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Visual-Inertial Localization with Prior LiDAR Map Constraints
Xingxing Zuo‡, Patrick Geneva‡, Yulin Yang, Wenlong Ye, Yong Liu, and Guoquan Huang

Abstract—In this paper, we develop a low-cost stereo visual-
inertial localization system, which leverages efficient multi-state
constraint Kalman filter (MSCKF)-based visual-inertial odom-
etry (VIO) while utilizing an a priori LiDAR map to provide
bounded-error 3D navigation. Besides the standard sparse visual
feature measurements used in VIO, the global registrations of
visual semi-dense clouds to the prior LiDAR map are also
exploited in a tightly-coupled MSCKF update, thus correcting
accumulated drift. This cross-modality constraint between visual
and LiDAR pointclouds is particularly addressed. The proposed
approach is validated on both Monte Carlo simulations and
real-world experiments, showing that LiDAR map constraints
between clouds created through different sensing modalities
greatly improve the standard VIO and provide bounded-error
performance.

Index Terms—Sensor Fusion, Localization, SLAM, Visual-
Based Navigation

I. INTRODUCTION

THE ability to perform high-precision localization is es-
sential for autonomous vehicles. Over the past decades,

a variety of sensors have been employed for localization in
different environments [1–6]. GPS is widely used to provide
absolute positioning, and suffers from unavailable measure-
ments in radio-shadowed areas, unreliable signals due to
blocked line-of-sight paths to external reference stations, or
multi-pathing errors due to reflections of signals off nearby
structures. As such, GPS often fails to give a reliable localiza-
tion in urban and indoors areas. In particular, visual navigation
with the aid of IMUs (i.e., visual-inertial navigation) is among
the most popular approaches to provide 6DOF localization [1,
2, 5–7], which can be cheap and does not rely on the external
signals like GPS. On the other hand, LiDAR-based localization
and mapping has shown to have better performance [3, 4, 8]
than visual-based solutions, due to its accurate range mea-
surements, while also being robust to illumination variation,
extending its application domains. However, the high cost of
3D LiDAR sensors largely hinders its wide deployment. The
low-cost visual-inertial sensors for localization are desirable
but are unable to achieve the same level of accuracy and
robustness. The cost-effective fusion of these two sensing
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Fig. 1. The proposed visual-inertial localization system with the prior LiDAR
map constraints runs on the EurocMav dataset [9]. The prior LiDAR map is
colored by height, while the groundtruth and estimated trajectory are plotted
in cyan and pink, respectively. A semi-dense pointcloud reconstructed from a
series of keyframes is also shown in black.

modalities to improve the estimation accuracy of a pure visual-
inertial system, provided that a single accurate prior LiDAR
map can be provided by a third party or built a priori with a
LiDAR, is what we propose.

In this work, we propose a tightly-coupled visual-inertial
state estimator that is able to utilize a LiDAR pointcloud map
built a priori. For computational efficiency, we leverage the
lightweight multi-state-constraint Kalman filter (MSCKF) [1]
for online localization, which contains only a constant-size
sliding window of IMU poses in the state vector, without
keeping features. At the same time, we perform semi-dense
mapping and produce visual pointclouds that can be registered
with the prior LiDAR map. The registration results are used
as global measurements of the camera poses and fused with
visual sparse features’ and inertial measurements in a tightly
coupled manner within the MSCKF update, allowing for the
correction of accumulated drift of the visual-inertial trajectory.
As a result, the proposed visual-inertial system is efficient and
provides 6DOF pose estimates in real time.

We note that prior visual feature maps are often used to
aid online visual localization by matching the descriptors of
visual feature [5, 10, 11]. However, visual features with (local)
descriptors are highly related to the appearance, which is
easily changeable, highly affected by illumination, and can
change over time. Compared with visual feature maps, range-
based maps allow for the capturing of structural and geometric
features of the environment which are less likely to vary
over time, and thus do not require the re-mapping of areas
unless major changes have occurred (i.e. construction or road
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changes), reducing the required prior map cost. Moreover,
regardless of the lighting conditions, prior LiDAR maps of
the environment can be reconstructed by LiDAR SLAM [3,
12] or static 3D laser scans, motivating us to leverage these
LiDAR maps that can be easily created, updated, and contain
large amounts of prevalent structural information.

