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Abstract

In this paper, we study state estimation of multi-visual-inertial systems (MVIS) and develop sensor fusion algorithms
to optimally fuse an arbitrary number of asynchronous inertial measurement units (IMUs) or gyroscopes and global
and/or rolling shutter cameras. We are especially interested in the full calibration of the associated visual-inertial
sensors, including the IMU/camera intrinsics and the IMU-IMU/camera spatiotemporal extrinsics as well as the image
readout time of rolling-shutter cameras (if used). To this end, we develop a new analytic combined IMU integration
with inertial intriniscs — termed ACI? — to pre-integrate IMU measurements, which is leveraged to fuse auxiliary IMUs
and/or gyroscopes alongside a base IMU. We model the multi-inertial measurements to include all the necessary inertial
intrinsic and IMU-IMU spatiotemporal extrinsic parameters, while leveraging IMU-IMU rigid-body constraints to eliminate
the necessity of auxiliary inertial poses and thus reducing computational complexity. By performing observability
analysis of MVIS, we prove that the standard four unobservable directions remain —no matter how many inertial sensors
are used, and also identify, for the first time, degenerate motions for IMU-IMU spatiotemporal extrinsics and auxiliary
inertial intrinsics. In addition to the extensive simulations that validate our analysis and algorithms, we have built our
own MVIS sensor rig and collected over 25 real-world datasets to experimentally verify the proposed calibration against
the state-of-the-art calibration method Kalibr. We show that the proposed MVIS calibration is able to achieve competing

accuracy with improved convergence and repeatability, which is open sourced to better benefit the community.
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1 Introduction

A camera image provides two degree-of-freedom (DoF)
bearing observations to environmental features, while a 6-
axis MEMS inertial measurement unit (IMU), which consists
of a gyroscope (or gyrometer) and an accelerometer, can
measure high-rate angular velocity and linear acceleration
of a rigid sensor body. The fusion of cameras and IMUs
have become prevalent in autonomous vehicles and mobile
devices in the recent decade due to their decrease in cost
and complementary sensing characteristics. This has led to a
significant progress of developing visual-inertial navigation
system (VINS) algorithms focusing on efficient and accurate
pose estimation (Huang 2019). While many works have
shown accurate estimation for the minimal sensing case
of a single camera and IMU (Mourikis and Roumeliotis
2007; Bloesch et al. 2015; Forster et al. 2016; Qin et al.
2018; Geneva et al. 2020), it is known that the inclusion
of additional sensors can provide improved accuracy due
to additional information and robustness to single sensor
failure cases (Paul et al. 2017; Eckenhoff et al. 2021).
Recently, multi-visual-inertial systems (MVIS) — which uses
multiple IMUs and multiple cameras for 6 DoF pose tracking
and 3D mapping — have been deployed to micro aerial
vehicles (MAVs), AR/VR devices and autonomous vehicles,
thus the need for accurate sensor calibration and state
estimation algorithms continues to grow. We have previously
investigated the single IMU-camera calibration case (Yang
et al. 2023b), showing that even a small perturbation
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to calibration parameters may cause significant trajectory
accuracy loss, which calls for accurate calibration of MVIS.

Regarding state estimation, many works have explored
to use multiple vision sensors for better VINS perfor-
mance (Leutenegger et al. 2015; Usenko et al. 2016; Paul
et al. 2017; Sun et al. 2018; Kuo et al. 2020; Campos
et al. 2021; Fu et al. 2021). In particular, Leutenegger et al.
(2015), Usenko et al. (2016) and Fu et al. (2021) have
shown that stereo camera or multiple cameras can achieve
better pose accuracy or lower the uncertainties of IMU-
Camera calibration. Only a few works recently investigate
multiple inertial sensor fusion for VINS (Kim et al. 2017,
Eckenhoff et al. 2019b; Zhang et al. 2020; Wu et al. 2023;
Faizullin and Ferrer 2023), showing that the system robust-
ness and pose accuracy can be improved by fusing addi-
tional IMUs. For optimal fusion of multiple asynchronous
visual and inertial sensors for MVIS, it is crucial to provide
accurate full-parameter calibration for these sensors, which
include: (i) IMU-IMU/camera rigid transformation, (ii)
IMU-IMU/camera time offset, (iii) time-varying IMU biases,
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(iv) constant IMU intrinsics, including scale/skewness cor-
rection for gyroscope/accelerometer, g-sensitivity, and the
rotation between the gyroscope and accelerometer, (v) cam-
era projection/distortion model parameters, and (vi) image
readout time of rolling shutter (RS) cameras.

