∆t)τ3τ2R̂(I3×3 + b(Jr2 + τ2
τ1R̂Jr1)∆bw×c∆t)τ2k R̂ (92)

= (I3×3 + bJr3∆bw×c)(I3×3 + b(τ3τ2R̂Jr2 + τ3
τ1R̂Jr1)∆bw×c∆t)τ3k R̂ (93)

' (I3×3 + b(Jr3 + τ3
τ2R̂Jr2 + τ3

τ1R̂Jr1)∆bw×c∆t)τ3k R̂ (94)

We thus see the pattern developing and can write the updated rotation at any time step u as:

u
kR⊕ = exp(bJq(u)(bw − b̄w)×c)ukR	 (95)

with Jq(u) =
u∑

τ=τ1

u
τ R̂Jrτ∆t (96)

Each of these values can be calculated incrementally by noting that:

Jq(u+ 1) = u+1
u R̂

u∑
τ=τ1

u
τ R̂Jrτ∆t+ Jru+1∆t = u+1

u R̂Jq(u) + Jru+1∆t (97)

The derivative of every rotation with respect to the ith entry of the gyro bias, which appears in both (71) and
(76) can be approximated using:

u
kR⊕ ' (I3×3 + bJq(u)(bw − b̄w)×c)ukR	 (98)
∂ukR

∂bwi
≈ bJq(u)êi×cukR	 (99)

∂kuR

∂bwi
≈ −kuR	bJq(u)êi×c (100)

The total rotation after a bias update can be expressed as:

k+1
k R⊕ = exp(bJq(k + 1)(bw − b̄w)×c)k+1

k R	 (101)

(102)
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Note that this is essentially the same update as seen in [2], although we parametrize opposite rotations. We
use the symbol ⊕ to denote an estimate after update and 	 before update. The angle measurement residual
can be written as:

k+1δθk= 2vec
(
k+1
G q̄ ⊗ k

Gq̄
−1 ⊗ k+1

k
˘̄q−1 ⊗ quat(exp(−bJq(k + 1)(bw − b̄w)×c)

)
, (103)

' 2vec

(
k+1
G q̄ ⊗ k

Gq̄
−1 ⊗ k+1

k
˘̄q−1 ⊗

[
1
2(Jq(bw − b̄w)

1

])
, (104)

where quat(·) denotes the transformation of a rotation matrix to the corresponding quaternion. In the above
expression, we have also used the common assumption that (bw − b̄w) is small. Note that we only use this
approximation for the computation of Jacobians, while (105) is used for the evaluation of actual residuals.

8 Preintegration Measurement Jacobians

Our total measurement residuals can be written as:

r =


k
GR

(
Gpk+1 − Gpk − Gvk∆t+

1

2
Gg∆t2

)
− Jα(bw − b̄w)−Hα(ba − b̄a)− kα̂k+1

k
GR

(
Gvk+1 − Gvk + Gg∆t

)
− Jβ(bw − b̄w)−Hβ(ba − b̄a)− kβ̂k+1

2vec
(
k+1
G q̄ ⊗ k

Gq̄
−1 ⊗ k+1

k
˘̄q−1 ⊗ quat(Exp(−bJq(bw − b̄w)×c)

)
 (105)

In order to use the preintegrated measurement residuals in graph-based optimization, the corresponding
Jacobians with respect to the optimization variables are necessary. To this end, we first rewrite the relative-
rotation measurement residual as:

k+1δθk = 2vec
(
k+1
G q̄ ⊗ k

Gq̄
−1 ⊗ k+1

k
˘̄q
−1 ⊗ q̄b

)
(106)

where q̄b is the quaternion induced by a change in gyro bias and k+1
k

˘̄q is the quaternion of relative rotation
obtained by integrating the IMU measurements. Instead of directly computing the derivatives, the measure-
ment Jacobian with respect to one element of the state vector can be found by perturbing the measurement
function by the corresponding element. For example, the relative-rotation measurement residual is perturbed
by a change in gyro bias around the current estimate (i.e., bw − b̄w = b̂w + b̃w − b̄w):

k+1δθk = 2vec

(
k+1
G

ˆ̄q ⊗ k+1
G

ˆ̄q
−1 ⊗ k+1

k
˘̄q
−1 ⊗

[
Jq(b̂w+b̃w−b̄w)

2
1

])
(107)

=: 2vec

(
ˆ̄qr ⊗

[
Jq(b̂w+b̃w−b̄w)

2
1

])
(108)

= 2vec

(
L(ˆ̄qr)

[
Jq(b̂w+b̃w−b̄w)

2
1

])
(109)

= 2vec

([
q̂r,4I3×3 − bq̂r×c q̂r

−q̂>r q̂r,4

][
Jq(b̂w+b̃w−b̄w)

2
1

])
(110)