To the best of our knowledge, this is the first time
prior LiDAR map constraints have been tightly fused into
computationally-efficient MSCKF-based visual-inertial esti-
mation to provide real time localization of bounded errors.
In particular, the main contributions of this paper include the
following:

• We design a tightly-coupled state estimator for visual-
inertial localization which can efficiently utilize the prior
LiDAR map constraints (of different sensing modality to
live measurements)1. As compared to expensive LiDAR-
based counterpart, this is a low-cost solution providing
6DOF pose estimates of bounded error in real time.

• Global measurement constraints of the prior LiDAR map
are constructed through visual semi-dense reconstruction
and normal distribution transform (NDT)-based registra-
tion. These measurements are used in the MSCKF update
along with the conventional sparse visual feature mea-
surements and correct accumulated drift, for which we
have also derived the analytical measurement Jacobians.

• The proposed visual-inertial localization system is com-
putational efficient running only on a single multi-
threaded CPU and is validated both in Monte Carlo
simulations and real-world experiments.

II. RELATED WORK

While map-based visual localization has been an active
field of research in recent years [13, 14], using multi-modal
sensing data in vision-based localization holds potential in the
improvement of localization robustness and accuracy. Vision
sensors can capture the appearance of the environment, while
LiDARs are able to perceive structure more accurately. Over
the past few years, there have been surging research efforts on
visual localization with prior LiDAR maps. In particular, Lu
et al. [15] proposed a monocular vision localization system for
urban environments. In their work, the road markings in the
LiDAR map, including solid and broken lines, are manually
extracted and represented as a set of sparse points, after
which Chamfer matching is used to register the detected road
markings in the image against those in the prior map. Lu et al.
[16] further extended to monocular localization aided by prior
inputs, which leveraged the planar structure extracted from
both vision and prior LiDAR data as anchoring information
to fuse the heterogeneous maps. Coplanarity constraints were
introduced to the bundle adjustment and showed improved
visual odometry performance. Park et al. [17] proposed to
combine constraints from LiDAR and visual features, and val-
idated loop closure candidates with sequential observations to
provide high quality loop closure detection. Compared to this
work, we propose to leverage the whole LiDAR pointcloud,

1While in this work we particularly consider the LiDAR pointcloud map
due to its commonness in practice, the proposed approach in principle can
utilize any prior pointcloud map with correct scale.

not only extracted planes, through registration to constrain our
visual-inertial odometry (VIO) within an efficient EKF-based
framework.

In [18–24] visual localization used the appearance of the
prior map. In particular, in [19], a prior LiDAR map with
reflectance information was used to render several synthetic
views from different poses, to which live images captured
by the camera were matched by normalized mutual informa-
tion. This method can only use a single monocular camera
for 2D localization. In [20], a prior LiDAR pointcloud was
appended with illumination invariant appearance information
allowing for registration in the illumination invariant space
using Normalized Information Distance (NID) to measure the
discrepancy of appearances. Pascoe et al. [21] and Pascoe,
Maddern, and Newman [22] achieved accurate localization by
minimizing the NID between live images and those generated
from the prior map. Wong et al. [23] proposed a method to
determine a camera’s pose that used area of edge regions
shared between rendered views of a voxel occupancy map
and in-vehicle camera images. The Monte Carlo approach was
used in [24] to localize a panoramic camera by minimizing
mutual projections of the gradient extracted from both syn-
thesized depth and visual images. However, due to the high
computational cost of obtaining synthetic appearance images
from 3D prior maps, most of these methods require GPU
acceleration.