While there exists literature regarding to multi-camera
and multi-IMU navigation systems (Furgale et al. 2013;
Rehder et al. 2016; Kim et al. 2017; Geneva et al. 2020;
Eckenhoff et al. 2021; Fu et al. 2021; Zhi et al. 2022), most
of these works do not support full parameter calibration.
For example, only synchronized multiple global shutter
(GS) cameras are supported in (Geneva et al. 2020; Fu
et al. 2021), which cannot handle measurements from
multiple asynchronous inertial sensors or RS cameras. Only
rigid transformations for multiple IMUs can be calibrated
in the work of (Kim et al. 2017). Although the work
(Zhi et al. 2022) can handle the spatiotemporal calibration
for asynchronous cameras and IMUs, rolling shutter (RS)
calibration and IMU/camera intrinsic calibration are missing.
The work (Eckenhoff et al. 2021) can calibrate multiple
asynchronous RS cameras and IMUs but the IMU intrinsic
parameters (including scale/skewness correction and g-
sensitivity) were not estimated. Although the work (Furgale
et al. 2013) and its extension (Rehder et al. 2016) support the
spatiotemporal calibration for multiple IMUs and cameras
with their intrinsics, they do not support hybrid calibration of
GS/RS cameras, nor the joint optimization of IMU-IMU or
IMU-Camera time offsets. To the best of our knowledge, no
work can perform joint optimization of all these calibration
parameters, which are critical for multi-sensor fusion.

In this paper, we thus aim to perform full-parameter
joint calibration of MVIS, including IMU-IMU and IMU-
Camera spatiotemporal calibration, IMU/camera intrinsics
and RS readout time. Note that IMU intrinsics include both
time-varying biases and constant IMU intrinsics terms, such
as scale/skewness correction for gyroscope/accelerometer,
g-sensitivity and the rotation between gyroscope and
accelerometer. All the IMU intrinsics are jointly estimated
in the proposed MVIS. Joint calibration is often necessary
due to its removal of specialize IMU calibration fixtures, e.g.
rate tables, since the aiding camera sensor is able to provide
exteroceptive information concurrently. Additionally, key
parameters such as IMU scale and camera focal lengths are
sensitive to environmental humidity and temperature, which
can cause unmodeled errors if sequential data collections are
used. Many works have shown the benefits of concurrent
estimation and calibration on trajectory and parameter
accuracy. For example, Rehder et al. (2016) showed that
estimating IMU intrinsics improves IMU-Camera extrinsic
calibration, Fu et al. (2021) showed that joint calibration
in multi-camera systems reduced parameter uncertainty, and
Li et al. (2014); Huai et al. (2022) gained improvements
in system performance (including reductions in reprojection
errors) by performing concurrent full-parameter estimation.
Moreover, no observability analysis focusing on MVIS
is available in the literature. We specifically focus on
a MVIS which contains multiple IMUs (IMU-IMU) or
additional gyroscopes (IMU-Gyroscope), as the fusion of
multiple low-cost noisy gyroscopes holds great potential to
improve downstream orientation estimation (Zhang et al.
2020; Eckenhoff et al. 2021). In particular, the degenerate
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motion study of the spatiotemporal calibration for IMU-
IMU is missing from the literature, which greatly limits our
understanding of such systems.

To fill this gap, we first leverage our previous work on
analytic combined IMU integration (Yang et al. 2020a) to
derive a new IMU integrator for IMU intrinsic calibration
(i.e., ACI®). As compared to the conventional IMU pre-
integration (Lupton and Sukkarieh 2012; Forster et al.
2016) and general pre-integration (Fourmy et al. 2021)
with only mean correction from bias terms, we support
inertial intrinsics calibration and have both the mean and
covariance corrections when linearization points change for
biases and constant IMU intrinsics. In addition, we also
model cross correlations between IMU navigation state and
bias, as done in (Eckenhoff et al. 2019a; Brossard et al.
2021), which are missing from (Forster et al. 2016; Fourmy
et al. 2021). Additionally, ACI? analytically computes IMU
intrinsics Jacobians which has not been seen in the literature.
Based on this, we design a novel algorithm to fuse multiple
IMU/gyroscope measurements by using the rigid body
constraints between these inertial sensors. A complete MVIS
algorithm is developed, which can truly jointly estimate
all the calibration parameters (spatiotemporal parameters
for IMU-IMU and IMU-Camera, IMU/camera intrinsics,
readout time) within a batch nonlinear least squares (NLS)
optimization framework. Based on the linearized system
models, the observability analysis of MVIS with full-
calibration is performed. We show that all these calibration
parameters are observable given fully excited motions, and
also, for the first time, identify the degenerate motions for
IMU-IMU and IMU-Gyroscope spatiotemporal calibration.
By building our own MVIS sensor rig with multiple IMUs
and GS/RS cameras for data collection, we validate the
proposed system against the state-of-art Kalibr (Furgale et al.
2013; Rehder et al. 2016).

