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Abstract

In this paper, we study in-depth the problem of online self-calibration for robust and accurate
visual-inertial state estimation. In particular, we first perform a complete observability analysis
for visual-inertial navigation systems (VINS) with full calibration of sensing parameters, includ-
ing IMU/camera intrinsics and IMU-camera spatial-temporal extrinsic calibration, along with
readout time of rolling shutter (RS) cameras (if used). We investigate different inertial model
variants containing IMU intrinsic parameters that encompass most commonly used models for
low-cost inertial sensors. With these models, the state transition matrix and visual measurement
Jacobians are analytically derived and the observability analysis of linearized VINS with full
sensor calibration is performed. The analysis results prove that, as intuitively assumed in the
literature, VINS with full sensor calibration has four unobservable directions, corresponding to
the system’s global yaw and translation, while all sensor calibration parameters are observable
given fully-excited 6-axis motion. Moreover, we, for the first time, identify primitive degenerate
motions for IMU/camera intrinsic calibration, which, when combined, may produce complex
degenerate motions. This result holds true for the different inertial model variants investigated
in this work and has significant impacts on practical applications of online self-calibration to
many robotic platforms. Extensive Monte-Carlo simulations and real-world experiments are per-
formed to validate both the observability analysis and identified degenerate motions, showing
that online self-calibration improves system accuracy. We compare the proposed online self-
calibration on commonly-used IMUs against the state-of-art offline calibration toolbox Kalibr,
and show that the proposed system achieves better consistency and repeatability. As sensor
calibration plays an important role in making real VINS work well in practice, based on our
analysis and experimental evaluations, we also provide practical guidelines for how to perform
online IMU-camera sensor self-calibration.

1 Introduction

Due to the decreasing cost of integrated inertial/visual sensor rigs, visual-inertial navigation sys-
tem (VINS), which fuses high-rate inertial readings from an IMU and images of the surrounding
environment from a camera, has gained great popularity in 6 degree-of-freedom (DoF) motion
tracking for mobile devices and autonomous robots – such as micro aerial vehicles (MAV) [1], self-
driving cars [2], unmanned ground vehicles (UGV) [3, 4] and smart phones [5, 6] – during the past
decades [7]. Many efficient and robust VINS algorithms based on filtering [8, 5, 9, 10, 11] or batch
least squares solvers [12, 13, 14, 15, 16] have been developed in recent years to address this pose
estimation problem.

There are many factors which attribute to VINS performance, such as visual feature track-
ing/triangulation, velocity/biases initialization and sensor calibration. Among them, robust and
accurate sensor calibration – including the rigid transformation between sensors (spatial calibra-
tion), time offset between IMU-camera (temporal calibration), image line readout time for rolling
shutter (RS) cameras, and IMU/camera intrinsics – is crucial, especially when plug-and-play visual-
inertial sensor rigs with widely available off-the-shelf low-cost IMUs and rolling shutter cameras
are deployed. In addition, sensor calibration itself can be changed due to extended usage, sensor
replacement and environmental effects such as varying temperature, humidity, vibrations, non-rigid
mounting, and among others. For example, IMU biases and intrinsics suffer from the temperature
and humidity changes [17], and rigid transformation between IMU and camera can vary if the sensor
is replaced or subjected to vibration. As such, online sensor self-calibration in VINS has attracted
significant attentions and research efforts [5, 6, 18, 11, 19] in recent years, due to its potential to
handle poor prior calibration or calibration changes, which can degrade the state estimate accuracy
in the case that these calibrations are treated to be true.
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System observability analysis for VINS with online IMU-camera [20, 21, 22] or IMU/camera
intrinsic [23, 19] calibration has also been carried out to show that these calibration parameters can
be identified given fully excited motions. However, complete analysis for VINS with full calibration
parameters – including IMU/camera intrinsics, IMU-camera rigid transformation, temporal time
offset, and camera RS readout time – is still absent from the existing literature.

Blindly performing online calibration is risky, as in most cases domain knowledge on specific
motions and prior distribution choices are needed to ensure calibration can converge consistently
[24]. In the meantime, existing research efforts [25, 18, 19] have also identified several basic motion
profiles, termed degenerate motions, that cause online sensor self-calibration failures. In this work,
we investigate degenerate motions which impact the deployment of VINS on mobile robots, which
typically have constrained motions, when jointly estimating IMU/camera intrinsics, IMU-camera
spatial-temporal calibration, and RS readout time. For example, aerial and ground vehicles can
only perform a few motion profiles due to their under-actuation, and can easily “fall” into degen-
erate conditions for calibration during typical deployment. As compared to our investigation into
degenerate motions when performing full-parameter self-calibration, and their impacts especially
for under-actuated autonomous robots, most approaches on VINS sensor self-calibration are limited
to either handheld or trajectory segments involving rich motion information [17, 26].

In this paper, we build an accurate and robust monocular VINS estimator with full self-
calibration. We also investigate in-depth the observability analysis for visual-inertial self-calibration
and perform degenerate motion analysis for all calibration parameters. In particular, the main con-
tributions of this work include:

• An efficient filter-based visual-inertial estimator capable of performing self-calibration for all
spatial-temporal extrinsic and intrinsic parameters.

• We perform a complete observability and degeneracy analysis for the proposed visual-inertial
models and, for the first time, identify the degenerate motions that cause IMU and camera
intrinsic parameters to become unobservable.

• Extensive simulations and real-world experiments are performed to verify the parameter con-
vergence of the estimator with online self-calibration under fully-excited 6DoF motion and a
series of identified degenerate motions of practical significance.

• We show that under general motion, self-calibration is necessary to achieve accurate pose
estimation in a robust manner for consumer grade sensors, which continue to become more
prevalent, with only minimal computational impact. Additionally, we show that degenerate
motions can and do have a significant negative impact on the performance of the estimator,
leading to a series of guideline recommendations.

The rest of the paper is organized as follows: after reviewing the related work in Section 2 and
estimation preliminaries in Section 3, we present the sensing models including inertial and camera
models in Section 4. In Section 5, we derive the lienarized system dynamics and measurement model
of the VINS with full sensor calibration. Based on that, we perform the observability analysis and
degenerate motion identification in Sections 6 and 7, while the proposed estimator is presented in
Section 8. In Sections 9, 10, 11 and 12, we extensively validate our analysis and estimator through
both simulations and real-world experiments. Finally, we offer discussions and final remarks in
Sections 13 and 14.

RPNG-2022-FullCalib 2



2 Related Works

Extensive works have studied online or offline IMU and camera calibration for VINS. However,
the joint self-calibration of all the calibration parameters for visual and inertial sensors (including
IMU/camera intrinsics, IMU-camera spatial-temporal calibration and RS readout time) was not
investigated sufficiently, and the observability analysis and degenerate motion identification for the
complete VINS with calibration are still missing from the literature. In terms of the complete
parameter calibration for VINS, the related works can be divided into the following four categories:

2.1 Camera Calibration

Visual-only offline calibration of camera intrinsic parameters is well studied [27]. For example, [28]
demonstrated camera self-calibration without a pattern, based on which [29] and [30] proposed to
use sum of Gaussian filters. Recently, [31] extended the above works to use RGB video with objects
of non-rigid shape for camera self-calibration.

Many works have also focused on RS camera calibration, especially for the image line readout
time. For instance, after formulating the geometric models of RS cameras and investigating how RS
affects the image generation, [32] leveraged flashing LED lights to calibrate the RS readout time.
Similarly, [33] used continuous time trajectory representation to model RS effects and performed
calibration with an April tag pattern [34]. However, these methods assume known camera intrinsics
(including distortion parameters) when calibrating the RS readout time.

[35] investigated the self-calibration of multiple omnidirectional RS cameras. They first initial-
ized the rigid transformation and time offset between cameras based on the structure-from-motion
(SFM) trajectories generated from each monocular camera with global shutter (GS) assumption.
Then, all the camera related parameters (i.e., the rigid transformation, time offset, camera intrin-
sics, and RS readout time for each camera) are refined by a bundle adjustment (BA) with all the
camera measurements. [36] presented the first minimal solution to absolute pose estimation of
a RS camera with unknown focal length and unknown radial distortion, from seven point corre-
spondences. With the proposed solvers they can achieve accurate solutions for camera poses, RS
readout time, focal length and radial distortion. Note that both [36] and [35] are offline calibration
algorithms and rely only on visual sensors.

[37] proposed to combine a gyroscope for RS camera image correction with natural scenes. How-
ever, it requires the pre-calibration of rotation between gyroscope and RS camera and the motion
of the camera is restricted to rotation only. [23] investigated online camera intrinsic calibration
(only focal length and principal points) within a VINS framework.

In contrast to the above works only focusing on camera calibration, our proposed method
fuses the measurements of an IMU and a monocular camera, and provides online calibration of
all the camera parameters including camera intrinsics and RS readout time, Both radial-tangential
(radtan) and equivalent-distant (equidist) distortion [38] are supported.

2.2 IMU Intrinsic Calibration

Generally, the gyroscope and acceleration biases are needed for accurate inertial modeling. They
are both modeled as random walks and estimated as part of IMU states. It is a common practice
to estimate biases online in VINS such as [39], [21], [12] and [8].

Besides these biases, the IMU intrinsic parameters – including the scale correction and axis
misalignment for gyroscope and accelerometer, the rotation from gyroscope or accelerometer frame
to IMU frame, and the g-sensitivity – also need to be calibrated offline or online, especially for
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low-cost inertial sensors. [40] calibrated the IMU’s scale correction and axis misalignment for aerial
vehicles by solving a least squares problem with known special sensor motions. [41] improved
the IMU pre-integration [13] to incorporate the IMU intrinsic parameters in a keyframe based
VINS algorithm for online self-calibration. [42] studied IMU intrinsic calibration within multi-state
constrained Kalman filter (MSCKF) by using a stereo camera and an IMU sensor, where they also
examined the inertial calibration results under planar and random motions.

Building upon our prior work [19], in which we have investigated online IMU intrinsic calibration
with the minimal sensor configuration of a single IMU and a monocular camera and compared the
performance of four different IMU intrinsic model variants in VINS, in this work, we study 18
different IMU intrinsic model variants which can encompass or be equivalent to most published
IMU models for inertial navigation and perform online self-calibration. Comprehensive degenerate
motion analysis, which can cause online self-calibration to fail, is also provided.

2.3 Joint IMU-Camera Self Calibration

Since VINS fuses IMU measurements and camera images, the joint calibration of IMU-camera
parameters is preferred to improve system accuracy and robustness. Extensive works have studied
joint sensor calibration in VINS. For instance, [20] proposed to use an extended Kalman filter
(EKF) for the spatial calibration (i.e. the rigid transformation between the camera and IMU) of
VINS and performed an observability analysis. They showed that the rigid transformation is not
fully observable under one-axis rotation. [43] proposed to use the recursive Sigma-Point Kalman
filter to estimate IMU intrinsics and IMU-camera spatial parameters with measurements from an
IMU and a monocular camera. However, [20] and [43] did not calibrate the camera intrinsics or
IMU-camera time offset and both relied on calibration chessboards.

[38] developed the well-known calibration toolbox: Kalibr, a continuous-time spline-based batch
estimator, for IMU-camera extrinsics, time offset and camera intrinsics calibration. [44] extended
Kalibr to incorporate and estimate IMU intrinsics (including scaling parameters, axis misalign-
ments, and g-sensitivity). [45] further extended the above work to calibrate readout time for RS
cameras. [46] formulated a maximum likelihood estimation problem based on discrete IMU poses
to calibrate the IMU-camera spatial-temporal and IMU intrinsic parameters. The above men-
tioned works are all offline methods and need calibration targets. In addition, they do not support
full-parameter joint optimization of camera intrinsics with other calibration parameters.

[26] reduced IMU-camera calibration optimization complexity by selecting the most informative
trajectory segments for calibration. The selection is based on the information matrix of the mea-
surements from the trajectory segments. Although this work does not need a calibration board,
the temporal calibration between IMU and camera is not included.

Many recent VINS algorithms perform online IMU-camera joint calibration. [14] and [47] is
able to perform online IMU-camera extrinsic and time offset calibration with natural scene to
improve the system robustness and accuracy. [6] proposed to use linear pose interpolation to
model RS effects and calibrate readout time. [48] proposed a multi-camera aided VINS with online
IMU-camera spatial-temporal and camera intrinsic calibration. [11] further proposed a generalized
polynomial based pose interpolation for readout time calibration of RS cameras. However, the IMU
intrinsics were not considered in the above systems.

The closest works to ours are by Li et al. [17] and Huai et al. [49] which included IMU-camera
extrinsics, time offset, rolling-shutter readout time, camera and IMU intrinsics into the state vector
of VINS. The former is built with MSCKF [8] based visual-inertial odometry while the latter is
based on a key-frame sliding-window filter VINS. Both systems calibrated all these parameters.
However, no system observability was present in [17] and degenerate motion analysis was still
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missing from [49]. Instead, system observability and degenerate motion analysis are the focus of
our work along with more extensive multi-run statistical validations of the calibration results. In
addition, we also evaluate different IMU model variants which have appeared in literature.

2.4 Observability and Degeneracy

Observability analysis plays an important role in state estimation [50, 51, 52], especially when the
system incorporates calibration parameters [53, 25, 18, 19]. We wish to identify whether these
calibration parameters can be calibrated with visual and inertial measurements, and also identify
degenerate motions, which might cause calibration to fail. In addition, observability properties can
be leveraged for consistent estimator design [54, 52, 55]. [20] performed the observability analysis
for VINS with IMU-camera spatial calibration and showed that the spatial calibration is observable
given fully excited motion of the IMU. They also found that that one-axis rotation is degenerate
for the calibration of IMU-camera translation. [21] studied the IMU-camera self-calibration and
performed nonlinear observability analysis using Lie derivative to show that the rigid transformation
between IMU-camera is observable given random motions. [22] simplified the proof and analytically
showed that the spatial calibration between the IMU and RGBD camera is observable. [25] analyzed
the identifiability for IMU-camera temporal calibration given the measurements of a single IMU
and a monocular camera and identified a degenerate motion that can cause the IMU-camera time
offset to become unobservable. [42] studied the observability of stereo VINS with IMU intrinsics
also based on Lie derivative to build the observability matrix and showed that the IMU intrinsics
(including scale correction and axis misalignment for gyroscope and accelerometer, respectively) is
observable given fully exited motions. [23] built the observability matrix for VINS using linearized
system model and showed that the camera intrinsics (only including focal length and principal
points in their work) is observable. However, none of the above mentioned works ever performed
and verified the observability analysis with full-parameter calibration for VINS.

In our previous work [18], we built the observability matrix for VINS using the linearized sys-
tem with IMU-camera spatial-temporal calibration and showed that given fully excited motions all
these calibration parameters are observable. We have also, for first time, identified four degenerate
motions that can cause these calibration to become unobservable. In our recent work [19], we per-
formed observability analysis for monocular VINS with IMU intrinsic calibration (including scale
and axis-misalignment for gyroscope and accelerometer, the rotation from gyroscope or accelerom-
eter to IMU frame), and identified the degenerate motions for the IMU intrinsics. Building upon
these prior works, in this work, we perform full-parameter calibration – including IMU intrinsics
with g-sensitivity, camera intrinsics and the IMU-camera spatial-temporal calibration with RS read-
out time – for VINS with a single IMU and a monocular RS camera. Comprehensive observability
analysis and degenerate motion identification are performed for these calibration parameters. Both
simulations and real world experiments are also leveraged to verify our analysis.