There are also efforts focusing on matching pointclouds
generated from cameras to those from LiDAR sensors to
obtain relative poses. In [25] a registration based monocular
localization algorithm was proposed, where a set of sparse
3D image keypoints were continuously matched with a prior
LiDAR map for 6DOF pose estimation at approximate 10Hz.
A structure-based vision-laser matching framework was in-
troduced in [26], where three types of structural descriptors
were extracted to find point correspondences between the
sensors. Kim, Jeong, and Kim [27] recently proposed a method
of direct image alignment of synthetically generated LiDAR
depth and stereo depth images to recover pose estimates. In
[28], a probabilistic data association policy was proposed to
improve pointcloud registration. Unlike standard ICP, each
point in the source pointcloud was associated with a set
of points in the target pointcloud and weighted based on a
probabilistic distribution. Different from the above methods,
our proposed approach is a low-cost light-weight MSCKF-
based visual-inertial localization system, which is able to
use a prior LiDAR map for bounding navigation errors. Our
system is able to provide 6DOF pose estimates at high rate
(attributed to the high frequency of IMU) while requiring only
a multi-threaded CPU. Additionally, as a useful byproduct, a
semi-dense map can be built online, which could be utilized
to support high-level tasks such as obstacle avoidance and
semantic segmentation.

III. VISUAL-INERTIAL STATE ESTIMATION

In this section, within the standard MSCKF framework [1],
we present the proposed visual-inertial estimator which tightly
fuses visual and inertial measurements as well as prior LiDAR
map constraints in order to bound localization errors.
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A. State Vector

Our navigation state is given by:

xk =
[
Ik
G q̄⊤ b⊤

ω
Gv⊤

Ik
b⊤
a

Gp⊤
Ik

M
G q̄⊤ Gp⊤

M x⊤
C

]⊤
(1)

where Ik
G q̄ is the JPL unit quaternion [29] associated with the

rotation matrix, Ik
G R, which rotates vectors from the global

frame of reference {G} into the local frame {Ik} of the IMU
at timestep k, bω and ba are the gyroscope and accelerometer
biases which corrupt the IMU measurements, GpIk is the
IMU position expressed in the global frame, and GvIk is the
corresponding velocity. We additionally estimate the rotation
M
G q̄ and translation GpM between the LiDAR “map” frame
{M} and the global inertial frame {G}.

Following the standard MSCKF, we maintain a sliding
window of IMU clones at the past m imaging times which
do not evolve over time and are used during feature update:

xC =
[
Ik−1

G q̄⊤ Gp⊤
Ik−1

· · · Ik−m

G q̄⊤ Gp⊤
Ik−m

]⊤
(2)

The corresponding total error state is:

δxk = (3)[
Ikδθ⊤

G δb⊤
ω

Gδv⊤
Ik

δb⊤
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Gδp⊤
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M δx⊤

C

]⊤
We define that the true value of the state, xk, estimated
value x̂k, and corresponding error state δxk, is related by the
following generalized update operation:

xk = x̂k ⊞ δxk (4)

where for vector quantities, v, this operation is simply addi-
tion, i.e., v = v̂ + δv, and for quaternions we have:

q̄ ≃
[
1
2δθ
1

]
⊗ ˆ̄q (5)

where ⊗ denotes quaternion multiplication [29].

B. State Propagation

The above state and corresponding covariance are propa-
gated over time by integrating the incoming IMU measure-
ments of linear accelerations (am) and angular velocities (ωm)
based on the following generic nonlinear IMU kinematics [30]:

xk+1 = f(xk,am − na,ωm − nω) (6)

where na and nω are the zero-mean white Gaussian noise
of the IMU measurements. Note that the transform between
the map and global inertial frame {MG q̄, GpM} and clone
states xC do not evolve over the propagation period. We
linearize this nonlinear model at the current estimate, and then
propagate the state estimate and covariance matrix using the
standard EKF (e.g., see [1]).

C. State Update

We now look at how we can incorporate global registration
measurements of the current camera in the map, alongside
conventional sparse feature tracks. Explained in more detail
in the next section, we will receive a registration pose with
covariance by registering the semi-dense pointcloud with the
a priori LiDAR map.