In particular, the main contributions of this work are the
following:

e We propose an optimization-based multi-visual-
inertial (IMU and/or gyroscope) sensor calibration
algorithm, which jointly estimates all spatiotemporal
(including RS readout time) and intrinsic parameters
for an arbitrary number of visual and inertial sensors.

* Building upon our prior work (Yang et al. 2020a),
we develop a new analytic combined IMU integrator
with inertial intrinsics (i.e., ACI®), which corrects
both mean and covariance of pre-integrated IMU mea-
surements when IMU bias and intrinsic linearization
changes. We also propose an auxiliary IMU fusion
algorithm that allows for both the extrinsic and intrin-
sic calibration for multiple IMU sensors.

* We perform comprehensive observability analysis for
the MVIS with full-parameter calibration, and, for
the first time, identify the degenerate motions related
to IMU-IMU calibration. We show that under one-
axis rotation motion, the rotation between IMU and
gyroscope is unobservable along rotation axis. We
also show that under constant local angular and linear
velocity, the time offset between IMUs is observable,
which counters our intuitions.

* We conduct extensive simulations with three typical
motion profiles. The simulation results confirm that we
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are able to recover all visual and inertial calibration
parameters with the proposed MVIS in the fully-
excited motion case. Specifically, 25 datasets collected
by our self-made sensor rig are also used for evaluating
the proposed MVIS against state-of-art calibration
methods, and the results prove that the proposed
approach achieves comparable accuracy and better
repeatability. The identified degenerate motions for
the pertinent calibration parameters are also verified
through both simulation and real-world experiments.

The paper is organized as follows: after briefly reviewing
the related works in the next section, we present the proposed
MVIS estimation framework in Section 3. The visual-inertial
measurement constraints used by the system are explained
in Sections 4-7, while in Sections 8-9 we present the
observability analysis and identified degenerate motions. We
validate our analysis and algorithms in Sections 10-11 and
conclude the paper in Section 12.

2 Related Work

While there exists rich literature in VINS (Huang 2019), in
the following, we only review the works closely related to
MVIS and the calibration of MVIS, which can be categorized
as: (i) multiple inertial sensors aided navigation systems, (ii)
multiple cameras aided inertial navigation systems, and (iii)
multi-camera and multi-IMU navigation systems.

2.1 Multi-inertial navigation

There are a few works using multiple inertial sensors to
improve navigation system. Wu et al. (2023) proposed to use
triple IMUs with wheel encoders to improve dead reckoning
and showed that the drifting rates continue dropping as the
number of used IMU increases. Faizullin and Ferrer (2023)
proposed to use best axes composition (BAC) algorithm to
select the best fitting data from multiple inertial sensors
to avoid systematic errors when fusing multiple customer
grade IMUs. They showed that the inertial navigation system
performances can be improved by increasing the number
of used inertial sensors. Kim et al. (2017) fused multiple
IMUs through reformulating pre-integration (Forster et al.
2016) by transforming the auxiliary inertial readings into
the base inertial frame. However, they relied on the
numerical computation of angular accelerations to perform
this transformation. They did not estimate the IMU-IMU
related calibration parameters, either.

Zhang et al. (2020) proposed to convert the readings
from multiple IMUs into a single “virtual” synthetic IMU
measurement, which is expected to be less noisy. While
offering computational savings compared to other multi-
inertial fusion algorithms, it relies on having perfectly known
spatiotemporal calibration for these inertial sensors. It is
clear that the above mentioned works all assume the high-
accuracy IMU-IMU calibration is provided and they leverage
multiple IMUs but with only one camera for pose estimation.
Jadid et al. (2019) showed that the fusion of three low-cost
calibrated IMUs can be used to achieve similar pose tracking
performances as a single high-end IMU in the application of
tracking head mounted device (HMD). They also proposed
to use static IMU measurements to calibrate accelerometer
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intrinsics and non-static IMU measurements to calibrate
the gyroscope intrinsics. Lee et al. (2022) proposed an
extrinsic calibration algorithm for multiple IMUs when
these IMUs are rigidly connected and moving arbitrarily.
Only measurements from these IMUs are needed for the
calibration. However, the time offsets between these IMUs
and the IMU intrinsic calibration are all missing from this
work.