3 Estimation Preliminaries

The state x is propagated forward from timestep k − 1 to k using incoming system control inputs
uk−1 based on the following generic nonlinear function:

xk = f(xk−1,uk−1,wk−1) (1)
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where wk−1 ∼ N (0,Qk−1) denotes the white Gaussian noise of the control input. The state
estimate at k can be predicted from the state estimate at k − 1 with the nonlinear system:

x̂k|k−1 = f(x̂k−1|k−1,uk−1,0) (2)

where the subscript i|j denotes the estimate at time i given the measurements up to time j; x̂
denotes the estimated value for state x and x̃ = x⊟ x̂ represents the error states, where “⊟” can
be defined within a manifold [56]. The inverse operation of “⊟” can be defined as x = x̂ ⊞ x̃,
accordingly. The state covariance can be defined on the error states as x̃ ∼ N (0,P).

After linearizing the nonlinear function [see Eq. (1)] at current state estimate x̂k−1|k−1, the
propagated state covariance Pk|k−1 for state estimate x̂k|k−1 can be computed as:

x̃k|k−1 ≃ Φk−1|k−1x̃k−1|k−1 +Gk−1wk−1 (3)

Pk|k−1 = Φk−1Pk−1|k−1Φ
⊤
k−1 +Gk−1Qk−1G

⊤
k−1 (4)

whereΦk−1 andGk−1 are the state transition matrix and noise Jacobians, respectively. A nonlinear
measurement function can be described as:

zk = h(xk) + nk (5)

where nk ∼ N (0,Rk) is white Gaussian noise. For the EKF update, we need to first linearize the
above equation at the current state estimate x̂k|k−1 as:

zk = h(x̂k|k−1 ⊞ x̃k|k−1) + nk ≃ h(x̂k|k−1) +Hkx̃k|k−1 + nk (6)

⇒ z̃k ≜ zk − h(x̂k|k−1) ≃ Hkx̃k|k−1 + nk (7)

where Hk is the measurement Jacobian and z̃k is the measurement residual. With these, we can
now perform an EKF update to refine state estimates and covariance at time step k [57]:

x̂k|k = x̂k|k−1 ⊞Kk(zk − h(x̂k|k−1)) (8)

Pk|k = Pk|k−1 −KkHkPk|k−1 (9)

Kk = Pk|k−1H
⊤
k (HkPk|k−1H

⊤
k +Rk)

−1 (10)

4 Sensing Models

4.1 IMU Intrinsic Model

We define an IMU as containing two separate frames of reference (see Fig. 1): gyroscope frame
{w}, accelerometer frame {a}. The base “inertial” frame {I} should be determined to coincide
with either {w} or {a}. Different from the model in [26], we define the raw angular velocity reading
wωm from the gyroscope and linear acceleration readings aam from the accelerometer as:

wωm = Tw
w
I R

Iω +Tg
Ia+ bg + ng (11)

aam = Ta
a
IR

Ia+ ba + na (12)

where Tw and Ta are invertible 3 × 3 matrices which represent the scale imperfection and axis
misalignment for {w} and {a}, respectively. w

I R and a
IR denote the rotation from the gyroscope

frame and acceleration frame to base “inertial” frame {I}, respectively. Note that, if we choose
{I} coincides with {w}, then w

I R = I3. Otherwise, a
IR = I3. bg and ba are the gyroscope and
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Figure 1: An IMU sensor composed of accelerometer and gyroscope. The base “inertial” frame can be determined to
coincide with either accelerometer frame {a} or gyroscope frame {w}. There is a rigid 6D transformation between
camera frame {C} and inertial frame {I}.

accelerometer biases, which are modeled as random walks; ng and na are the zero-mean Gaussian
noises contaminating the measurements. Tg denotes the g-sensitivity, which represents the effects
of acceleration to the gyroscope readings. Similar to the works by [17] and [26], we do not take into
account the translation between the gyroscope and accelerometer, since it is negligible for most
IMUs. We can write the true (or corrected) angular velocity Iω and linear acceleration Ia as:

Iω = I
wRDw

(
wωm −Tg

Ia− bg − ng

)
(13)

Ia = I
aRDa (

aam − ba − na) (14)

where Dw = T−1
w and Da = T−1

a . In practice we calibrate Da, Dw,
I
aR (or I

wR) and Tg to prevent
the need to have the unnecessary matrix inversions in the above measurement equations. We only
calibrate either I

wR or I
aR in Eq. (13) and Eq. (14) since the base “inertial” frame coincides with

one of sensor frames. If both I
wR and I

aR were calibrated, it would make the rotation between the
IMU and camera unobservable due to over parameterization which will be validated in Section 9.5.

4.1.1 IMU intrinsic model variants.

Given the above general model [see Eq. (13) and Eq. (14)], different choices of these intrinsic
parameters can be made [17, 46, 58, 26, 41, 42]. In the following, we present a range of commonly-
used IMU intrinsic model variants, and will later compare against each other within an online
filter-based VINS. Specifically, each model is defined as follows:

• imu1 : includes the rotation I
wR, 6 parameters for Dw (and thus denoted by Dw6) and 6

parameters for Da (and thus denoted by Da6), as they assume the upper-triangular structure:

D∗6 =

d∗1 d∗2 d∗4
0 d∗3 d∗5
0 0 d∗6

 (15)

• imu2 : includes the rotation I
aR instead, Da6 and Dw6, which is the model used by [26].

• imu3 : combines imu1 ’s Dw6 and I
wR into a general 3× 3 matrix containing 9 parameters in

total. Thus, in this variant we estimate the upper-triangle Da6 and a full matrix Dw9 as:

D∗9 =

d∗1 d∗4 d∗7
d∗2 d∗5 d∗8
d∗3 d∗6 d∗9

 (16)

• imu4 : is an extension of imu2 with a combination of the Da6 and I
aR. Similarly, in this

variant we estimate the upper-triangle Dw6 and a full matrix Da9.
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Table 1: IMU model variants and their estimated parameters.

Model Dim. Dw Da
I
wR

I
aR Tg

imu0 0 - - - - -

imu1 15 Dw6 Da6
I
wR - -

imu2 15 Dw6 Da6 - I
aR -

imu3 15 Dw9 Da6 - - -
imu4 15 Dw6 Da9 - - -

imu5 18 Dw6 Da6
I
wR

I
aR -

imu6 24 D′
w6 D′

a6
I
wR - Tg9

imu11 21 Dw6 Da6
I
wR - Tg6

imu12 21 Dw6 Da6 - I
aR Tg6

imu13 21 Dw9 Da6 - - Tg6

imu14 21 Dw6 Da9 - - Tg6

imu21 24 Dw6 Da6
I
wR - Tg9

imu22 24 Dw6 Da6 - I
aR Tg9

imu23 24 Dw9 Da6 - - Tg9

imu24 24 Dw6 Da9 - - Tg9

imu31 9 - Da9 - - -
imu32 9 Dw9 - - - -
imu33 6 - - - - Tg6

imu34 9 - - - - Tg9
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zC

zn

Figure 2: Distorting from normalized to a raw image pixel.

• imu1A (A = 1, · · · , 4): combines imuA with a 6-parameter g-sensitivity Tg6 as:

Tg6 =

tg1 tg2 tg4
0 tg3 tg5
0 0 tg6

 (17)

• imu2A (A = 1, · · · , 4): combines imuA a the 9-parameter g-sensitivity Tg9 as:

Tg9 =

tg1 tg4 tg7
tg2 tg5 tg8
tg3 tg6 tg9

 (18)

• imu5 : contains Dw6, Da6,
I
wR and I

aR. This is a redundant over-parameterized model which
will be used to verify that I

wR and I
aR should not be calibrated simultaneously.

• imu6 : contains D′
w6, D

′
a6,

I
wR and Tg9. This is equivalent to the scale-misalignment IMU

intrinsic model [44] used in the calibration toolbox [38]. D′
∗6 assumes the lower triangular

structure:

D′
∗6 =

d∗1 0 0
d∗2 d∗4 0
d∗3 d∗5 d∗6

 (19)

• imu3A (A = 1, · · · , 4): models a subset of the parameters of the general model while assuming
the others known; that is, only calibrates Da9 in imu31, Dw9 in imu32, Tg6 in imu33, and
Tg9 in imu34.

These different models are summarized in Table 1. Note that for presentation clarity, imu22 is
used in the ensuing system derivations and analysis.

4.2 Camera Model

Consider a 3D point feature, Gpf , that is captured by a camera with visual measurement function
written as:

zC =

[
u
v

]
+ nC (20)

where nC denotes the measurement noise; u and v are the distorted image pixel coordinates:[
u
v

]
= hd (zn,xCin) (21)
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where zn = [un vn]
⊤ represents the normalized image pixel and hd(·) maps the normalized im-

age pixel onto the image plane based on the camera intrinsic parameters xCin and camera model.
Specifically, a pinhole model with radial-tangential (radtan) or equivalent-distant (equidist) distor-
tion can be used, and the radtan model is used in the following derivations and analysis [see [38,
59]]. Fig. 2 visualizes this image distortion operation. xCin and hd(·) are given by:

xCin =
[
fu fv cu cv k1 k2 p1 p2

]⊤
(22)[

u
v

]
=

[
fu 0
0 fv

] [
ud
vd

]
+

[
cu
cv

]
(23)[

ud
vd

]
=

[
dun + 2p1unvn + p2(r

2 + 2u2n)
dvn + p1(r

2 + 2v2n) + 2p2unvn

]
(24)

where r2 = u2n + v2n; d = 1 + k1r
2 + k2r

4; fu and fv are the camera focal length; cu and cv denotes
the image principal point; k1 and k2 represent the radial distortion coefficients while p1 and p2 are
tangential distortion coefficients.

Normalized image pixel u and v can be acquired by projecting 3D feature Cpf = [Cxf
Cyf

Czf ]
⊤

in camera frame into 2D plane as:

zn = hp

(
Cpf

)
≜

1
Czf

[
Cxf
Cyf

]
(25)

Cpf = ht(
I
GR,GpI ,

C
I R, CpI ,

Gpf ) ≜
C
I R

I
GR

(
Gpf − GpI

)
+ CpI (26)

where {CI R, CpI} represents the rigid transformation between the IMU and camera frames.

4.2.1 Temporal calibration.

Two common variants of camera sensing modes are global shutter (GS) and rolling shutter (RS).
GS cameras expose all pixels at a single time instance, while, typically lower-cost, RS cameras
expose each row sequentially. As shown by [6], it may lead to large estimation errors if this
RS effect is not taken into account when using RS cameras. Additionally, the camera and IMU
measurement timestamps can be incorrect due to processing or communication delays, or different
clock references. To address this, we model both the time offset and camera readout time to
ensure all measurements are processed in a common clock frame of reference and at the correct
corresponding poses. Specially, td denotes the time offset between IMU and camera timeline and tr
denotes the RS readout time for the whole image. If t denotes the time when the pixel is captured,
the RS measurement function for a pixel captured in the m-th row (out of total M rows) is given
by:

Cpf = ht(
I(t)
G R,GpI(t),

C
I R, CpI ,

Gpf ) ≜
C
I R

I(t)
G R

(
Gpf − GpI(t)

)
+ CpI (27)

tI = tC + td (28)

t = tI +
m

M
tr (29)

where tI is the IMU state time corresponding to the captured image time tC when the first row
of the image is collected. If the readout time tr = 0, then the camera is actually a GS camera
and all rows are a function of the same pose. As usual, {GI(t)R,GpI(t)} is the IMU global pose
corresponding to the camera measurement time t.
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5 System Models

The state vector x of the visual-inertial system under consideration includes the inertial navigation
state xI , IMU intrinsic parameter xin, IMU-camera spatial-temporal extrinsic calibration xIC ,
camera intrinsic calibration xCin and feature positions xf , which is given by:

x =
[
x⊤
I x⊤

IC x⊤
Cin x⊤

f

]⊤
(30)

xI =
[
x⊤
n | x⊤

b | x⊤
in

]⊤
=

[
I
Gq̄

⊤ Gp⊤
I

Gv⊤
I | b⊤

g b⊤
a | x⊤

in

]⊤
xin =

[
x⊤
Dw x⊤

Da
I
aq̄

⊤ x⊤
Tg

]⊤
(31)

xIC =
[
C
I q̄

⊤ Cp⊤
I td tr

]⊤
(32)

where I
Gq̄ denotes quaternion with JPL convention [60] and corresponds to the rotation matrix I

GR,
which represents the rotation from {G} to {I}. GpI and GvI denote the IMU position and velocity
in {G}. xn denotes the IMU navigation states containing the I

Gq̄,
GpI and

GvI . xb denotes the IMU
bias states containing bg and ba.

C
I q̄ and CpI denotes the rigid transformation between {C} and

{I}. td and tr represent the IMU-camera time offset and camera readout time. IMU intrinsics, xin,
contains xDw, xDa, xTg and I

aq̄, where xDw, xDa and xTg are non-zero elements stored column-wise
in Dw, Da and Tg. Specifically, they are defined as:

xD∗ =
[
d∗1 d∗2 d∗3 d∗4 d∗5 d∗6

]⊤
(33)

xTg =
[
tg1 tg2 tg3 tg4 tg5 tg6 tg7 tg8 tg9

]⊤
(34)

It is important to note we use the quaternion left multiplicative error defined by q̄ ≈ [12δθ
⊤ 1]⊤⊗ ˆ̄q,

where ⊗ denotes quaternion multiplication and error state is equivalent to the SO(3) error (i.e.
I
GR ≈ (I3 − ⌊δθ⌋)IGR̂) [60]. The dynamics of the inertial navigation state xI is given by [61]:

I
G
˙̄q =

1

2
Ω(Iω)IGq̄ , GṗI = GvI (35)

Gv̇I = I
GR

⊤Ia− Gg , ḃg = nwg , ḃa = nwa

where Ω(ω) =

[
−⌊ω⌋ ω
−ωT 0

]
, nwg and nwa are zero-mean white Gaussian noises driving bg and ba,

respectively, and the known global gravity assumes Gg = [0 0 9.81]⊤, while the rest of the states
have zero dynamics.