= (q̂r,4I3×3 − bq̂r×c)Jq(b̂w + b̃w − b̄w) + other terms (111)

So that our Jacobian with respect to a perturbance in bias is:

∂k+1δθk

∂b̃w
= (q̂r,4I3×3 − bq̂r×c)Jq (112)
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Similarly, the Jacobian with respect to k+1δθG can be found as follows:

k+1δθk = 2vec

([
1
2
k+1δθG

1

]
⊗ k+1
G

ˆ̄q ⊗ k
G

ˆ̄q
−1 ⊗ k+1

k q̄
−1 ⊗ ˆ̄qb

)
(113)

= 2vec

([
1
2
k+1δθG

1

]
⊗ ˆ̄qrb

)
(114)

= 2vec

(
R(q̂rb)

[
1
2
k+1δθG

1

])
(115)

= 2vec

([
q̂rb,4I3×3 + bq̂rb×c q̂rb

−q̂>rb q̂rb,4

] [
1
2
k+1δθG

1

])
(116)

= (q̂rb,4I3×3 + bq̂rb×c)k+1δθG + other terms (117)

Yielding the Jacobian:

∂k+1δθk
∂k+1δθG

= q̂rb,4I3×3 + bq̂rb×c (118)

The Jacobian with respect to kδθG is given by:

k+1δθk = 2vec

(
k+1
G

ˆ̄q ⊗ k
G

ˆ̄q
−1 ⊗

[
−
kδθG

2
1

]
⊗ k+1
k q̄

−1 ⊗ ˆ̄qb

)
(119)

= 2vec

(
q̂n ⊗

[
−
kδθG

2
1

]
⊗ q̂−1

mb

)
(120)

= 2vec

(
L(q̂n)R(q̄−1

mb)

[
−
kδθG

2
1

])
(121)

= 2vec

([
q̂n,4I3×3 − bq̂n×c q̂n

−q̂>n q̂n,4

] [
q̄mb,4I3×3 − bq̄mb×c −qmb

q>mb q̄mb,4

][
−
kδθG

2
1

])
(122)

= −((q̂n,4I3×3×3 − bq̂n×c)(qmb,4I3×3 − bqmb×c) + q̂nq
>
mb)

kδθG + other terms (123)

Which gives the Jacobian:

∂k+1δθk
∂kδθG

= −((q̂n,4I3×3 − bq̂n×c)(q̄mb,4I3×3 − bqmb×c) + q̂nq̄
>
mb) (124)

Note than in the preceding Jacobians, we have defined several intermediate quaternions, (ˆ̄qr, ˆ̄qrb, ˆ̄qn, and
ˆ̄qmb) for ease of notation. Following the same methodology, we can find the Jacobians of theαmeasurement
with respect to the position, velocity and bias.

kαk+1= k
GR

(
Gpk+1 − Gpk − Gvk∆t+

1

2
Gg∆t2

)
− Jα(bw − b̄w)−Hα(ba − b̄a)

'
(
I3×3 − bkδθG×c

)
k
GR̂
(
Gp̂k+1 + Gp̃k+1 − Gp̂k − Gp̃k − Gv̂k∆t− Gṽk∆t

+
1

2
Gg∆t2

)
− Jα

(
b̂w + b̃w − b̄w

)
−Hα

(
b̂a + b̃a − b̄a

)
(125)
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Then the following Jacobians immediately becomes available:

∂kαk+1

∂kδθG
=

⌊
k
GR̂

(
Gp̂k+1 − Gp̂k − Gv̂k∆t+

1

2
Gg∆t2

)
×
⌋

(126)

∂kαk+1

∂Gpk
= −kGR̂ (127)

∂kαk+1

∂Gpk+1
= k

GR̂ (128)

∂kαk+1

∂Gvk
= −kGR̂∆t (129)

∂kαk+1

∂b̃w
= −Jα (130)

∂kαk+1

∂b̃a
= −Hα (131)

Similarly, we can write our β measurement as:

kβk+1 = k
GR

(
Gvk+1 − Gvk + Gg∆t

)
− Jβ(bw − b̄w)

' (I3×3 − bkδθG×c)kGR̂
(
Gv̂k+1 + Gṽk+1 − Gv̂k − Gṽk + Gg∆t

)
− Jβ(b̂w + b̃w − b̄w)−Hβ(b̂a + b̃a − b̄a) (132)

which leads to the following Jacobians:

∂kβk+1

∂kδθG
=
⌊
k
GR̂(Gv̂k+1 − Gv̂k + Gg∆t)×

⌋
(133)

∂kβk+1

∂Gvk
= −kGR̂ (134)

∂kβk+1

∂Gvk+1
= k

GR̂ (135)

∂kβk+1

∂b̃w
= −Jβ (136)

∂kβk+1

∂b̃w
= −Hβ (137)
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