Although all the above mentioned works have shown
that fusion of multiple IMUs to wheel-INS or VINS can
improve pose tracking accuracy, most of them rely entirely
or partially on high-accuracy prior calibration of these
IMUs: including IMU-IMU spatiotemporal calibration and
the inertial intrinsics of these IMUs. Instead, this paper aim
to solve the full parameter calibration for multiple IMUs,
including intrinsics, extrinsics and time offsets, especially for
the application of multiple inertial sensors in VINS domain.

2.2 Multi-camera aided inertial navigation

There have been quite a few works investigating fusing
observations from multiple cameras for visual-inertial
navigation. Processing all the measurements from multiple
cameras will significantly slow down the system. Hence,
Kuo et al. (2020) proposed an information based keyframe
selection algorithm for efficient multi-camera fusion. Zhang
et al. (2022) proposed an efficient feature selection and
tracking algorithm to speed up the measurement processing
for multiple cameras. These two works only fuse visual
observations from multiple cameras but without considering
the sensor calibration. Fu et al. (2021) proposed to use
multiple synchronized cameras to improve IMU-Camera
calibration. They proved that the extrinsic covariance bound
will be smaller when more cameras are used. This indicates
that the IMU-Camera calibration can converge faster with
more confidences. Our previous work, OpenVINS (Geneva
et al. 2020) supports synchronized multi-camera aided VINS
with extrinsic, intrinsic and temporal calibration between
IMU and camera. However, rolling shutter cameras are not
supported by either of the above works.

In this paper, the proposed MVIS support the extrinsic and
intrinsic calibration for multiple asynchronous global shutter
or rolling shutter cameras. We provide quantitative analysis
for how the calibration estimates is improved when 1, 2, or 3
cameras are used simultaneously. In addition, the proposed
MVIS supports simultaneous calibration of global shutter
and rolling shutter cameras with image readout time.

2.3 Multi-camera and multi-IMU navigation

There are only a few works focusing on joint calibration
for multiple cameras and multiple IMUs. Zhi et al
(2022) proposed MultiCal, which exploits continuous-
time curves to represent pose states and supports the
spatial and temporal calibration for multiple IMUs and
cameras with planar targets. However, rolling shutter camera
calibration and IMU/camera intrinsic calibration are not
supported. Eckenhoff et al. (2021) proposed a filter based
framework for fusing multiple IMUs and multiple cameras
by estimating each auxiliary IMU with full state (containing
orientation, position, velocity, and biases), and enforced
relative pose constraints between sensors at fixed rates.
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Figure 1. The MVIS sensor frames: base IMU (IMUb) sensor
composed of accelerometer frame {a} and gyroscope {w},
base IMU frame {1} is determined to coincide with gyroscope
frame {w} or accelerometer frame {a}, auxiliary IMU (IMUa)
{I.}, auxiliary gyroscope (GYRO) {I4}, and camera (CAM) {C'}
frames. { A, } and { A} represent the gyroscope and
accelerometer frames of the auxiliary IMU. While an IMU can
read both angular velocities and linear acceleration, a
gyroscope (GYRO) only reads angular velocities. The system
observes environmental landmarks py through its cameras.
The system can contain arbitrary amounts of sensors.

It also showed robustness to inertial sensor failures. This
work does not take into account the inertial intrinsic
parameters and only includes the IMU-IMU and IMU-
Camera spatiotemporal calibration. Additionally, their multi-
IMU constraints required an additional 6 DoF pose for each
auxiliary IMU since each IMU is propagated independently
forward. Rehder et al. (2016), extended the continuous-time
Kalibr framework (Furgale et al. 2013), to calibrate the
extrinsic and intrinsic parameters of auxiliary inertial sensors
by formulating the angular velocity and linear accelerations
as functions of the trajectory spline derivatives. However,
when performing IMU-Camera and IMU-IMU calibration,
the camera intrinsics and IMU-IMU time offset are fixed
instead of jointly optimized with other parameters. It does
not support visual-inertial rolling shutter calibration. In
addition, no theoretical consistency analysis or 3 sigma plots
for IMU intrinsic calibration are provided for validation.