5.1 Analytic Inertial Integration

In the following, we present the analytic IMU integration and corresponding error state transition
matrix, which was originally presented in our prior work [62] and later extended to include IMU
intrinsics [19]. Specifically, we compute the integration of IMU dynamics based on Eq. (35) from
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time step tk to tk+1:

Ik+1

G R = ∆R⊤
k
Ik
GR (36)

GpIk+1
= GpIk +

GvIkδtk +
Ik
GR⊤∆pk −

1

2
Ggδt2k (37)

Gv̂Ik+1
= Gv̂Ik +

Ik
GR⊤∆vk − Ggδtk (38)

bgk+1
= bgk +

∫ tk+1

tk

nwgdτ (39)

bak+1
= bak +

∫ tk+1

tk

nwadτ (40)

where δtk = tk+1 − tk, and the three IMU integration quantities are given by:

∆Rk ≜ Ik
Ik+1

R = exp

(∫ tk+1

tk

Iτωdτ

)
(41)

∆pk ≜
∫ tk+1

tk

∫ s

tk

Ik
Iτ
RIτadτds (42)

∆vk ≜
∫ tk+1

tk

Ik
Iτ
RIτadτ (43)

where exp(·) is the SO(3) matrix exponential [63]. The current best estimate of the true angular
velocity, Ikω, and linear acceleration, Ika, within this time interval [tk, tk+1] is the expectation of
Eq. (13) and Eq. (14). Assuming constant Ikω̂ and Ik â within the time interval, we approximate
∆R̂k, ∆p̂k and ∆v̂k as:

∆R̂k ≃ exp
(
Ikω̂δtk

)
(44)

∆p̂k ≃
(∫ tk+1

tk

∫ s

tk

Ik
Iτ
R̂dτds

)
Ik â ≜ Ξ2

Ik â (45)

Ξ2 ≜
∫ tk+1

tk

∫ s

tk

exp
(
Ikω̂δτ

)
dτds (46)

∆v̂k ≃
(∫ tk+1

tk

Ik
Iτ
R̂dτ

)
Ik â ≜ Ξ1

Ik â (47)

Ξ1 ≜
∫ tk+1

tk

exp
(
Ikω̂δτ

)
dτ (48)

where δτ = tτ − tk, Ξ1 and Ξ2 are defined as integration components which can be evaluated either
analytically [19] or numerically using the Runge–Kutta fourth-order (RK4) method. Ikω̂ and Ik â
are computed as (note that we drop the timestamp k for simplicity):

Iω̂ = I
wR̂D̂w

wω̂ (49)

wω̂ = wωm − T̂g
I â− b̂g =:

[
wŵ1

wŵ2
wŵ3

]⊤
(50)

I â = I
aR̂D̂a

aâ (51)

aâ = aam − b̂a =:
[
aâ1

aâ2
aâ3

]⊤
(52)
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where I
wR̂ = I3 for imu22. As Ikω̂ and Ik â are assumed to be constant, the state estimate at tk+1

is propagated as follows [see Eq. (36)-(40)]:

Ik+1

G R̂ ≃ ∆R⊤
k
Ik
G R̂ (53)

Gp̂Ik+1
≃ Gp̂Ik +

Gv̂Ikδtk +
Ik
G R̂⊤∆p̂k −

1

2
Ggδt2k (54)

Gv̂Ik+1
≃ Gv̂Ik +

Ik
G R̂⊤∆v̂k − Ggδtk (55)

b̂gk+1
= b̂gk (56)

b̂ak+1
= b̂ak (57)

5.2 Linearized System Model

We first linearize the three IMU pre-integration components [see Eq. (41)-(43)]:

∆Rk = ∆R̂k∆R̃k ≜ ∆R̂k exp
(
Jr(∆θ̂k)

Ikω̃δtk

)
(58)

∆pk = ∆p̂k +∆p̃k ≜ ∆p̂k −Ξ4
Ikω̃ +Ξ2

Ik ã (59)

∆vk = ∆v̂k +∆ṽk ≜ ∆v̂k −Ξ3
Ikω̃ +Ξ1

Ik ã (60)

where Jr(∆θ̂k) ≜ Jr

(
Ikω̂δtk

)
denotes the right Jacobian of SO(3) [63]. The derivation and the

definitions of Ikω̃ and Ik ã can be found in Appendix A. The integrated components Ξ3 and Ξ4 are
defined as:

Ξ3 ≜
∫ tk+1

tk

Ik
Iτ
R⌊Iτa⌋Jr

(
Ikωδτ

)
δτdτ (61)

Ξ4 ≜
∫ tk+1

tk

∫ s

tk

Ik
Iτ
R⌊Iτa⌋Jr

(
Ikωδτ

)
δτdτds (62)

With the IMU preintegration, the linearized inertial navigation system of error state is given by:

δθk+1 ≃ ∆R̂⊤
k δθk + Jr

(
∆θ̂k

)
δtk

Ikω̃

Gp̃Ik+1
≃ Gp̃Ik +

Gṽkδtk − Ik
G R̂⊤⌊∆p̂k⌋δθk + Ik

G R̂⊤∆p̃k

GṽIk+1
≃ GṽIk −

Ik
G R̂⊤⌊∆v̂k⌋δθk + Ik

G R̂⊤∆ṽk

As such, the full linearized error-state system for imu22 is:

x̃Ik+1
≃ ΦI(k+1,k)x̃Ik +GIkndk (63)

ΦI(k+1,k) =

 Φnn ΦwaHb ΦwaHin

06×9 I6 06×24

024×9 024×6 I24

 (64)

GIk =

ΦwaHn 09×6

06 I6δtk
024×6 024×6

 (65)

where ΦI(k+1,k) and GIk are the state transition matrix and noise Jacobians for the inertial state
xI dynamics, Hb, Hin and Hn are Jacobians related to bias, IMU intrinsics and noises, which can
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be found in Appendix A, ndk = [n⊤
dg n⊤

da n⊤
dwg n⊤

dwa]
⊤ is the discrete-time IMU noises, while Φnn

and Φwa can be computed as:

Φnn =

 ∆R̂⊤
k 03 03

−Ik
G R̂⊤⌊∆p̂k⌋ I3 I3δtk

−Ik
G R̂⊤⌊∆v̂k⌋ 03 I3

 (66)

Φwa =

Jr(δθk)δtk 03
−Ik

G R̂⊤Ξ4
Ik
G R̂⊤Ξ2

−Ik
G R̂⊤Ξ3

Ik
G R̂⊤Ξ1

 (67)

Without loss of generality, we consider a single 3D feature Gpf in the state vector xf . Since
there is zero dynamics for xIC , xCin and xf , we can write the state transition matrix for the whole
state vector x as [see Eq. (30)]:

Φk+1,k =


ΦI(k+1,k) 0 0 0

0 ΦIC 0 0
0 0 ΦCin 0
0 0 0 Φf

 (68)

where ΦIC = I8, ΦCin = I8, and Φf = I3.

5.3 Linearized Measurement Model

We first build the overall camera measurements function hC(·) by incorporating the distortion
function hd(·) [see Eq. (21)], the projection function hp(·) [see Eq. (25)] and the transformation
function ht(·) [see Eq. (27)]:

zC = hC(x) + nC (69)

= hd(zn,xCin) + nC (70)

= hd(hp(
Ckpf ),xCin) + nC (71)

= hd(hp(ht(
C(t)
G R,GpC(t),

Gpf )),xCin) + nC (72)

We need to linearize the overall visual model for the update, which is given by:

z̃C ≃ HC x̃+ nC (73)

where z̃C ≜ zC −hC(x̂) and HC ≜ ∂z̃C
∂x̃ . Using the chainrule we get the following Jacobian matrix:

HC =
[
∂z̃C
∂x̃I

∂z̃C
∂x̃IC

∂z̃C
∂x̃Cin

∂z̃C
∂x̃f

]
=

[
Hpf

∂C p̃f

∂x̃I
Hpf

∂C p̃f

∂x̃IC

∂z̃C
∂x̃Cin

Hpf

∂C p̃f

∂x̃f

]
(74)

where Hpf
= ∂z̃C

∂z̃n
∂z̃n
∂C p̃f

. All the pertinent matrices
∂C p̃f

∂x̃I
,
∂C p̃f

∂x̃IC
,
∂C p̃f

∂x̃f
and Hpf

can be computed as

shown in Appendix B.

6 Observability Analysis

Observability analysis plays an important role in determining whether or not the states are estimable
for given measurements and can also be leveraged to identify degenerate motions that can negatively
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affect estimation performance [54, 64]. While the observability analysis of VINS has been well
studied [65], the observability properties and degenerate motions of VINS with full self-calibration
(in particular, IMU and camera intrinsic calibration) have not been sufficiently investigated. To
this end, following [65], we construct the observability matrix as follows:

O =


O1

O2
...
Ok

 =


HC1Φ1,1

HC2Φ2,1
...

HCkΦk,1

 (75)

We write the k-th row of O as:

Ok =
[
Mn Mb Min MIC MCin Mf

]
(76)

where Mn, Mb, Min, MIC , MCin and Mf represent the matrix block relating to the state [see Eq.
(30)] with detailed derivations in Appendix C. We now look to find the unobservable subspace N
such that ON = 0. The following can be found:

Lemma 1. Given fully excited motions, monocular VINS system with online calibration of IMU
intrinsics xin, camera intrinsics xCin and IMU-camera spatial-temporal parameters xIC (including
RS readout time) has 4 unobservable directions, which relate to the global yaw and global translation.

N =


I1
G R̂Gg 03

−⌊Gp̂I1⌋Gg I3
−⌊Gv̂I1⌋Gg 03

046×1 046×3

−⌊Gp̂f⌋Gg I3

 (77)

Proof. See Appendix D.

We notice that the terms Min and MIC (shown in Appendix C) contain wω̂, aâ, Iω̂ and Gv̂I ,
corresponding to the sensor platform motion. This implies that, Min and MIC , corresponding to
IMU intrinsics xin and IMU-camera spatial-temporal parameters xIC (including RS effects), are
motion-dependent and time-varying. Specifically, we have the following properties for the IMU
intrinsics and camera spatial-temporal parameters:

Proposition 1. For monocular VINS, the IMU intrinsic calibration and IMU-camera spatial-
temporal calibration (including RS readout time) are sensitive to sensor motions. Given fully excited
motions, xin and xIC are observable.

Given this observation and numerical simulations of VINS based on a monocular camera and
IMU, shown in Fig. 4, we can confirm that all these calibration parameters are observable and can
be estimated given fully-excited motions. While we omit the derivations and simulation results
here, the other IMU intrinsic model variants besides the imu22 presented are also fully observable
in the case of fully-excited motions.

Similarly, the camera intrinsics, MCin, are mainly affected by the environmental structure (the
u and v measurements of the 3D point features) with no motion terms are involved. Hence, we
have:

Proposition 2. For monocular VINS, the camera intrinsic calibration xCin is affected by the
structure of the environment features and less sensitive to sensor motions.
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The camera intrinsic parameters are observable for most motion cases, even for under-actuated
motions (i.e. planar motion), which can also be verified by our simulation results shown in Fig.
4-8. While we omit the results here, the equidist camera distortion model also satisfies the above
proposition.

7 Degenerate Motion Identification

While the observability properties found in the preceding section hold with general motions, this
may not always be the case in reality and thus the identification of degenerate motion profiles
that cause extra unobservable directions in the state space, becomes important. Based on the
observability analysis, we can further identify the degenerate motions corresponding to the state of
the system, such as the inertial state and features, along with the calibration parameters introduced
during online self-calibration. As the degenerate motion analysis of VINS has been studied in the
prior work [51, 52, 66, 67], we here focus only on motions that cause the calibration parameters to
become unobservable.

7.1 Inertial IMU Intrinsic Parameters

As mentioned in Section 6, Min is heavily motion affected, and thus, the IMU intrinsics are ex-
tremely susceptible to be unobservable under certain motions. Because the bias terms and IMU
intrinsics are tightly-coupled, by carefully inspecting the observability matrix O, we find a selection
of basic motion types which can cause the IMU intrinsics to become unobservable for imu22. Note
that similar results are applicable to other IMU model variants.

7.1.1 Degenerate motions for Dw

As the gyroscope related IMU intrinsics Dw are coupled with gyroscope bias bg and the angular
velocity readings wω from the IMU, we have the following results:

Lemma 2. If any component of wω (including wω1,
wω2,

wω3) is constant, then Dw will become
unobservable.

Proof. If ww1 is constant, dw1 will be unobservable with unobservable directions as:

Nw1 =
[
01×9 (D̂−1

w
I
wR̂

⊤e1)
⊤ww1 01×3 1 01×42

]⊤
(78)

If ww2 is constant, dw2 and dw3 will be unobservable with unobservable directions as:

Nw2 =
[
01×9 (D̂−1

w
I
wR̂

⊤e1)
⊤ww2 01×4 1 01×41

01×9 (D̂−1
w

I
wR̂

⊤e2)
⊤ww2 01×5 1 01×40

]⊤
(79)

If ww3 is constant, dw4, dw5 and dw6 are unobservable with unobservable directions as:

Nw3 =

01×9 (D̂−1
w

I
wR̂

⊤e1)
⊤ww3 01×6 1 01×39

01×9 (D̂−1
w

I
wR̂

⊤e2)
⊤ww3 01×7 1 01×38

01×9 (D̂−1
w

I
wR̂

⊤e3)
⊤ww3 01×8 1 01×37

⊤

(80)

See Appendix E for the verification of these unobservable directions.
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7.1.2 Degenerate motions for Da

Similarly, as aa can affect the observability property for the accelerometer related IMU intrinsics
Da, we have:

Lemma 3. If any component of aa (including aa1,
aa2 and aa3) is constant, then Da will become

unobservable.

Proof. If aa1 is constant, da1, pitch and yaw of I
aR are unobservable with unobservable directions

as:

Na1 =



012×1 012×1 012×1

D̂−1
a e1

aa1 D̂−1
a e2d̂a1

aa1 D̂−1
a e3d̂a1d̂a3

aa1
06×1 06×1 06×1

1 0 0

0 d̂a3 0

0 −d̂a2 0

0 d̂a5 d̂a6d̂a3
0 −d̂a4 −d̂a2d̂a6
0 0 d̂a2d̂a5 − d̂a4d̂a3

03×1 −I
aR̂e3

I
aR̂(e1d̂a2 + e2d̂a3)

028×1 028×1 028×1



(81)

If aa2 is constant, da2, da3 and roll of I
aR are unobservable with unobservable directions as:

Na2 =



012×1 012×1 012×1

D̂−1
a e1

aa2 D̂−1
a e2

aa2 D̂−1
a e3d̂a3

aa2
06×1 06×1 06×1

0 0 0
1 0 0
0 1 0
0 0 0

0 0 d̂a6
0 0 −d̂a5

03×1 03×1 −I
aR̂e1

028×1 028×1 028×1



(82)

If aa3 is constant, da4, da5 and da6 are unobservable with unobservable directions as:

Na3 =

01×12 (D̂−1
a e1)

⊤aa3 01×9 1 01×33

01×12 (D̂−1
a e2)

⊤aa3 01×10 1 01×32

01×12 (D̂−1
a e3)

⊤aa3 01×11 1 01×31

⊤

(83)

See Appendix E for the verification of these unobservable directions.

7.1.3 Degenerate motions for Tghaha

As Ia (the acceleration in IMU frame) can affect the observability property for the g-sensitivity
Tg, by close inspection of special configurations for Ia, we have:

Lemma 4. If any component of Ia (including Ia1,
Ia2 and Ia3) is constant, then Tg will become

unobservable.
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Table 2: Summary of basic degenerate motions for online IMU intrinsics calibration (imu22 ).