1) LiDAR Map Constraints: Consider receiving a measure-
ment of {Ck

M R,MpCk
} which denotes the current left camera

pose at timestep k in the map frame of reference. We can write
this measurement as a function of the state:

Ck

M R = C
I R

Ik
G RG

MR (7)
MpCk

= C
MR⊤(GpIk − GpM − Ik

G R⊤C
I R

⊤CpI) (8)

where C
I R and CpI are the extrinsic calibration transform

between the IMU and the left camera frame. We can write the
above measurement function and the linearization of it about
the current state estimate x̂k as follows:

z = h(xk) + nk (9)
≃ h(x̂k) +Hxx̃k + nk (10)

where nk is the white Gaussian noise with covariance Rk

and Hx is the measurement Jacobian with respect to all state
elements. The non-zero Jacobians are computed as:

∂CkδθM
∂IkδθG

= C
I R (11)

∂CkδθM
∂MδθG

= C
I R

Ik
G R (12)

∂MδpCk

∂IkδθG
= G

MR⊤Ik
G R⊤⌊CI R⊤CpI⌋ (13)

∂MδpCk

∂MδθG
= −G

MR⊤⌊GpIk − GpM − Ik
G R⊤C

I R
⊤CpI⌋ (14)

∂MδpCk

∂GδpIk

= G
MR⊤ (15)

∂MδpCk

∂GδpM
= −G

MR⊤ (16)

where ⌊·⌋ denotes the skew symmetric matrix. We can directly
update the state using the pose measurement as in the standard
EKF update [31]. Note that while we are estimating the
transform between the map frame and the global inertial frame,
an initial guess of this transform is needed in practice.

2) Visual Feature Measurements: As in the standard VIO,
we track a set of sparse features across the sliding window
of scholastically cloned poses xC . When these features have
reached maximum track length or have lost track, they are
first triangulated in 3D and then further refined using bundle
adjustment (BA). Successfully optimized features are passed
through a Mahalanobis-distance test and used in the standard
MSCKF update in which their measurements are projected
onto the nullspace of the feature measurement Jacobian, pre-
venting the need to include the positions of the features in
the state vector [1]. These sparse features allow for short-
term localization, while the prior map constraint pose update
prevents long-term drift.

IV. VISUAL PROCESSING

The proposed visual-inertial localization system architecture
is illustrated in Figure 2, whose visual processing module is
composed of two main parts: (i) sparse feature tracking and
(ii) semi-dense visual to LiDAR map registration. Specifically,
incoming stereo images are processed in two separate ways:
(i) conventional sparse feature tracks are triangulated and used
in the MSCKF update (Section III-C2), and (ii) stereo pairs
are used to construct a semi-dense pointcloud that is then
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Fig. 2. Data flow of the proposed localization system. Incoming stereo
and inertial measurements can be seen on the left, while the proposed map
constraint sub-system has been highlighted with a red box.

registered with a prior LiDAR map to provide a LiDAR map
constraint (Section III-C1). In this section, we detail how we
reconstruct a semi-dense visual cloud and then register it to
the prior LiDAR map to obtain the constraints that are tightly
fused in the MSCKF update.

A. Semi-dense Reconstruction

As compared to the sparse features extracted and tracked
through KLT [32], a semi-dense cloud captures the 3D struc-
ture of the environment and creates a high-density pointcloud
that is suitable for registration. We note that due to the different
modalities of the prior LiDAR pointcloud, it is expected that
the prior pointcloud contains structural surfaces such as planes,
while a sparse visual cloud typically contains points that have
high intensity gradients corresponding to edges and corners
in the environment. This motivates us to leverage semi-dense
cloud reconstruction for registration with the prior LiDAR
pointcloud.

To remain computationally efficient, we reconstruct the
semi-dense cloud for a subset of incoming images, which we
denote as “keyframes” in the rest of the paper. Keyframes are
selected based on distance and orientation thresholds to ensure
that they cover the largest spacial area with minimal overlap.
Note that while the current keyframe selection strategy appears
to be simple and ad hoc, it does prove the concept of our
keyframe-based semi-dense reconstruction, nevertheless more
sophisticated methods will be explored in the future. Due to
the nature of pointcloud registration problem, a window of
keyframes is desired as it increases the spacial volume and
ensures that the registration problem is well constrained. The
larger baseline between consecutive keyframes increases the
overall reconstruction quality of the semi-dense cloud. While
in this work we leverage stereo depth map computation to
expedite semi-dense cloud reconstruction, one could construct
the scaled depth map through recent developments in neural
networks [33]. Specifically, for a new incoming keyframe we
first compute its depth-map using stereo block matching by
minimizing the sum of absolute distances (SAD) error over
patches in the image. Conventional stereo block matching, as
compared to other more accurate methods [34, 35], is both
computationally efficient and has acceptable depth reconstruc-
tion that we will refine later using additional keyframes.