Motion Types Dim. Unobservable Parameters

constant wω1 1 dw1

constant wω2 2 dw2, dw3

constant wω3 3 dw4, dw5, dw6

constant aa1 3 da1, pitch and yaw of I
aR

constant aa2 3 da2, da3, roll of
I
aR

constant aa3 3 da4, da5, da6

constant Ia1 3 tg1, tg2, tg3
constant Ia2 3 tg4, tg5, tg6
constant Ia3 3 tg7, tg8, tg9

Proof. If Ia1 is constant, tg1, tg2 and tg3 are unobservable with unobservable directions as:

Ng1 =
[
03×9 I3

Ia1 03×18 −I3 03×25

]⊤
If Ia2 is constant, tg4, tg5 and tg6 are unobservable with unobservable directions as:

Ng2 =
[
03×9 I3

Ia2 03×21 −I3 03×22

]⊤
If Ia3 is constant, tg7, tg8 and tg9 are unobservable with unobservable directions as:

Ng3 =
[
03×9 I3

Ia3 03×24 −I3 03×19

]⊤
See Appendix E for the verification of these unobservable directions.

7.1.4 Discussion on IMU intrinsic degeneracy

It is evident from the above analysis that the IMU intrinsic calibration is sensitive to sensor motion
and thus all 6 axes need to be excited to ensure all of them can be calibrated. These findings
are summarized in Table 2. It should be noted that any combination of these primitive motions
is still degenerate and causes all related parameters to become unobservable (e.g., planar motion
with constant acceleration). It is also important to mention that it is common that I

aR ≃ I3 and
Da ≃ I3 for most IMUs, and thus, aâ ≃ Ia. As such, the degenerate motions for Da will also
lead to the unobservability of Tg, and vice-versa. Again, this degenerate motion analysis can be
extended to other model variants, which is omitted here for brevity.

7.2 IMU-Camera Spatial-Temporal Parameters

Leveraging our previous work [18] where we have studied four commonly-seen degenerate motions of
VINS with only IMU-camera spatial-temporal calibration, we here show these degenerate motions
hold true for VINS with full-parameter calibration:

Lemma 5. The IMU-camera spatial-temporal calibration will become unobservable, if the sensor
platform undergoes the following degenerate motions:

• Pure translation

• One-axis rotation
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Table 3: Summary of basic degenerate motions for online IMU-camera spatial-temporal calibration.

Motion Types Unobservable Parameters Observable

pure translation CpI
C
I R, td, tr

one-axis rotation CpI along rotation axis C
I R, td, tr

constant Iω td and C
I R, trconstant Iv CpI along rotation axis

constant Iω td and C
I R, trconstant Ga CpI along rotation axis

• Constant local angular and linear velocity

• Constant local angular velocity and global linear acceleration

Proof. If the system undergoes pure translation (no rotation), the translation part CpI of the
spatial calibration will be unobservable, residing along the following unobservable directions:

Npt =
[
03×45 I3 03×10 −(GI1R̂

I
CR̂)⊤

]⊤
(84)

If the system undergoes random (general) translation but with only one-axis rotation, the trans-
lation calibration CpI along the rotation axis will be unobservable, with the following unobservable
direction:

Noa =
[
01×45 (CI R̂

I k̂)⊤ 01×10 −(GI1R̂
I k̂)⊤

]⊤
(85)

where Ik is the constant rotation axis in the IMU frame {I}.
If the VINS undergoes constant local angular velocity Iω and linear velocity Iv, the time offset

td will be unobservable with the following unobservable direction:

Nt1=
[
01×42 (CI R̂

Iω̂)⊤ −(CI R̂
I v̂)⊤ −1 01×12

]⊤
(86)

If the VINS undergoes constant local angular velocity Iω and global acceleration Ga, the time
offset td will be unobservable with the following unobservable direction:

Nt2 =
[
01×6

Gâ 01×30 (CI R̂
Iω̂)⊤ 01×3 −1 01×9 −(Gv̂I1)

⊤]⊤ (87)

Table 3 summarizes these degenerate motions for completeness. It is important to note that
unlike td (whose Jacobian is mainly affected by the sensor motion), the Jacobian for RS readout
time, tr, is also affected by the feature observations due to the term m

M [see Eq. (133)], and is
observable, as hundreds of features can be observed from different image rows during exploration.

7.3 Camera Intrinsic Parameters

As mentioned before, the camera intrinsics are mainly affected by the observed features. By inves-
tigating special feature configurations, we find the following degenerate case for camera calibration
when using a radtan distortion model:

Lemma 6. The camera intrinsics will become unobservable if the following conditions are satisfied:
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• The features keep the same depth relative to the camera (e.g., Czf is constant in value).

• The camera moves with one-axis rotation and the rotation axis is defined as Ck = e3.

Proof. The camera focal length fu, fv, the camera distortion model k1, k2, p1 and p2 will become
unobservable with unobservable direction:

NCin =
[
01×47 fu fv 01×2 2k1 4k2 p1 p2

Gk⊤]⊤
with Gk = G

I0
R̂I

CR̂
CkCzf .

See Appendix E for the verification of these unobservable directions.

As an example, if a ground vehicle is performing planar motion with a upward facing camera
only observing features from the ceilings, the above two conditions will hold and thus the camera
intrinsics with radtan distortion model will be unobservable. Nevertheless, since it is common to
observe hundreds of features, it might be rarely the case that every feature maintains the same
relative depth, Czf , to the camera, and thus, this degeneracy may not happen in practice if features
are tracked uniformly throughout images. It is interesting to note that this degenerate case does
not work for camera models with equidist distortion.

8 State Estimator

Leveraging our MSCKF-based VINS [10], the proposed estimator extends the state vector xk at
time step k to include the current IMU state xIk , a sliding window of cloned IMU poses xc, the
calibration parameters (xIC and xCin) and feature state xf .

xk =
[
x⊤
Ik

x⊤
c x⊤

IC x⊤
Cin x⊤

f

]⊤
(88)

xc =
[
Ick−1

G q̄⊤ Gp⊤
Ick−1

. . .
Ick−n

G q̄⊤ Gp⊤
Ick−n

]⊤
(89)

where xI , xIC , xCin and xf are the same as Eq. (30), xc denotes the sliding window containing n
cloned IMU poses with index from ck−n to ck−1. Note that the IMU intrinsics xin are contained
in the current IMU state xIk .

As xc, xIC , xCin and xf have zero dynamics, we only propagate the estimate and covariance of
the next IMU state based on Eq. (53)-(57) and Eq. (63), which all incorporate the IMU intrinsics
xin.

As in [5], we handle the IMU-camera time offset td when we clone the “true” IMU pose corre-
sponding to image measurements. For example, if we clone the current IMU pose {IkG q̄,GpIk} into

the sliding window as {IckG q̄,GpIck} using:

G
Ick

R ≃ G
Ik
R exp(Ikω̂t̃d) (90)

GpIck ≃ GpIk +
GvIk t̃d (91)

with the linearized clone Jacobians as:[
δθIck
Gp̃Ick

]
≃

[
I3 03

Ikω̂
03 I3

Gv̂Ik

]δθIk
Gp̃Ik

t̃d

 (92)

Both xin and td will be updated through correlations when visual feature measurements are present.

RPNG-2022-FullCalib 20



Figure 3: Simulated trajectories for Monte-Carlo simulations. Left: tum corridor with fully excited 3D motion;
Middle left: tum room with 1 axis rotation and 3D translation; Middle right: sine 3d with constant acceleration
along x direction; Right: udel gore planar motion with constant z and only yaw rotation. The green triangle and red
circle denote the beginning and ending of these trajectories, respectively.

Features are processed in two different ways: short features update the state through the
MSCKF nullspace operation [8, 68], and long-tracked features are initialized into the state vector
and refined over time for improved accuracy [69]. We utilize first-estimates Jacobians (FEJ) [50, 5]
to preserve the system unobservable subspace and improve the estimator consistency. We directly
model the camera intrinsic and IMU-camera spatial calibration through the visual measurement
functions [see Eq. (69)] and update them in the filter with Jacobians in Eq. (74).

For the RS cameras, the feature measurements from different image rows are captured at dif-
ferent timestamps. This indicates that we cannot directly find a cloned pose in the sliding window
for {GI(t)R,GpI(t)} shown in Eq. (27). Therefore, for the readout time calibration, we model the

feature measurement affected by RS effects through pose interpolation [6, 11]. For example, if the
feature measurement is in the m-th row with total M rows in an image, we can find two bounding
clones ci− 1 and ci based on the measurement time t. Hence, the corresponding time t is between
two clones within the sliding window, that is: tck−n ≤ tci−1 ≤ t ≤ tci ≤ tck. We can then find the
virtual IMU pose {GI(t)R,GpI(t)} between clones ci− 1 and ci with:

λ = (tI +
m

M
tr − tci−1)/(tci − tci−1) (93)

G
I(t)R = G

Ici−1
R exp

(
λ log

(
G
Ici−1

R⊤G
IciR

))
(94)

GpI(t) = (1− λ)GpIci−1 + λGpIci (95)

To summarize, feature measurements which occur at different rows of the image can be related to
the state vector defined in Eq. (88) through the above linear pose interpolation. This measurement
function can then be linearized for use in the EKF update (see Appendix F). Note that a higher-
order polynomial pose interpolation as used by [11] can be utilized if necessary. In the above
derivations, although we assume the image timestamp refers to the timestamp of the first image
row, the interpolation scalar in Eq. (93) can be easily modified to account for situations when the
image timestamp of the RS camera refers to the middle or last image row.

9 Simulation Validations

The proposed estimator is implemented within the OpenVINS framework [10], which contains a
real-time modular sliding window EKF-based filter and simulator. The project can already handle
IMU-camera spatial-temporal and camera intrinsic calibrations, excluding RS readout time. In this
work we extend the estimator to address the calibration of all the parameters presented. The new
VINS estimator maintains the original faster than real-time performance in both simulated and
real-world datasets.

The core of the simulator has a continuous-time SE(3) B-spline trajectory representation which
allows for the calculation of pose, velocity, and accelerations at any given timestamp along the tra-
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Table 4: Simulation parameters and prior standard deviations that perturbations of measurements and initial states
were drawn from.

Parameter Value Parameter Value

IMU Scale 0.003 IMU Skew 0.003
Rot. atoI (rad) 0.003 Rot. wtoI (rad) 0.003

Gyro. White Noise 1.6968e-04 Gyro. Rand. Walk 1.9393e-05
Accel. White Noise 2.0000e-3 Accel. Rand. Walk 3.0000e-3
Focal Len. (px/m) 0.50 Cam. Center (px) 0.60

d1 and d2 0.008 d3 and d4 0.002
Rot. CtoI (rad) 0.004 Pos. IinC (m) 0.010

Readout Time (ms) 0.5 Timeoff (s) 0.005
Cam Freq. (hz) 20 IMU Freq. (hz) 400

Avg. Feats 100 Num. SLAM 50
Num. Clones 20 Feat. Rep. GLOBAL

Table 5: Average absolute trajectory error (ATE) and normalized estimation errror squared (NEES) over 20 runs
of the proposed system evaluated on tum corridor with true or perturbed calibration parameters, with and without
online calibration. radtan camera distortion model and different IMU intrinsic models are used. The notation “true”
means the groundtruth calibration, while “perturbed” means the perturbed calibration states. Failures are denoted
with “-”.

IMU Model ATE (deg) ATE (m) Ori. NEES Pos. NEES IMU Model ATE (deg) ATE (m) Ori. NEES Pos. NEES

true w/ calib imu1 0.462 0.164 1.910 1.423 perturbed w/ calib imu1 0.454 0.163 2.173 1.473
true w/ calib imu2 0.460 0.164 2.103 1.422 perturbed w/ calib imu2 0.446 0.162 2.150 1.465
true w/ calib imu3 0.461 0.163 1.883 1.422 perturbed w/ calib imu3 0.459 0.163 2.125 1.454
true w/ calib imu4 0.458 0.163 2.102 1.424 perturbed w/ calib imu4 0.450 0.162 2.150 1.456

true w/ calib imu11 0.544 0.177 1.947 1.472 perturbed w/ calib imu11 0.550 0.178 2.243 1.498
true w/ calib imu12 0.540 0.177 2.123 1.476 perturbed w/ calib imu12 0.544 0.178 2.175 1.493
true w/ calib imu13 0.544 0.176 1.914 1.472 perturbed w/ calib imu13 0.546 0.177 2.180 1.482
true w/ calib imu14 0.544 0.179 2.124 1.483 perturbed w/ calib imu14 0.538 0.177 2.169 1.504

true w/ calib imu21 0.572 0.183 1.990 1.514 perturbed w/ calib imu21 0.576 0.182 2.250 1.508
true w/ calib imu22 0.567 0.184 2.145 1.513 perturbed w/ calib imu22 0.590 0.187 2.194 1.561
true w/ calib imu23 0.571 0.183 1.962 1.514 perturbed w/ calib imu23 0.593 0.185 2.200 1.550
true w/ calib imu24 0.566 0.183 2.141 1.512 perturbed w/ calib imu24 0.585 0.186 2.189 1.552

true w/ calib imu31 0.447 0.161 2.076 1.378 perturbed w/ calib imu31 0.451 0.162 2.110 1.428
true w/ calib imu32 0.444 0.161 1.879 1.396 perturbed w/ calib imu32 0.447 0.162 1.968 1.430
true w/ calib imu33 0.529 0.175 2.096 1.378 perturbed w/ calib imu33 0.527 0.177 2.101 1.411
true w/ calib imu34 0.548 0.180 2.103 1.430 perturbed w/ calib imu34 0.549 0.179 2.113 1.422

true w/ calib imu6 0.572 0.183 1.734 1.517 perturbed w/ calib imu6 0.567 0.179 1.910 1.491

true w/o calib 0.433 0.159 2.069 1.332 perturbed w/o calib - - - -

RPNG-2022-FullCalib 22



Figure 4: Calibration results for proposed system evaluated on tum corridor with fully excited motion (using imu22
and radtan). 3σ bounds (dotted lines) and estimation errors (solid lines) for six different runs (different colors) with
different realization of the measurement noise and initial perturbations. All the calibration parameters converge
nicely.
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Figure 5: Absolute trajectory errors (ATE) using imu22 and radtan on the tum corridor with full 3D motion given
different levels of perturbation. Each parameter calibrated was only perturbed while other parameters were initialized
to their true values and not estimated. ATE above eight meters were not reported in the figures and can be considered
diverged.

jectory. The true angular velocity and linear accelerations can be directly found and corrupted
using the random walk biases and white noises. The basic configurations for our simulator are
listed in Table 4. All simulation convergence figures show the 3σ bounds (dotted lines) and esti-
mation errors (solid lines) for six different runs (different colors) with different realization of the
measurement noises and initial calibration state perturbations.

To simulate RS visual bearing measurements, we follow the logic presented by [5] and [11].
Specifically, static environmental features are first generated along the length of the trajectory
at random depths and bearings. Then, for a given imaging time of features in view, we project
each into the current image frame using the true camera intrinsic and distortion model to find
the corresponding observation row. Given this projected row and image time, we can find the
pose at which this row should have been (i.e., the pose at which that RS row should have been
exposed). We can then re-project this feature into the new pose and iterate until the projected
row does not change (which typically requires 2-3 iterations). We now have a feature measurement
which occurred at the correct pose for its given RS row. This measurement is then corrupted with
white noise. The imaging timestamp corresponding to the starting row is then shifted by the true
IMU-camera time offset td to simulate cross-sensor delay.

9.1 Simulation with Fully-Excited Motion

We first perform a general trajectory simulation, for which we perform full calibration of the
IMU-camera extrinsics, time offset, RS readout time, camera intrinsics with radtan model and
IMU intrinsics with imu22. The trajectory, shown in the left of Figure 3, is designed based on
tum corridor sequence of TUM visual-inertial dataset with full excitation of all 6 axes and provides
a realistic 3D hand-held motion [70]. From the results shown in Figure 4 and 9, the estimation
errors and 3σ bounds for all the calibration parameters (including imu22 and radtan) can converge
quite nicely, verifying that the analysis for general motions holds true. We plot results from six
different realizations of the initial calibration guesses based on the specified priors, and it is clear
that the estimates for all these calibration parameters are able to converge from different initial
guesses to near the ground truth. Each parameter is able to “gain” information since their 3σ
bounds shrink. These results verify our Lemma 1 that all these online calibration parameters are
observable given a fully-excited motion.
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Figure 6: Calibration results for the proposed system evaluated on tum room with one-axis rotation using imu22 and
radtan. Note that the estimation errors and 3σ bounds for dw1, dw2, dw3 and the IMU-camera position calibration
along the rotation axis can not converge.

9.2 Sensitivities to Perturbations

The next natural question is how robust the system is to the initial perturbations and whether the
use of online sensor calibration enables improvements in robustness and accuracy. Shown in Figure
5, for each of the different calibration parameters we perturb it with different levels of noise on
the tum corridor trajectory (note that we also change the initial prior provided to the filter as the
initial prior changes). We can see that the proposed estimator is relatively invariant to the initial
inaccuracies of the parameters and is, in general, able to output a near constant trajectory error.
A filter, which does not perform this online estimation, has its trajectory estimation error quickly
increase to non-usable levels. It is interesting to see that even small levels of perturbations can
cause huge trajectory errors which further verifies the motivations to perform online calibration.

9.3 Comparison of Inertial Model Variants

We next compare the different proposed inertial model variants. We estimate all calibration pa-
rameters and perturb them based on Table 4. Shown in Table 5, it is clear that the choice between
the variants has little impact on estimation accuracy which indicates they provide almost the same
amount of correction to the inertial readings.

The accuracy of the standard VIO system which does not calibrate any parameters online and
uses the groundtruth calibration values, denoted true w/o calib, has the best accuracy due to the
use of the true parameters. If we do perturb the initial calibration and do not estimate it, denoted
perturbed w/o calib, the system quickly becomes unstable and diverges unless smaller levels of per-
turbations are used. Note that the results presented in Section 9.2 are for each parameter perturbed
individually, while here all calibration parameters are perturbed at once thus resulting in diver-
gence. With full online calibration, the system can still output stable and consistent trajectories
with only a small loss in estimation accuracy given perturbed calibration values.
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Figure 7: Calibration results for the proposed system evaluated the sine 3d with constant acceleration along x
direction using imu22 and radtan. The estimation errors and 3σ bounds for da1, pitch and yaw of I

aR cannot
converge. Note that tg1, tg2 and tg3 are also unobservable.

9.4 Degenerate Motion Verification

We now verify the identified degenerate motions and present results for three special motions. In all
simulations, we perform full-parameter calibration to fully test our system and present the complete
results in Appendix G. The trajectories shown in Figure 3 are created as follows:

• One-axis rotation with a modified tum room trajectory, see middle left, which has its roll and
pitch orientation changes removed to create a yaw and 3D translation only dataset.

• Constant local ax with modified sine 3d, see middle right, for which we have a constant pitch
and make the current yaw angle tangent to the trajectory in the x-y plane (gives constant
local acceleration along local x-axis).

• Planar motion with modified udel gore, see right, which has its roll and pitch orientation
removed and all poses are projected to x-y plane (planar motion in the global x-y plane).

9.4.1 One-axis rotation motion.

Shown in Figure 6, the first 3 parameters (dw1, dw2 and dw3) for Dw do not converge at all (the
3σ bounds are almost straight lines), which matches our analysis, see Table 2. These parameters
should be unobservable in the case of one-axis rotation with wwx (roll) and wwy (pitch) are constant.
Additionally, the translation between IMU and camera does not converge either. The x-error of
the IMU-camera translation even diverges reinforcing the undesirability of degenerate motions and
verifies the analysis presented in Table 3.

9.4.2 Constant local acceleration motion.

The results shown in Figure 7, where we have enforced that the local acceleration along the x-axis,
ax, is constant. The da1, and pitch and yaw of I

aR does not converge, thus validating our analysis
shown in Table 2. Note that in the simulation, we have set I

aR ≃ I3 and Da ≃ I3. Hence,
aâ ≃ Ia
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Figure 8: Calibration results of the proposed system evaluated on udel gore with planar motion using imu22 and
radtan. With planar motion, the estimation errors and 3 σ bounds of dw1, dw2, dw3, tg7, tg8, tg9 and the IMU-camera
position cannot converge. Due to lack of motion excitation, the parameters of Da and I

aR converge much slower than
the other motion cases.

Figure 9: Camera temporal and read out time calibration results of the proposed system (using imu22 and radtan)
for different trajectories. The temporal parameters can finally converge in all the 4 motion types. Note that the
readout time converges slower in the planar motion case probably due to the lack of motion in the beginning.
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Figure 10: Camera to IMU orientation errors when using IMU imu2 (left) and the over paramterized imu5 (right).
Note that only the IMU intrinsics and relative pose between IMU and camera were online calibrated.

and Iax is also near constant. Therefore, three terms of g-sensitivity (tg1, tg2 and tg2) are also
unobservable and converge much slower than other terms.

9.4.3 Planar motion.

Shown in Figure 8, with one-axis rotation (yaw axis) for planar motion the dw1, dw2 and dw3 for
Dw and the IMU-camera translation are unobservable and does not converge. Since the Iaz is
constant, the last three terms of gravity sensitivity (tg7, tg8 and tg9) become unobservable and
cannot converge. Both these results verify our analysis shown in Tables 2 and 3. Additionally, this
trajectory is quite smooth with small excitation of linear acceleration, hence, the terms of Da and
I
aR in general converge much slower than the fully excited motion case.

9.5 Simulated Over Parametrization

We now look to investigate the impact of poor choice of calibration parameters which over pa-
rameterizes the IMU intrinsics. The imu5 model, see Table 1, is an over parametrization since
we calibrate both 9 parameters for gyroscope and accelerometer, which causes the IMU-camera
orientation to be affected since the intermediate inertial frame {I} is not constrained. If we change
the relative rotation from {I} to {C}, then this perturbed rotation can be absorbed into the {a}
to {I} and {w} to {I} terms. Thus, it means we have an extra 3 degrees of freedom (DoF) for
rotation not constrained by our measurements. We compare this imu5 model to its close equiva-
lent imu2 model in Figure 10. We can see that even though the trajectory fully excites the sensor
platform, the convergence of C

I R becomes much worse if we calibrate IMU-camera extrinsics and
all 18 parameters for the IMU model imu5 even when the same priors and measurements are used.
This further motivates the use of the minimal calibration parameters to ensure fast and robust
convergence of all state parameters.

10 Real-World TUM RS VIO Datasets

We first evaluate our proposed algorithms on the TUM RS VIO Dataset which contains a time-
synchronized stereo pair of two uEye UI-3241LE-M-GL cameras (left: global-shutter and right:
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Figure 11: Results on TUM Rolling Shutter VIO Dataset without rolling shutter readout time calibration, with
different IMU intrinsic models. The averaged absolute trajectory errors (ATE) of 5 runs in degree (top) and meters
(bottom) are provided. Note that the camera intrinsics, and IMU-camera spatial-temporal calibration.

Table 6: Averaged absolute trajectory errors (ATE) of 5 runs over all 8 sequences of the TUM Rolling Shutter VIO
Dataset with rolling shutter, camera intrinsics, and IMU-CAM spatial-temporal calibration.

IMU Model ATE (deg) ATE (m)

imu0 72.994 363.610
imu1 2.574 0.092
imu2 2.679 0.094
imu3 2.590 0.093
imu4 2.205 0.076
imu5 3.418 0.149

imu32 2.368 0.079
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Figure 12: Results on TUM Rolling Shutter VIO Dataset with rolling shutter readout time calibration, with different
IMU intrinsic models. The averaged absolute trajectory errors (ATE) of 5 runs in degree (top) and meters (bottom)
are provided. Note that the camera intrinsics, and IMU-camera spatial-temporal calibration.
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Figure 13: IMU intrinsic evaluation of Bosch BMI160 IMU used in TUM Rolling Shutter VIO datasets using the
proposed method with imu6 and Kalibr relative to the “ideal” sensor intrinsics. The boxplots show the final converged
value of both methods. Kalibr (magenta, right in each group) was run with two global shutter cameras and a Bosch
BMI160 IMU available over 5 calibration datasets using April tag board, while the proposed system (blue, left) was
run with only one rolling shutter camera and the same IMU on the 8 data sequences without any tags. Note that
imu6 is equivalent to the scale-misalignment IMU model of Kalibr.

rolling-shutter) and a Bosch BMI160 IMU [71]. When collecting data, the cameras were operated
at 20Hz while the IMU operated at 200Hz and an OptiTrack system captured the ground-truth
motion. The dataset is provided in both “raw” and “calibrated” formats. The “calibrate” dataset
has had IMU intrinsics calibrated from Kalibr [38] pre-applied to the “raw” dataset along with
some re-sampling. We evaluate our proposed system by using the right (RS) camera directly with
the raw datasets, which have very noisy measurements with varying sensing rates. Hence, the raw
datasets are more challenging compared to the calibrated datasets. We re-calibrated the camera
intrinsics and IMU-camera spacial-temporal parameters using the raw calibration datasets as the
provided calibration parameters were only for the calibrated datasets. We directly use Eq. (29)
since the dataset timestamps correspond to the first row of the image. Note that we set the initial
values for Da, Dw,

I
aR and I

wR as identity and Tg as zeros, while the initial readout time for the
whole RS image is set to 20ms as prior calibration. All IMU intrinsic models listed in Table 1 were
run with and without RS calibration. The results are presented in the following sections.

10.1 RS Self-Calibration

The results are shown in Figure 11 and 12, with and without RS readout calibration, respectively. It
is clear that the systems without RS readout time calibration and without IMU intrinsic calibration
(imu0 and imu31 -imu34 ) are unstable and diverges to large orientation and positional errors. With
IMU intrinsic calibration, the system still fails for certain datasets (imu1 -imu24 ) and thus online
readout time calibration will greatly improve the system robustness for RS cameras. The finally
estimated RS readout time for each image is around 30ms, which means given the image resolution
of 1280× 1024, the row readout time should be around 29us.
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10.2 IMU Intrinsic Self-Calibration

We focus on the results in Figure 12 which has RS enabled. It is clear from the performance of
imu0 that without IMU intrinsic calibration the BMI160 IMU will cause large trajectory errors,
with the models which do perform intrinsic calibration being an order of magnitude more accurate.
Table 6 shows the average error over all sequences for the first 6 IMU models. It can be seen that
the imu5 model which over parameterizes the intrinsics has worst accuracy in both orientation and
position trajectory estimates, while the accuracy of the other imu1 - imu4 models is comparable
to each other (similar accuracy level). We further do an ablation study with models imu31 -
imu34 to find the individual impact of each of the IMU intrinsic parameters. We can see that the
imu32 model which estimates Dw9 has large accuracy gains over the other four. This indicates
that the readings from gyroscope of BMI160 are very noisy. The calibration of Dw9 dominates
the performance of this VINS system, and just the calibration of it can achieve similar results as
full IMU model calibration (see bottom of Table 6). Through all these we show that online IMU
intrinsic calibration can enhance both the system robustness and accuracy.

10.3 Comparison to Kalibr Calibration

We run Kalibr’s offline calibration with scale-misalignment 1 IMU model on 5 calibration datasets
provided for the Bosch BMI160 IMU and treat these results as reference values to compare to the
proposed online calibration results. The Kalibr calibration datasets were collected with the stereo
camera pair both operating with a global shutter mode along with an April tag board [38]. For the
results evaluation, we directly report T′

w = (D′
w)

−1, T′
a = (D′

a)
−1 and w

I R = I
wR

⊤. By contrast,
the proposed system is run on one RS camera with only temporal environmental feature tracks
on the 8 data sequences using imu6, which is equivalent to the scale-misalignment IMU model of
Kalibr.

As shown in the boxplots in Figure 13, even though we run on more challenging datasets in
real-time, our proposed system can still achieve reasonable calibration results for D′

w, D
′
a, Tg and

I
wR, which are close to the values from baseline Kalibr. Additionally we can see that the values
of g-sensitivity Tg of the BMI160 IMU are generally one or two orders smaller than the other
IMU intrinsics. This matches the results presented in Figure 12, for which the estimation errors
of imu1 - imu4 (without g-sensitivity) are similarly to those of imu11 - imu14 (with g-sensitivity
of 6 parameters) and imu21 - imu24 (with g-sensitivity of 9 parameters). This means that the
proposed system performance is less sensitive to g-sensitivity, no matter 0, 6 or 9 parameters are
used.

We can also see that the terms in scale-misalignment for gyroscope D′
w for the BMI160 IMU

are much larger than D′
a and Tg. This indicates that the readings from gyroscope of BMI160 are

very noisy and the calibration of D′
w dominates the performance of this VINS system. This fact is

again confirmed by model imu32, which only calibrates the D′
w and can achieve similar results as

full IMU model calibration (see bottom of Table 6).

11 More Validation and Investigation of Camera and IMU Cali-
bration

We further evaluate the proposed self-calibration system on a custom made visual-inertial sensor
rig (VI-Rig, shown in Figure 14) which contains multiple IMU and camera sensors to facilitate

1https://github.com/ethz-asl/kalibr/wiki/Multi-IMU-and-IMU-intrinsic-calibration
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Figure 14: Visual-Inertial Sensor Rig contains a MicroStrain GX5-25 IMU, MicroStrain GX5-35, Xsens MTi 100,
FLIR Blackfly camera and RealSense T265 tracking camera. The RealSense T265 tracking camera contains an
integrated IMU and a fisheye stereo camera.

Table 7: Average processing time for each image (including propagation and update) for the proposed system with
(w/) and without (w/o) online calibration (unit: second) on the 10 datasets collected with VI-Rig. The time increase
(0.0036s in average) for online calibration is negligible compared to no calibration.