Fig. 3. Visual semi-dense reconstruction without depth refinement (left) has
high levels of noise on walls of the room. By contrast, the visual semi-dense
reconstruction with depth refinement (right) exhibits lower amounts of noise
along the boundary (see picture inset). These pointclouds are a small subset
of the EurocMav V1 02 medium sequence [36].

Fig. 4. Illustration of depth correspondence matching, find multiple obser-
vations among different keyframes. The “neighboring” pixels in the 2x2 path
are also possible observations.

B. Depth Correspondence Matching

After computing each keyframe’s depth map in the window,
the depth is refined through correspondence matching. An ex-
ample of the improved semi-dense cloud quality resulting from
the combination of multiple keyframes and depth refinement
can be seen in Figure 3, in which the overall noise in the
cloud is shown to be reduced. Since the pose estimate of each
keyframe is known from the MSCKF estimator, we project
each keyframe’s depth map into the other image planes to
calculate common correspondences. Denoting the frame we
are projecting into as kfj , we use the estimated transforms
to project the 3D points contained in each keyframe kfi as
follows:

Cjpf =
Cj

G R(GpCi
− GpCj

) +
Cj

Ci
RCipf (17)

u′ = Π(Cjpf ) (18)

where Π(·) is the camera projection function and u′ is the
corresponding pixel coordinate in the j-th keyframe.

Figure 4 shows the depth correspondence matching process
for depth refinement. Having projected all points from all other
keyframes into the j-th keyframe we need to determine what
projections match the points in the j-th frame. We consider the
projection of a pixel u′, and look to determine if it matches
the pixel at the projected location u. If it does match the pixel
at the projected location, we add both the point and its depth
to an “observation” set Pj(u) for the given pixel in the j-th
keyframe. Specifically, for a given point, u′, that projects to
the pixel u in the j-th keyframe we perform the following
compatibility test:

(i) Difference between the intensities is smaller than a given
threshold: |Ii(u′)− Ij(u)| ≤ ΦI
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(ii) Difference between the image gradient of is smaller than
a given threshold: |Gi(u

′)−Gj(u)| ≤ ΦG

(iii) Depth value between the transformed point Cjp′
f and

Cjpf should not be over a given threshold: |Cjp′
f (z)−

Cjpf (z)| ≤ ΦD

where Ii(·), Ij(·) and Gi(·), Gj(·) return the intensity and
gradient for the i-th and j-th keyframe, respectively. Due to
numerical evaluation, when we project a pixel from the i-
th to the j-th keyframe we have to discretize the projected
pixel location. To account for this discretization, we say that
the bounding “neighboring” pixels in the j-th keyframe could
also correspond to the projected point and its depth. Thus, we
perform the compatibility test for a projected pixel in respect
to the 2x2 patch of pixels around the projection point. We
empirically found that only checking the 2x2 neighborhood,
as compared to a larger area, provided adequate rejection and
allowed for a reduction in the amount of computation required
per-projection. If a neighboring pixel un in the 2x2 patch
passes the test, the projected point and its depth is added to
the corresponding location in the Pj(un) set.

We repeat this projection process for each keyframe in
the window. After creation of the observation set Pj for
all keyframes, we use this correspondence and observation
information to both refine the pointcloud of each keyframe,
while simultaneously rejecting outliers. We check the amount
of observations for each pixel, if the number of observations is
below a certain threshold, we consider this point as an outlier
and is removed. If a pixel has many observations, we refine the
depth by taking the mean of all projected depth observations
for that pixel. We found that this gives high quality pointclouds
with reduced noise levels due to the fusion of multiple depth
observations.

C. Pointcloud Assembly
After refinement of each keyframe’s depth estimates, we

projected each cloud into the newest keyframe’s frame which
we denote as the “reference” keyframe. We note that this
reconstruction process can be computationally expensive due
to the large amount of semi-dense points that can be recovered.
To allow for real-time computation, we parallelize this process
using a secondary thread that asynchronously provides prior
LiDAR map constraints. We found that a small window of
three keyframes spread over half a meter with at least 30
degrees of orientation change allowed for enough density
to constrain the assembled pointcloud during NDT while
also balancing the total computational cost. Note that other
keyframe policies are possible as long as they ensure that there
are view overlaps between sequential keyframes for a smooth
and uniform reconstruction.