Algorithm Data-1 Data-2 Data-3 Data-4 Data-5 Data-6 Data-7 Data-8 Data-9 Data-10 Avg.

w/ online calib 0.0227 0.0231 0.0228 0.0223 0.0229 0.0220 0.0214 0.0228 0.0223 0.0215 0.0224

w/o online calib 0.0187 0.0191 0.0189 0.0190 0.0190 0.0185 0.0186 0.0186 0.0189 0.0190 0.0188

an investigation into how they individually impact overall performance. Specifically, it contains a
MicroStrain GX5-25, MicroStrain GX5-35, Xsens MTi 100, FLIR blackfly camera and RealSense
T265 tracking camera which contains an integrated BMI055 IMU along with a fisheye stereo camera.
Here we note that all cameras used are not rolling shutter to ensure fair comparison against the
baseline Kalibr [38] which only supports IMU-camera calibration with global shutter cameras. In
total 10 datasets were collected of an April tag board on which both the proposed system and
the Kalibr calibration toolbox were run to report repeatbility statistics and expected real-world
performance of both systems. During data collection, all 6-axis motion of VI-Rig were excited to
avoid degenerate motions for calibration parameters.

11.1 Visual Front-End and Initial Conditions

To provide a fair comparison, we modified the front-end of the proposed system to directly use
the same April tag detection as Kalibr and to only use such tags during estimation. Additionally,
while the proposed system was only run with one of the four IMUs and either the Blackfly or
left T265 Realsense camera, Kalibr used all the available sensors to ensure the highest and most
consistent performance (4 IMUs and 3 cameras). The imu6 model is used during evaluation, which
is equivalent to the scale-misalignment IMU model of Kalibr. We define the “ideal” IMU sensor
intrinsics as D′

w = D′
a = I3,

I
wR = I

aR = I3 and Tg = 03 if factory or offline calibration has been
pre-applied. Generally, these values are what the users expect for a ready-to-use IMU, and are the
initial values that the proposed estimator starts from. The quality of each IMU can be evaluated
by how close the converged calibrated values are to these “ideal” values.
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Figure 15: Comparison of the proposed method and Kalibr relative to a baseline Kalibr value. The boxplots show
the final converged value of both methods, while for camera intrinsic only the proposed is reported since Kalibr fixes
this during optimization. Kalibr (magenta, right in each group) was run with all cameras and IMUs available over
10 datasets, while the proposed system (blue, left) was run with either the Blackfly camera or left T265 fisheye and
the MicroStrain GX-25 IMU resulting in 10 runs for each.

Figure 16: Comparison of the proposed method with imu6 and Kalibr relative to the “ideal” sensor intrinsics. The
boxplots show the final converged value of both methods. Kalibr (magenta, right in each group) was run with all
cameras and IMUs available over 10 datasets, while the proposed system (blue, left) was run with either the Blackfly
camera or left T265 fisheye resulting in 20 runs.
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Figure 17: Comparison of the proposed method with imu6 and Kalibr relative to the “ideal” sensor intrinsics. The
boxplots show the final converged value of both methods. Kalibr (magenta, right in each group) was run with all
cameras and IMUs available over 10 datasets, while the proposed system (blue, left) was run with either the Blackfly
camera or left T265 fisheye resulting in 20 runs.

Figure 18: Comparison of the proposed method with imu6 and Kalibr relative to the “ideal” sensor intrinsics. The
boxplots show the final converged value of both methods. Kalibr (magenta, right in each group) was run with all
cameras and IMUs available over 10 datasets, while the proposed system (blue, left) was run with either the Blackfly
camera or left T265 fisheye resulting in 20 runs.
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Figure 19: Comparison of the proposed method with imu6 and Kalibr relative to the “identity” sensor intrinsics.
The boxplots show the final converged value of both methods. Kalibr (magenta, right in each group) was run with all
cameras and IMUs available over 10 datasets, while the proposed system (blue, left) was run with either the Blackfly
camera or left T265 fisheye resulting in 20 runs.

11.2 IMU-Camera Spatiotemporal Extrinsics and Intrinsics

We first investigate the convergence of the IMU-camera extrinsics and temporal parameters along
with the camera intrinsics of the proposed system. The results shown in Figure 15 demonstrate
that the proposed system is able to calibrate the spatial and temporal parameters with both high
repeatability and accuracy relative to the offline Kalibr calibration baseline. Additionally shown
is the convergence of camera intrinsics estimated by the proposed algorithm relative to the Kalibr
static calibration results which are fixed during their IMU-camera calibration. Although the camera
intrinsic estimates of blackfly and T265 camera have a few deviations compared to the reference
values from Kalibr, the proposed system has very good convergence and high repeatability (the
groundtruth is not known here).

11.3 IMU Intrinsic Parameters

The calibration results are summarized as boxplots shown in Figure 16 - 19 for the MicroStrain
MS-GX5-25, MS-GX5-35, Xsens MTi-100 and T265 IMU, respectively. As shown, the calibration
errors of the proposed system are quite close to the results of Kalibr, and the estimate differences
of D′

w, D
′
a and Tg are around 1e-3, 1e-1 and 1e-4, respectively, for MS-GX5-25, MX-GX5-35 and

Xsens MTi-100. Additionally, our proposed algorithm demonstrates better repeatability as the
calibration errors have smaller variances and less outliers. In general, we can discuss the following
results concerning the IMUs presented throughout the paper (see Figure 13 and 16 - 19):

• The MicroStrain MS-GX5-25, MS-GX5-35 and Xsens MTi-100 IMU are more close to “ideal”
IMU than T265 IMU and BMI160 IMU. This is reasonable since both the MicroStrain and
Xsens IMU are more expensive high-end IMUs with likely more sophisticate out-of-factory
calibration than T265 IMU and BMI 160 IMU.

• For each IMU, the g-sensitivity terms are, in general, one or two orders smaller than the
other terms of the IMU intrinsic model. This suggests that the g-sensitivity should not have
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Table 8: Absolute Trajectory Error (ATE) on EuRoC MAV Vicon room sequences (with units degrees/meters).

IMU Model V1 01 easy V1 02 medium V1 03 difficult V2 01 easy V2 02 medium V2 03 difficult Average

imu0 0.657 / 0.043 1.805 / 0.060 2.437 / 0.069 0.869 / 0.109 1.373 / 0.080 1.277 / 0.180 1.403 / 0.090

imu1 0.601 / 0.055 1.924 / 0.065 2.334 / 0.073 1.201 / 0.115 1.342 / 0.086 1.710 / 0.168 1.519 / 0.094

imu2 0.552 / 0.054 1.990 / 0.062 2.197 / 0.083 0.960 / 0.107 1.453 / 0.085 1.666 / 0.216 1.470 / 0.101

imu3 0.606 / 0.055 1.905 / 0.065 2.359 / 0.073 1.180 / 0.114 1.335 / 0.088 1.640 / 0.167 1.504 / 0.094

imu4 0.569 / 0.056 1.969 / 0.069 2.165 / 0.076 0.846 / 0.127 1.636 / 0.094 1.577 / 0.195 1.461 / 0.103

significant effects on system performance. This is likely due to the handheld motion of the
platform and levels of achievable acceleration magnitudes.

• The BMI160 IMU (Figure 13), has a much more significant gyroscope calibration, D′
w, com-

pared to its accelerometer calibration and other IMUs. Thus the BMI160 can see large
accuracy gains from only calibrating D′

w, while for other IMUs, the calibration of D′
a should

be more impactful.

Hence, these results validate the accuracy and consistency of the IMU intrinsic calibration of the
proposed online real-time algorithm, which outputs comparable calibration results to Kalibr’s offline
calibration procedures.

11.4 Timing Evaluation

We also evaluate the running time for the proposed system with and without online sensor cal-
ibration shown in Table 7. We use the 10 datasets recorded with the VI-Rig and only use the
measurements from MicroStrain GX5-25 IMU and the left camera of T265 for evaluation. In order
to get more realistic timing evacuation, no April tags are detected and only the natural features
tracked from images are used. We track 200 features from each image and keep at most 30 SLAM
point features in the state vector with a sliding window of 20 clones. The averaged execution
time for processing each coming image (including propagation and update) is recorded (shown in
Table 7). The average execution time of the proposed system with online calibration is 0.0224s,
which shows negligible increases than 0.0188s, which is the average running time without online
calibration.

12 Real-World Degenerate Motion Demonstration and Analysis

Next, we evaluate the proposed system on a collection of real-world datasets which exhibit varying
degrees of degenerate motions. Specifically, we evaluate on the EuRoc MAV dataset [72] which has
under-actuated MAV with weakly excited acceleration and approximately 1-axis rotation. We also
evaluate on the KAIST complex urban dataset [73] which is a planar autonomous vehicle dataset
with relatively constant velocity throughout. We note that we do not estimate the g-sensitivity since
it has been demonstrated in the preceding sections that it is not significant for VINS performance,
and test only the imu1 - imu4 models.

12.1 EuRoC MAV: Under-Actuated Motion

The EuRoC MAV dataset [72] contains a series of trajectories from a MAV and provides 20 Hz
grayscale stereo images, 200 Hz inertial readings, and an external groundtruth pose from a motion
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Figure 20: Simulation results for Da of the proposed system evaluated with groundtruth tum room1 (left) and EuRoc
V1 02 (right) trajectories using imu2 and radtan. 3 sigma bounds (dotted lines) and estimation errors (solid lines)
for four different runs (different colors) with different realization of the measurement noise and initial perturbations
are drawn. The tum room1 estimation errors and 3σ bounds converge nicely, while due to lack of motion excitation,
the convergence of Da, especially da4, da5 and da6, for the EuRoc V1 02 is poor.

Figure 21: Simulation results for I
aR of the proposed system evaluated with groundtruth tum room1 and EuRoc

V1 02 trajectories using imu2 and radtan. With tum room1 trajectory, the estimation errors and 3σ bounds of I
aR

converge nicely, while the convergence is poor on the EuRoc V1 02.
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Figure 22: Trajectory plots for the KAIST Urban 39 dataset 10km in total length. Figure is best seen in color.

capture system. The proposed estimator is run with just the left camera on each of the Vicon room
datasets and report the results in Table 8. Here we can see that not performing IMU intrinsic
calibration, imu0 model, outperforms the methods which additionally estimate the IMU intrinsics.
This makes sense since the IMU intrinsics suffer from a large number of degenerate motions caused
with constant local angular velocity and linear acceleration which can be expected for the MAV
platform. Additionally, we believe that this is specifically caused by the MAV being unable to
fully excite its 6DoF motion for a given small time interval and thus undergoes (nearly) degenerate
motions locally throughout the whole trajectory, hurting the sliding-window filter. We can see that
for more dynamic datasets, such as V2 03 difficult, there are still some partial improvements in
accuracy possibly due to the more dynamic motion exhibited.

In order to verify our reasoning that the accuracy loss is caused by degenerate motions, we use
the groundtruth trajectories of tum room1 with full 6DoF motion and EuRoc V1 02 to simulate
synthetic inertial and feature bearing measurements (see Section 9 on how we perform simulation)
and evaluate our system with these simulated data. Figure 20 and 21 shows four different run with
estimation errors and 3σ bounds for Da and I

aR. It is clear that the motion of sensor on the EuRoc
V1 02 trajectory (right) is mildly excited and the acceleration readings are varying very slowly
within the local window, causing poor convergence of the Da and I

aR with relatively flat 3σ bounds
as compared to the tum room1 (left). This verifies that the online IMU intrinsic calibration will
benefit VINS with fully-excited motion (e.g., the tum room1 trajectory) and might not be a good
option for under-actuated motions such as the EuRoc V1 02 trajectory.
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Figure 23: Calibration results (colored solid lines) for CpI , td, tr and Dw of the proposed system evaluated with four
VI-Rig planar motion datasets using imu2 and equi-dist. Red and blue dotted lines denote the reference value from
Kalibr and initial (perturbed) values, respectively. Colored solid line represents the estimated calibration parameters
during online calibration for each dataset. All the temporal calibration, dw4, dw5 and dw6 can converge well to the
reference values, while the y component of CpI , dw1, dw2 and dw3 diverges.

Figure 24: Calibration results (colored solid lines) for CpI , td, tr and Dw of the proposed system evaluated with
four 3D-motion datasets from Section 11 using imu2 and equidist. Red and blue dotted lines denote the reference
value from Kalibr and initial (perturbed) values, respectively. Colored solid line represents the estimated calibration
parameters during online calibration for each dataset. All the temporal calibration, CpI , and Dw can converge well
to the reference values.
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12.2 KAIST Complex Urban: Planar Motion

Next we evaluate on the KAIST Complex Urban dataset [73], which provides stereo grayscale
images at 10 Hz, 200 Hz inertial readings, and a pseudo-groundtruth from an offline optimization
method with the RTK GPS. As in the Table 2 and 3, this dataset contains planar motion and, in
the case of imu2, 6 parameters are unobservable. We use the stereo camera pair along with the
IMU to remove the scale ambiguity for monocular VINS caused by constant local acceleration [66,
67].

We plot Urban 39 trajectory estimates of the proposed system with and without IMU intrinsics
in Figure 22. It can be seen that the system with IMU intrinsic calibration has larger drift compared
to the one without. When looking at the absolute trajectory error (ATE) in respect to the dataset’s
groundtruth, the error of the standard VIO, is 1.58 degrees with 13.03 meters (0.12%), while with
imu2 online IMU intrinsic calibration it is 1.41 degrees with 23.13 meters (0.22%). We propose that
this larger error is due to the introduced unobservable directions in online IMU intrinsic calibration
when experiencing planar motion.

12.3 VI-Rig Planar Motion Datasets

Lastly, we evaluate on 4 datasets collected with VI-Rig (shown in Figure 14) under planar motion.
In this evaluation, Microstrain GX5-25 and the left camera of T265 are used. When collecting data,
we put the VI-Vig on a chair and only move the chairs in the ground plane to make sure VI-Vig
is performing planar motion with global yaw as rotation axis, which is also the y-axis (pointing
downward) of the camera. We calibrate all calibration parameters using imu2 and equidist when
running the system. Since T265 is a global shutter camera, the readout time is 0.00s.

The calibration results for the translation parameters CpI , time offset td, readout time tr and
the Dw are shown in Figure 23. All the temporal calibration can converge well to the reference
values based on offline calibration results of Kalibr. Note that tr converges to almost 0s as expected
and td converges from 0.015s to 0.005s with reference values as 0.007s. The final estimation errors
are around 0.002s, which is pretty small. While the x and z components of CpI can also converge
well to the reference values with small standard deviations (smaller than 0.4cm), the y component
diverges with estimation errors more than 5cm and the standard deviation reach 3cm since it is
along the rotation axis of the camera and hence, unobservable. Since the system has only yaw
rotation for the IMU sensor, the dw1, dw2 and dw3 are also unobservable (see Table 2), and their
calibration results diverge a lot compared to those of dw4, dw5 and dw6. This result verifies our
degenerate motion analysis for IMU-camera and IMU intrinsic calibration. As comparison, we also
plot the online calibration results of the proposed system running on another four datasets from
Section 11 with fully excited motions in Figure 24. We use the same scale to plot the results for
both Figure 23 and 24. It is clear that all these calibration parameters (tr, td,

CpI and Dw) can
converge better in fully excited motions than planar motion.

13 Discussion: Online Self-Calibration?

As learnt from the preceding extensive Monte-Carlo simulations and real world experiments, we
highly recommend online self-calibration for VINS especially in the following scenarios:

• Poor calibration priors are provided.

• Low-end IMUs or cameras are used.
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• RS cameras are used.

• The system undergoes fully-excited motions.

Specifically, as shown in Table 5 (simulation) and Figures 11 and 12 (TUM RS VIO Datasets),
if the system starts with imperfect calibration, the system without online self-calibration is highly
likely to fail, clearly demonstrated by Figure 5. But online calibration can greatly improve the
system robustness and accuracy. From Figure 12, we see that online calibration for the low-end
IMU (Bosch BMI160) and RS readout time is necessary, which can improve the system performance
greatly. Based on the results from the EuRoC MAV dataset (Table 8) and KAIST datasets (Figure
22), online calibration, especially IMU intrinsic calibration, can hurt the system performance when
the system undergoes underactuated motions.

Based on our analysis on the degenerate motions for these calibration parameters, we can
recommend what calibration parameters should be calibrated with different motion types:

• Fully excited 3D motion: all calibration parameters.

• Mildly excited 3D motion: IMU-camera spatial-temporal calibration, readout time, and cam-
era intrinsics.

• Under-actuated motions: readout time and camera intrinsics.

As shown in our degenerate motion analysis, there are a large number of motion types that
prohibit accurate calibration of the IMU intrinsics and IMU-camera spatial calibration, while the
camera intrinsics and IMU-camera temporal calibration are more robust to different motions. More
importantly, in the most commonly-seen motion cases of aerial and ground vehicles, there is usually
at least one unobservable direction due to these robots traveling with either underactuated 3D or
planar motion. The impact on performance was shown with the EuRoC MAV and KAIST Urban
datasets (Table 8 and Figure 22) where the use of online IMU calibration may hurt the estimator.

Due to the high likelihood of experiencing degenerate motions for some periods of time, solely
based on our analysis and results, we do not recommend performing online IMU intrinsic and IMU-
camera spatial calibration during real-time operations for most underactuated motions (e.g., planar
motion and one-axis rotation for most ground vehicles). The exception to this is the handheld cases
(e.g., mobile AR/VR), which often exhibit full 6DoF motions and thus is recommended to perform
online calibration to improve estimation accuracy, especially when low-end IMUs or RS cameras
are used. For both of these applications, we do recommend using an offline batch optimization to
obtain an accurate initial calibration guess for the filter and/or treat the calibration parameters
(especially intrinsics) as “true” if one knows they are going to experience degenerate motions. For
online IMU intrinsic calibration, it is not necessary to calibrate the full IMU model and instead one
may calibrate only the dominating parameters in the inertial models (e.g., Dw for BMI160 IMU or
Da for MicroStrain, Xsens and T265 IMUs).

14 Conclusions and Future Work

In this paper, we address the problem of online full-parameter self-calibration for visual-inertial
navigation to achieve accurate and robust performance. We first investigate different IMU intrinsic
model variants which contain scale correction, axis misalignment and g-sensitivity. These model
variants can cover most used inertial models in practice. We also introduce the full visual mea-
surement model which contains IMU-camera spatial-temporal parameters including rolling shutter
readout time. After computing the state transition matrix and measurements Jacobian regarding
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the state containing full calibration parameters, we perform observability analysis based on the
linearized VINS system and show that with full-parameter calibration it still has only 4 unobserv-
able directions, which relate to global yaw and global translation. All the calibration parameters
of VINS are observable given fully excited motions.

Based on the observability analysis, we, for the first time, have identified basic degenerate
motion patterns for IMU/camera intrinsics, and any combination of these degenerate motions will
still be unobservable directions. Extensive validation on simulated and real-world datasets are
performed to verify both the observability and degenerate motion analysis. We also show that
online self-calibration can improve the robustness and accuracy of VINS. As shown through our
experiments, online IMU intrinsic calibration is risky due to its dependence on the motion profile to
ensure observability. In the case of autonomous (ground) vehicles, most trajectories have degenerate
motions, thus resulting in not recommending online calibration of IMU intrinsics for robots with
underactuated motions. In the case of handheld motion, however we found that the estimation of
calibration parameters improved performance as expected.

In the future, we will investigate a complete degenerate motion analysis for multi-visual-inertial
system. In addition, robust algorithms to perform online calibration under degenerate motions will
also be studied.
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Appendix A: Appendix A: IMU Intrinsic Jacobians

In the following derivations, we will compute the Jacobians for all the variables that might appear
in the IMU models, including scale/axis correction for gyroscope Dw (6 parameters), scale/axis
correction for accelerometerDa (6 parameters), rotation from gyroscope to IMU frame I

wR, rotation
from accelerometer to IMU frame I

aR and g-sensitivity Tg (9 parameters). We repeat the corrected
IMU readings for easier derivation:

Iω = I
wRDw

(
wωm −Tg

Ia− bg − ng

)
(96)

Ia = I
aRDa (

aam − ba − na) (97)

To simplify the derivations, we define I â and I ã as:

Ia ≃ I
aR̂D̂a

(
aam − b̂a

)
+ I

aR̂HDax̃Da + ⌊IaR̂D̂a

(
aam − b̂a

)
⌋δθIa − I

aR̂D̂ab̃a − I
aR̂D̂ana

I â = I
aR̂D̂a

(
aam − b̂a

)
I ã = I

aR̂HDax̃Da + ⌊I â⌋δθIa − I
aR̂D̂ab̃a − I

aR̂D̂ana

We define Iω̂ and Iω̃ as:

Iω = I
wR̂D̂w

(
wωm − T̂g

I â− b̂g

)
+ ⌊IwR̂D̂w

(
wωm − T̂g

I â− b̂g

)
⌋δθIw

+ I
wR̂HDwx̃Dw − I

wR̂D̂w

(
T̂g

I ã+HTgx̃Tg

)
− I

wR̂D̂w

(
b̃g + ng

)
Iω̂ = I

wR̂D̂w

(
wωm − T̂g

I â− b̂g

)
Iω̃ = −I

wR̂D̂wb̃g +
I
wR̂D̂wT̂g

I
aR̂D̂ab̃a +

I
wR̂HDwx̃Dw − I

wR̂D̂wT̂g
I
aR̂HDax̃Da

+ ⌊Iω̂⌋δθIw − I
wR̂D̂wT̂g⌊I â⌋δθIa − I

wR̂D̂wHTgx̃Tg − I
wR̂D̂wng +

I
wR̂D̂wT̂g

I
aR̂D̂ana

where we have:

HDw =
[
wŵ1e1

wŵ2e1
wŵ2e2

wŵ3I3
]

(98)

HDa =
[
aâ1e1

aâ2e1
aâ2e2

aâ3I3
]

(99)

HTg =
[
I â1I3

I â2I3
I â3I3

]
(100)

By summarizing the above equations, we have:[
Ikω̃
Ik ã

]
=

[
Hb Hin

] [ x̃b

x̃in

]
+Hn

[
ng

na

]
(101)

where we have defined:

Hb = Hn =

[
−I

wR̂D̂w
I
wR̂D̂wT̂g

I
aR̂D̂a

03 −I
aR̂D̂a

]
(102)

Hin =
[
Hw Ha HIw HIa Hg

]
(103)
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with:

Hw =

[
I
wR̂HDw

03

]
(104)

Ha =

[
−I

wR̂D̂wT̂g
I
aR̂HDa

I
aR̂HDa

]
(105)

HIw =

[
⌊Iω̂⌋
03

]
(106)

HIa =

[
−I

aR̂D̂wT̂⌊I â⌋
⌊I â⌋

]
(107)

Hg =

[
−I

wR̂D̂wHTg

03

]
(108)

Hence, ∆Rk from Eq. (41), can be written as:

∆Rk ≃ exp
(
Ikωδtk

)
= exp

(
(Ikω̂ + Ikω̃)δtk

)
exp

(
∆θ̂k

)
exp

(
Jr(∆θ̂k)

Ikω̃δtk

)
(109)

where ∆θ̂k = Ikω̂δtk.
∆pk from Eq. (42) can be written as:

∆pk =
∫ tk+1

tk

∫ s

tk

Ik
Iτ
RIτadτds

≃
∫ tk+1

tk

∫ s

tk

exp
(
Ikωδτ

)
Ikadτds

=

∫ tk+1

tk

∫ s

tk

exp
((

Ikω̂ + Ikω̃
)
δτ

) (
Ik â+ Ik ã

)
dτds

≃
∫ tk+1

tk

∫ s

tk

exp
(
Ikω̂δτ

)
Ik âdτds︸ ︷︷ ︸

∆p̂k

−
∫ tk+1

tk

∫ s

tk

exp
(
Ikω̂δτ

)
⌊Ik â⌋Jr(

Ikωδτ)δτdτds︸ ︷︷ ︸
Ξ4

Ikω̃

+

∫ tk+1

tk

∫ s

tk

exp
(
Ikω̂δτ

)
dτds︸ ︷︷ ︸

Ξ2

Ik ã
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∆vk from Eq. (43) can be written as:

∆vk =
∫ tk+1

tk

Ik
Iτ
RIτadτ

≃
∫ tk+1

tk

exp
(
Ikωδτ

)
Ikadτ

=

∫ tk+1

tk

exp
((

Ikω̂ + Ikω̃
)
δτ

) (
Ik â+ Ik ã

)
dτ

≃
∫ tk+1

tk

exp
(
Ikω̂δτ

)
Ik âdτ︸ ︷︷ ︸

∆v̂k

−
∫ tk+1

tk

exp
(
Ikω̂δτ

)
⌊Ik â⌋Jr(

Ikωδτ)δτdτ︸ ︷︷ ︸
Ξ3

Ikω̃

+

∫ tk+1

tk

exp
(
Ikω̂δτ

)
dτ︸ ︷︷ ︸

Ξ1

Ik ã

By summarizing the above derivations, we have:

∆Rk = ∆R̂k exp
(
Jr(∆θ̂k)

Ikω̃δtk

)
(110)

∆pk = ∆p̂k −Ξ4
Ikω̃ +Ξ2

Ik ã (111)

∆vk = ∆v̂k −Ξ3
Ikω̃ +Ξ1

Ik ã (112)

The linearized model for IMU dynamics can be written as:

x̃nk+1
= Φnnx̃nk

+Φwa

[
Ikω̃
Ik ã

]
(113)

where:

Φnn =

 ∆R̂⊤
k 03 03

−G
Ik
R̂⌊∆p̂k⌋ I3 I3δtk

−G
Ik
R̂⌊∆v̂k⌋ 03 I3

 (114)

Φwa =

Jr(∆θ̂k)δtk 03
−G

Ik
R̂Ξ4

G
Ik
R̂Ξ2

−G
Ik
R̂Ξ3

G
Ik
R̂Ξ1

 (115)

By plugging Eq. (101) into Eq. (113) and adding biases, the overall linearized system for IMU
state can be written as:

x̃Ik+1
= ΦI(k+1,k)x̃Ik +GkndI (116)

where ndI =
[
n⊤
dg n⊤

da n⊤
dwg n⊤

dwa

]⊤
denotes the discretized IMU noises; ΦI(k+1,k) and Gk are

computed as:

ΦI(k+1,k) =

Φnn ΦwaHb ΦwaHin

06×9 I6 06×m

0m×9 0m×6 Im

 (117)

Gk =

ΦwaHn 09×6

06 I6δtk
0m×6 0m×6

 (118)
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Note that nd∗ ∼ N (0, σ
2
∗I3
δtk

) and hence the covariance for ndI can be written as:

QdI =


σ2
g

δtk
I3 03 03 03

03
σ2
a

δtk
I3 03 03

03 03
σ2
wg

δtk
I3 03

03 03 03
σ2
wa
δtk

I3

 (119)

Appendix B: Appendix B: Camera Jacobians

We will show the detailed derivations for the Jacobians shown in Eq. (74). The camera intrinsic
Jacobians HCin can be written as:

HCin =

[
∂z̃C

∂
[
f̃u f̃v c̃u c̃v

]⊤ ∂z̃C

∂
[
k̃1 k̃2 p̃1 p̃2

]⊤] (120)

∂z̃C

∂
[
f̃u f̃v c̃u c̃v

]⊤ =

[
ud 0 1 0
0 vd 0 1

]
(121)

∂z̃C

∂
[
k̃1 k̃2

]⊤ =

[
fuunr

2 fuunr
4

fvvnr
2 fvvnr

4

]
(122)

∂z̃C

∂
[
p̃1 p̃2

]⊤ =

[
2fuunvn fu(r

2 + 2u2n)
fv(r

2 + 2v2n) 2fvunvn

]
(123)

We continue to compute ∂z̃C
∂z̃n

and ∂z̃n
∂C p̃f

for Hpf
within Eq. (74) as:

∂z̃C
∂z̃n

=

[
h11 h12
h21 h22

]
(124)

∂z̃C
∂C p̃f

=
1

Cz2f

[
Czf 0 −Cxf
0 Czf −Cyf

]
(125)

with h11, h12, h21 and h22 defined as:

h11 = fu(d+ 2k1u
2
n + 4k2u

2
nr

2 + 2p1vn + 6p2un)

h12 = fu(2k1unvn + 4k2unvnr
2 + 2p1un + 2p2vn)

h21 = fv(2k1unvn + 4k2unvnr
2 + 2p1un + 2p2vn)

h22 = fv(d+ 2k1v
2
n + 4k2v

2
nr

2 + 6p1vn + 2p2un)

The Jacobians of Cpf regarding to the IMU state xI are written as:

∂C p̃f

∂x̃I
=

[
∂C p̃f

∂x̃n

∂C p̃f

∂x̃b

∂C p̃f

∂x̃in

]
(126)

∂C p̃f

∂x̃n
= C

I R̂
I
GR̂

[
⌊Gp̂f − Gp̂I⌋GI R̂ −I3 03

]
(127)

∂C p̃f

∂x̃b
= 03×6,

∂C p̃f

∂x̃in
= 03×24 (128)
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The Jacobians of Cpf regarding to the IMU-camera spatial-temporal calibration state xIC are
written as:

∂C p̃f

∂x̃IC
=

[
∂C p̃f

∂δθIC

∂C p̃f

∂C p̃I

∂C p̃f

∂t̃d

∂C p̃f

∂t̃r

]
(129)

∂C p̃f

∂δθIC
= ⌊CI R̂I

GR̂
(
Gp̂f − Gp̂I

)
⌋ (130)

∂C p̃f

∂C p̃I
= I3 (131)

∂C p̃f

∂t̃d
= C

I R̂
I
GR̂

(
⌊
(
Gp̂f − Gp̂I

)
⌋GI R̂Iω̂ − Gv̂I

)
(132)

∂C p̃f

∂t̃r
=

m

M

∂C p̃f

∂t̃d
(133)

Note that when computing the Jacobians for td and tr, we are using the following linearization:

G
I(t)R ≃ G

I(t̂)
R̂ exp(δθI) exp(

Iω̂t̃d +
m

M
Iω̂t̃r) (134)

GpI(t) ≃ Gp̂I(t̂) +
Gp̃I +

Gv̂I t̃d +
m

M
Gv̂I t̃r (135)

The Jacobians of Cpf regarding to the feature state xf is written as:

∂C p̃f

∂x̃f
=

∂C p̃f

∂δGp̃f
= C

I R̂
I
GR̂ (136)

Appendix C: Appendix C: Observability Matrix

We show the detailed derivations for Mn, Mb, Min, MIC , MCin and Mf . The Mn is computed
as:

Mn =Hpf

C
I R̂

Ik
G R̂

[
Γ1 Γ2 Γ3

]
(137)

with:

Γ1 = ⌊Gp̂f − Gp̂I1 − Gv̂I1δtk +
1

2
Ggδt2k⌋GI1R̂

Γ2 = −I3

Γ3 = −I3δtk

The Mb is computed as:

Mb =Hpf

C
I R̂

Ik
G R̂

[
Γ4 Γ5

]
(138)

with:

Γ4 = −
(
⌊Gp̂f − Gp̂Ik⌋

G
Ik
R̂Jr

(
∆θ̂k

)
δtk +

G
Ik
R̂Ξ4

)
I
wR̂D̂w

Γ5 =

(
⌊Gp̂f − Gp̂Ik⌋

G
Ik
R̂Jr

(
∆θ̂k

)
I
wR̂D̂wT̂gδtk +

G
Ik
R̂

(
Ξ4

I
wR̂D̂wT̂g +Ξ2

))
I
aR̂D̂a
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The Min can be computed as:

Min =Hpf

C
I R̂

Ik
G R̂

[
Γ6 Γ7 Γ8 Γ9

]
(139)

with:

Γ6 =

(
⌊Gp̂f − Gp̂Ik⌋

G
Ik
R̂Jr

(
∆θ̂k

)
δtk +

G
Ik
R̂Ξ4

)
HDw

Γ7 = −
(
⌊Gp̂f − Gp̂Ik⌋

G
Ik
R̂Jr

(
∆θ̂k

)
I
wR̂D̂wT̂gδtk +

G
Ik
R̂

(
Ξ4

I
wR̂D̂wT̂g +Ξ2

))
I
aR̂HDa

Γ8 = −
(
⌊Gp̂f − Gp̂Ik⌋

G
Ik
R̂Jr

(
∆θ̂k

)
I
wR̂D̂wT̂gδtk +

G
Ik
R̂
(
Ξ4

I
wR̂D̂wT̂g +Ξ2

))
⌊Ik â⌋

Γ9 = −
(
⌊Gp̂f − Gp̂Ik⌋

G
Ik
R̂Jr

(
∆θ̂k

)
δtk +

G
Ik
R̂Ξ4

)
I
wR̂D̂wHTg

The MIC can be computed as:

MIC = Hpf

C
I R̂

Ik
G R̂

[
Γ10 Γ11 Γ12 Γ13

]
(140)

Γ10 = ⌊
(
Gp̂f − Gp̂Ik

)
⌋GIkR̂

I
CR̂ (141)

Γ11 =
G
Ik
R̂I

CR̂ (142)

Γ12 = ⌊
(
Gp̂f − Gp̂Ik

)
⌋GIkR̂

Ikω̂ − Gv̂Ik (143)

Γ13 =
m

M
Γ12 (144)

The MCin and Mf can be written as:

MCin = HCin (145)

Mf = Hpf

C
I R̂

Ik
G R̂ (146)

Appendix D: Appendix D: Proof of Lemma 1

For Eq. (77), we first verify ON = 0 as:

⇔OkN = 0

⇔
(
Γ1

I1
G R̂− Γ2⌊Gp̂I1⌋ − Γ3⌊Gv̂I1⌋ − ⌊Gp̂f⌋

)
Gg = 0

⇔
(
⌊Gp̂f − Gp̂I1 − Gv̂I1δtk +

1

2
Ggδt2k⌋

)
Gg +

(
⌊Gp̂I1⌋+ ⌊Gv̂I1⌋δtk − ⌊Gp̂f⌋

)
Gg = 0

Hence, we can conclude that the observability matrix O has at least 4 unobservable directions.
In the following, we will try to show that there are only 4 unobservable directions under general

situations. With abusing of notion, we can rewrite the observability matrix as:

O =
[
O⊤

1 . . . O⊤
k

]⊤
=

Mn,1 Mb,1 Min,1 MIC,1 MCin,1 Mf,1
...

...
...

...
...

...
Mn,k Mb,k Min,k MIC,k MCin,k Mf,k


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By adjusting the column of Mf in O, we can get O′:

O′ ≜
[
OI Oin OIC Of

]
≜

 Mn,1 Mb,1 Mf,1 Min,1 MIC,1 MCin,1
...

...
...

...
...

...
Mn,k Mb,k Mf,k Min,k MIC,k MCin,k


It is clear that the column rank of O′ is the same as O.

OI corresponds to the IMU navigation state, IMU bias state and feature state. OI is equivalent
to the standard VINS observability matrix in [52] and it has null space of 4DoF.

Oin corresponds to the IMU intrinsic parameters. By checking the Eq. (139), it is clearly that
Oin will be affected by time-varying wω(t) (in HDw),

aa(t) (in HDa) and
Ia(t) (in ⌊Ia⌋ and HTg).

Under generate motions, Oin can be of full column rank.
OIC corresponds to the IMU-camera spatial and temporal calibration parameters. By checking

the Eq. (140), we can see that the OIC is affected by the time-varying IMU pose {IGR(t),GpI(t)}
and the IMU kinematics {Iω(t), Iv(t)}. In addition, Γ13 in MIC are also affected by the point
feature measurement through m

M , of which m will change under general measurement assumptions.
Hence, OIC can be of full column rank with random motions.

OCin corresponds to the camera intrinsic parameters. It is clear that OCin is only affected the
environmental structure and is of full column rank as long as {un, vn} varies in different image
tracks.

Since Oin, OIC and OCin are affected by different system parameters, and under general motion
conditions, [Oin OIC OCin] is also of full column rank. Therefore, the column rank of O′ is
determined by OI . Since OI has 4 DoF null space, the O′ also has 4 DoF. Hence, we can conclude
that O only has 4 DoF null space. We also verify this conclusion through simulation results shown
in Fig 4.

Appendix E: Appendix E: Null Space Proofs

In this section, we provide the verification for the null spaces listed in this paper.

E.1: Verification of Lemma 2

For Nw1, we have:

⇔OkNw1 = 0

⇔Γ4D̂
−1
w

I
wR̂

⊤e1
wω1 + Γ6 ×

[
1 0 0 0 0 0

]⊤
= 0

⇔(⌊Gp̂f − Gp̂Ik⌋
G
Ik
R̂Jr (∆θk) δtk +

G
Ik
R̂Ξ4) (−e1

wω1 + e1
wω1) = 0

For Nw2, we have:

⇔OkNw2 = 0

⇔Γ4D̂
−1
w

I
wR̂

⊤ [e1 e2]
wω2 + Γ6 ×

[
0 1 0 0 0 0
0 0 1 0 0 0

]⊤
= 0

⇔(⌊Gp̂f − Gp̂Ik⌋
G
Ik
R̂Jr (∆θk) δtk +

G
Ik
R̂Ξ4) (− [e1 e2]

wω2 + [e1 e2]
wω2) = 0
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For Nw3, we have:

⇔OkNw3 = 0

⇔Γ4D̂
−1
w

I
wR̂

⊤I3
wω3 + Γ6 ×

[
03 I3

]⊤
= 0

⇔(⌊Gp̂f − Gp̂Ik⌋
G
Ik
R̂Jr (∆θk) δtk +

G
Ik
R̂Ξ4) (−I3

wω3 + I3
wω3) = 0

E.2: Verification of Lemma 3

We first verify the first column of Na1:

⇔OkNa1e1 = 0

⇔Γ5D̂
−1
a e1

aa1 + Γ7 × [1 0 0 0 0 0]⊤ = 0

⇔
(
⌊Gp̂f − Gp̂Ik⌋

G
Ik
R̂Jr (∆θk)

I
wR̂D̂wT̂gδtk +

G
Ik
R̂

(
Ξ4

I
wR̂D̂wT̂g +Ξ2

))
I
aR̂ (e1

aa1 − e1
aa1) = 0

We then verify the second column of Na1:

⇔OkNa1e2 = 0

⇔Γ5D̂
−1
a e2da1

aa1 + Γ7 × [0 da3 − da2 da5 − da4 0]⊤ − Γ8
I
aR̂e3 = 0

⇔

 0
da1

aa1
0

−

 da3
aa2 + da5

aa3
−da2

aa2 − da4
aa3

0

+

 da3
aa2 + da5

aa3
−(da1

aa1 + da2
aa2 + da4

aa3)
0

 = 0

The third column of Na1 can be verified as:

⇔OkNa1e3 = 0

⇔Γ5D̂
−1
a e3da1da3

aa1 + Γ8
I
aR(e1da2 + e2da3) + Γ7 × [0 0 0 da6da3 − da2da6 da2da5 − da4da3] = 0

⇔

 0
0

da1da3
aa1

−

 da6da3
aa3

−da2da6
aa3

da2da5
aa3 − da4da3

aa3

−

 −da6da3
aa3

da2da6
aa3

da1da3
aa1 − da5da2

aa3 + da4da3
aa3

 = 0

The first two columns of Na2 can be verified as:

⇔OkNa2[e1 e2] = 0

⇔Γ5D̂
−1
a [e1 e2]

aa2 + Γ7 ×
[
0 1 0 0 0 0
0 0 1 0 0 0

]⊤
= 0

⇔
(
⌊Gp̂f − Gp̂Ik⌋

G
Ik
R̂Jr (∆θk)

I
wR̂D̂wT̂gδtk +

G
Ik
R̂

(
Ξ4

I
wR̂D̂wT̂g +Ξ2

))
I
aR̂ ([e1 e2]

aa2 − [e1 e2]
aa2) = 0

The third column of Na3 can be verified as:

⇔OkNa2e1da3
aa2 = 0

⇔Γ5D̂
−1
a e1da3

aa2 + Γ7 × [0 0 0 0 da6 − da5]
⊤ − Γ8

I
aRe1 = 0

⇔

 0
0

da3
aa2

−

 0
da6

aa3
−da5

aa3

+

 0
da6

aa3
−(da3

aa2 + da5
aa3)

 = 0
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The verification of Na3 can be described as:

⇔OkNa3 = 0

⇔Γ5D̂
−1
a I3

aa3 + Γ7 × [03 I3]
⊤ = 0

⇔
(
⌊Gp̂f − Gp̂Ik⌋

G
Ik
R̂Jr (∆θk)

I
wR̂D̂wT̂gδtk +

G
Ik
R̂

(
Ξ4

I
wR̂D̂wT̂g +Ξ2

))
I
aR̂ (I3

aa3 − I3
aa3) = 0

E.3: Verification of Lemma 4

The Ng1 can be verified as:

⇔OkNg1 = 0

⇔Γ4I3
Ia1 − Γ9 × [I3 03 03]

⊤ = 0

⇔− (⌊Gp̂f − Gp̂Ik⌋
G
Ik
R̂Jr (∆θk) δtk +

G
Ik
R̂Ξ4)

I
wR̂D̂w

(
I3

Ia1 − I3
Ia1

)
= 0

The Ng2 can be verified as:

⇔OkNg2 = 0

⇔Γ4I3
Ia2 − Γ9 × [03 I3 03]

⊤ = 0

⇔− (⌊Gp̂f − Gp̂Ik⌋
G
Ik
R̂Jr (∆θk) δtk +

G
Ik
R̂Ξ4)

I
wR̂D̂w

(
I3

Ia2 − I3
Ia2

)
= 0

The Ng3 can be verified as:

⇔OkNg3 = 0

⇔Γ4I3
Ia3 − Γ9 × [03 03 I3]

⊤ = 0

⇔− (⌊Gp̂f − Gp̂Ik⌋
G
Ik
R̂Jr (∆θk) δtk +

G
Ik
R̂Ξ4)

I
wR̂D̂w

(
I3

Ia3 − I3
Ia3

)
= 0

E.4: Verification of Lemma 6

Note that:

MCin × [fu fv 0 0 2k1 4k2 p1 p2]
⊤ =

[
fu

(
ud + 2k1unr

2 + 4k2unr
4 + 2p1unvn + p2(r

2 + 2u2n)
)

fv
(
vd + 2k1vnr

2 + 4k2vnr
4 + p1(r

2 + 2u2n) + 2p2unvn
) ]

=
[
fu

(
un + 3k1unr

2 + 5k2unr
4 + 4p1unvn + 2p2(r

2 + 2u2n)
)

fv
(
vn + 3k1vnr

2 + 5k2vnr
4 + 2p1(r

2 + 2u2n) + 4p2unvn
) ]

At the same time, with one-axis rotation assumption, we have:

Mf
Gk = Hpf

C
I R̂

Ik
G R̂ · GI0R̂

I
CR̂

CkCzf

= Hpf
e3

Czf

=
∂z̃C
∂z̃n

[
1 0 −un
0 1 −vn

]
e3

= −∂z̃C
∂z̃n

[
un
vn

]
Note that Ik

G R̂ = Ik
I1
R̂I1

G R̂ and Ik
I1
R̂Ik = Ik (due to one-axis rotation). We can easily verify that:

∂z̃C
∂z̃n

[
un
vn

]
=

[
fu

(
un + 3k1unr

2 + 5k2unr
4 + 4p1unvn + 2p2(r

2 + 2u2n)
)

fv
(
vn + 3k1vnr

2 + 5k2vnr
4 + 2p1(r

2 + 2u2n) + 4p2unvn
) ]
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Therefore, the verification of NCin can be written as:

⇔OkNCin = 0

⇔MCin × [fu fv 0 0 2k1 4k2 p1 p2]
⊤ +Mf

Gk = 0

Appendix F: Appendix F: Interpolation Jacobians

We perturb G
Ici−1

R and G
Ici
R as:

G
Ici−1

R = G
Ici−1

R̂ exp
(
δθIci−1

)
(147)

G
IciR = G

IciR̂ exp (δθIci) (148)

By representing θi−1,i = log
(
G
Ici−1

R⊤G
Ici
R
)
, we have the linearization for the interpolation as:

δθI(t) ≃
(
exp(−λ̂θ̂i−1,i)− Jr(λ̂θ̂i−1,i)J

−1
l (θ̂i−1,i)

)
δθIci−1 + Jr(λ̂θ̂i−1,i)J

−1
r (θ̂i−1,i)δθIci +

m

M
ωi−1,it̃r

Gp̃I(t) ≃ (1− λ̂)Gp̃Ici−1 + λ̂Gp̃Ici +
m

M
vi−1,it̃r

where:

ω̂i−1,i =
θ̂i−1,i

tci − tci−1
(149)

v̂i−1,i =
Gp̂Ici − Gp̂Ici−1

tci − tci−1
(150)

Appendix G: Appendix G: Degenerate Motion Simulation Results

The complete calibration plots for IMU/camera intrinsic and IMU-camera spatial calibration under
one-axis rotation, constant ax acceleration and planar motion are shown in Figure 25, 26 and 27.
All the temporal calibration results for IMU-camera time offset and rolling shutter readout time
on the four simulated trajectories are shown in Figure 9.
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