D. NDT Pointcloud Registration
Having reconstructed a semi-dense pointcloud in our refer-

ence keyframe, we now look to register it to our LiDAR prior
map. We selected NDT for both its shown accuracy and speed
[37, 38], along with the possibility to quantify the uncertainty
of the registration result. NDT leverages representing the
pointcloud as a combination of normal distributions [39].
Consider a set L = {pi | i ∈ {1 . . .m}} of |L| = m point

samples that have been drawn from a Gaussian distribution
N (µ,Σ), where the mean µ and covariance Σ can be obtained
as follows:

µ =
1

|L|

|L|∑
i=1

pi (19)

n =
[
(p1 − µ)⊤ · · · (p|L| − µ)⊤

]⊤
(20)

Σ =
1

|L| − 1
nn⊤ (21)

Since all points are represented as Gaussians, NDT is
insensitive to uneven sample distributions commonly found
in LiDAR mapping applications. We use point-to-distribution
(P2D) variant of NDT [39], which formulates the registration
of a source cloud, Ls, to a target pointcloud, Lt, as a problem
of fitting the source points to the target’s distribution. In the
P2D variant of NDT, the best pose {tsR, tps}, is found by
optimizing the following objective function:

c(Ls,Mt,
t
sR, tps) =

|Ls|∑
i=1

−d1 exp
(
− d2

2
p̄⊤
si Σxi

−1 p̄si

)
(22)

with:
d1 = − log(c1 + c2) + d3 (23)
d2 = −2 log((− log(c1 exp(−1/2) + c2)− d3)/d1) (24)
d3 = − log(c2) (25)
p̄si =

t
sRpsi +

tps − µxi (26)
where c1, c2 are design constants and µxi, Σxi are the mean
and Gaussian distribution of a NDT cell in the target point-
cloud that the source point psi resides in. Using this objective
function, we can derive the Hessian matrix whose inverse is an
approximate covariance of the registration result [39, p. 61].
Special care is taken to transform the calculated measurement
covariance into the correct measurement error state, see (7)-
(8), as the P2D NDT implementation within the PCL library
[40] uses Euler angles to represent orientation, thus requiring a
covariance propagation to transform the orientation error state
into that of our quaternion parameterization [41].

To evaluate the performance of the NDT registration and
reject outliers when the problem is under constrained or noise
levels are too great, we employ the following rejection criteria
to ensure that only healthy measurements will be processed by
the filter:

(i) After calculation of the NDT measurement Hessian ma-
trix [39], we compute the minimum eigenvalue, λh, of
its negative and ensure that it is larger then a threshold.

(ii) We ensure that the negative summed cost (22), is small
and below a certain threshold.

(iii) The inlier ratio between the final set of NDT inliers and
initial source cloud reflects the quality of the registration
result and should ideally be near one.

(iv) The final prior LiDAR map constraint measurement
[see (7) and (8)], is processed through a Mahalanobis-
distance test.

V. EXPERIMENTAL VALIDATIONS

A. Monte Carlo Simulations
We first evaluated the proposed visual-inertial localization

(termed map-aided MSCKF) within the Gazebo simulator [42].
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TABLE I
MONTE CARLO SIMULATION PARAMETERS

Parameter Value Parameter Value

IMU Freq. (Hz) 200 Camera Freq. (Hz) 20

Gyro noise σ (rad/s) 2.6968e-04 Pixel intensity σ (pixel) 4

Gyro bias σ (rad/s) 2.9393e-06 NDT Cell Resolution (m) 0.7

Acc. noise σ (m/s2) 4.00e-3 Pointcloud noise σ (m) Table II

Acc. bias σ (m/s2) 4.00e-4 Trajectory length (m) 836

TABLE II
RMSE WITH DIFFERENT LEVELS OF PRIOR MAP NOISES.

RMSE MSCKF

MSCKF
w/ Map
σ =

0.03m

MSCKF
w/ Map
σ =

0.30m

MSCKF
w/ Map
σ =

0.40m

MSCKF
w/ Map
σ =

0.50m

Position (m) 3.19 1.26 2.33 3.08 3.24

Orientation (deg) 2.77 1.11 1.87 2.22 2.94

A mobile Pioneer 3-DX [43] with a stereo camera, LiDAR,
and IMU was simulated moving through a constructed town
(see Figure 5). Using the groundtruth poses, the prior LiDAR
pointcloud was generated by transforming each scan into the
starting frame. The entire cloud was downsampled with a voxel
grid filter of 0.2 meters to increase its sparsity. The groundtruth
IMU readings were corrupted with white noise and random
walk biases, while the synthetic images were corrupted with
white noise distributed with an intensity distribution. All other
key simulation parameters are specified in Table I. Due to
the large-scale nature of the environment (far away objects)
for the small-scale robot considered, we especially found that
using multiple keyframes (three in the keyframe window) was
necessary to ensure that enough environmental structure was
available to constrain the NDT registration.

As shown in Figure 6, the proposed method achieved an
overall lower root mean square error (RMSE) [44] in both
orientation and position estimates. It is interesting to test the
performance of the proposed method with different levels of
prior map noises. We injected different white noise standard
deviations σ to all points in the simulated prior map. The
average RMSE of position and orientation errors for 5 Monte
Carlo simulations are shown in Table II. We found that
our system is robust to the quality of the prior map and
outperforms the standard MSCKF even with the prior map
deteriorated to 0.4 meter noise levels.

B. Real-World Experiments

To further validate, we compared the proposed map-aided
MSCKF with the standard MSCKF [1] and VINS-Mono
[6] on the EurocMav datasets [36]. The EurocMav datasets
provide stereo greyscale images at 20Hz along with a 200Hz
ADIS16448 IMU and groundtruth room scan (prior LiDAR
map). Each dataset has a dynamic aerial trajectory, of average
length of 70 meters, that each exhibit varying degrees of
motion blur and textureless regions. To our knowledge, there is
no cross-modality algorithm that leverages LiDAR prior maps
within the visual-inertial architecture, and thus we compare
to the start-of-the-art VINS-Mono which can leverage loop-

Fig. 5. The bird’s-eye view of the synthetic Gazebo dataset. The 836 meter
long groundtruth trajectory of the robot is shown in red. The maximum
velocity of the robot was set to be 2.5 m/s.
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Fig. 6. Simulation results of the orientation and position RMSE for the
standard MSCKF and map-aided MSCKF with a prior LiDAR map under
noises of σ = 0.03m).

closures to limit long-term drift. On startup, the prior LiDAR
map is loaded into memory and the position of the filter
initialized in the map frame with a perturbation of the provided
groundtruth transform (in our experiments, we found that NDT
could easily recover from perturbations of 3 cm and 5 degrees
in the initial guess). In practice one would need to solve the
“kidnapped robot” problem to initialize the unknown transform
between the initialized frame and that of the map, which is not
trivial. An example trajectory and reconstructed semi-dense
pointcloud that has been registered to the global prior LiDAR
map can be seen in Figure 1.

To evaluate the accuracy of the compared localization algo-
rithms, we compute the absolute trajectory error (ATE) [45]
and are shown in Table IV (units are in meters). Note that these
ATE results are averaged over 5 runs in order to account for
the randomness inherent in the feature tracking frontends. It is
clear from Table IV that the proposed map constrained method
in general outperforms the standard MSCKF and obtains
similar performance to that of VINS-Mono with loop closures.
This is expected as our odometry system is able to leverage the
loop closure information provided by the prior map and should
perform with similar accuracy to methods that leverage other
forms of loop closure information. Shown in Table III (units
are in meters) and Figure 7, we have additionally calculated the
Relative Pose Error (RPE) [46] over all trajectories to provide
insight into how the error of each algorithm grows with the
trajectory length. We can see that as the length of the trajectory
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TABLE III
RELATIVE POSE ERROR FOR DIFFERENT SEGMENT LENGTHS.

Segment
Length MSCKF MSCKF

w/ Map
VINS-Mono
(odom) [6]

VINS-Mono
(loop) [6]

7m 0.136 0.143 0.162 0.156
14m 0.148 0.154 0.180 0.160
21m 0.194 0.184 0.233 0.208
28m 0.202 0.175 0.246 0.223
35m 0.237 0.191 0.273 0.260
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Fig. 7. Boxplot of the relative trajectory error statistics. The middle box
spans the first and third quartiles, while the whiskers are the upper and lower
limits. Plot best seen in color.

segment grows the larger impact the map constraint has on
the estimate. The poor performance in the shorter segments
lengths are likely due to the correction “jumps” caused after
update when using the prior map constraint.

Timing averages of the major threads in the system can
be seen in Table IV. The standard MSCKF does not use the
secondary map constraint thread and thus, with sparse feature
tracking only, can operate on the upwards of 30 Hz. The
proposed system has only the overhead of a secondary thread
that performs the semi-dense reconstruction and NDT with
the LiDAR prior map which operates at a lower 1.25 Hz
and updates the state as soon as NDT registrations become
available.2 We note that the pose estimate is still updated on
the upwards of 30 Hz with the standard sparse feature tracks.
We found that the computation within the secondary NDT
thread is split evenly between semi-dense reconstruction, NDT
pointcloud registration, and covariance calculation, while the
main sparse visual-inertial odometry thread is dominated by
the sparse feature tracking.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a tightly-coupled state
estimation algorithm for visual-inertial localization with prior
LiDAR map constraints. Within the efficient MSCKF frame-
work, the proposed approach is able to provide real-time
6DOF pose estimates. In particular, in order to leverage an
accurate prior map of a different sensing modality to bound
localization errors, we perform NDT to register visual semi-
dense map (pointclouds) to the LiDAR prior map, whose
results are then tightly fused in the MSCKF update along with
the sparse visual feature measurements. It should be noted

2We ran on an Intel(R) Xeon(R) E3-1505Mv6 @ 3.00GHz CPU.

that, as the cameras and IMUs are becoming ubiquitous in
part due to their complementary sensing capabilities as well as
decreasing cost and size, the proposed low-cost light-weight
global localization holds great implications in a wide range
of practical applications such as autonomous driving. In the
future, we will investigate how to efficiently take into account
the prior map uncertainty into our tightly-coupled estimation
framework, as well as how the visual semi-dense map can be
used to update the prior map.
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[40] R. B. Rusu and S. Cousins. “3d is here: Point cloud library (pcl)”.
In: 2011 IEEE International Conference on Robotics and Automation.
IEEE. 2011, pp. 1–4.

[41] N Trawny and S. Roumeliotis. Jacobian for Conversion from Euler
Angles to Quaternions. Tech. rep. University of Minnesota, Dept. of
Comp. Sci. & Eng., 2005, p. 2005.

[42] N. Koenig and A. Howard. “Design and use paradigms for gazebo, an
open-source multi-robot simulator”. In: 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems. Vol. 3. IEEE. 2004,
pp. 2149–2154.

[43] Retrieved February 24, 2019, from https://robots.ros.org/pioneer-3-
dx/. 2019.

[44] Y. Bar-Shalom and T. E. Fortmann. Tracking and Data Association.
New York: Academic Press, 1988.

[45] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers.
“A benchmark for the evaluation of RGB-D SLAM systems”. In:
2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE. 2012, pp. 573–580.

[46] Z. Zhang and D. Scaramuzza. “A Tutorial on Quantitative Trajectory
Evaluation for Visual(-Inertial) Odometry”. In: 2018 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems. IEEE. 2018,
pp. 7244–7251.

https://robots.ros.org/pioneer-3-dx/
https://robots.ros.org/pioneer-3-dx/

	Introduction
	Related Work
	Visual-Inertial State Estimation
	State Vector
	State Propagation
	State Update
	LiDAR Map Constraints
	Visual Feature Measurements


	Visual Processing
	Semi-dense Reconstruction
	Depth Correspondence Matching
	Pointcloud Assembly
	NDT Pointcloud Registration

	Experimental Validations
	Monte Carlo Simulations
	Real-World Experiments

	Conclusions and Future Work