Unlike the above mentioned works, the proposed MVIS
supports multiple IMU/gyroscope calibrations with both
global shutter and rolling shutter cameras. All related
parameters, including IMU/camera intrinsics, spatial and
temporal parameters between IMUs and cameras, can
be calibrated. In addition, we also, for the first time,
provide MVIS observability analysis, which shows that
all these calibration parameters are observable given
fully excited motions. We also investigate the degenerate
motions that might cause certain calibration parameter
to fail, especially for IMU-IMU and IMU-Gyroscope
spatiotemporal calibrations.

3 Multi-Visual-Inertial System

In this section, we first present the full IMU model
(containing scales, axis-misalignment and g-sensitivity) and
camera model (containing camera intrinsics, lens distortion
and RS readout time) in the MVIS. We then introduce the
state vector containing all the calibration parameters for an
arbitrary number of IMUs and cameras, followed by the
nonlinear least-squares (NLS) formulation.
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3.1 IMU Model

Since an IMU can read angular velocity and linear
acceleration, it is assumed to consist of two distinguishable
frames (Yang et al. 2023b): gyroscope frame {w} and
accelerometer frame {a}. Similar to the IMU models in (Li
et al. 2014; Schneider et al. 2019; Yang et al. 2023b), the
raw angular velocity “w,, from the gyroscope and linear
acceleration “a,,, from accelerometer is written as:

Y, = T,YRIw+ T, 'a+b, +n, %))
“a,, = T,R'a+b, +n, 2)

where T,, denotes the scale and axis misalignment for
{w} while T, represents the scale and axis misalignment
for {a}. T, represents the g-sensitivity. YR and ¢
denote the rotation from base IMU {I} to the gyroscope
and acceleration frame, respectively. We use 6 parameters
(indexed column-wise upper/lower triangular matrix) to
describe the T,, and T, while T, remains a 3x3 full
matrix. by and b, are the gyroscope and accelerometer
biases, which are both modeled as random walks, and n,
and n, are the zero-mean Gaussian noises contaminating the
measurements. The local acceleration /a is defined as:

'a="'ay - ;R 3)

where “g=1[0 0 —981]T; ’a, refer to the local
acceleration of the rigid sensor body, which reflects the
motion of the sensor.

The corrected angular velocity /w and linear acceleration

Ta are thus defined as:

'w =!I RD, (“w, —by; —n, — T, a) 4)
Ta = gRDa (“a; — b, —ny) 5)

where D,, = T;! and D, = T . Instead of T,, and T,
D,, and D, are estimated, since they can be used directly
for computing the corrected angular velocity /w and linear
acceleration ‘a. In the following, we refer D,, as the
gyroscope correction and D, as accelerometer correction.

To simplify the transformation among these three frames:
{I}, {a} and {w}, the IMU frame {I} is chosen to coincide
with either {w} or {a} (see Fig. 1).

In practice, we consider two models in this paper: RPNG
model and Kalibr model®.

* RPNG model: IMU frame {/} coincides with {w} and
I'R=15.T, IR, D, and D, are estimated. D, is

9> a
in upper triangular matrix form as:

d*l d*? d*4
0 0 ds

where the subscript * denotes either w or a.
* Kalibr model: IMU frame {/} coincides with {a}
and IR = I5. T,, L R and D/, and D/, are estimated.

9> w

*https://github.com/ethz-asl/kalibr/wiki/
Multi-IMU-and-IMU-intrinsic-calibration


https://github.com/ethz-asl/kalibr/wiki/Multi-IMU-and-IMU-intrinsic-calibration
https://github.com/ethz-asl/kalibr/wiki/Multi-IMU-and-IMU-intrinsic-calibration

3 MULTI-VISUAL-INERTIAL SYSTEM

D', is in lower triangular matrix form as:

ds1 0 0
D! = |dw du O (7
diz dis  dis

where the subscript * denotes either w or a.

Since the translation between the gyroscope and the
accelerometer “p,, has been safely ignored in most VINS
algorithms (Li et al. 2014; Schubert et al. 2018; Schneider
et al. 2019; Yang et al. 2020b) (e.g., they assume “p,, = 0),
in the remaining of our analysis the RPNG model will be used
to be compatible with existing literatures. For most MEMS
IMU s, this translation should be sufficiently small and in
the case that they are not, the Kalibr model is sufficient
to ensure proper modeling. The Kalibr model is used to
compare with Kalibr (Furgale et al. 2013) and benefits from
assuming the IMU frame to aligned with the accelerometer.

3.2 Camera Model

Cameras follow a pinhole model as in (Geneva et al. 2020;
Eckenhoff et al. 2021). A 3D point feature, Gp t, is captured
by a camera with visual measurement function:

-
Zc = [U U] +nc £ hy (Zn,xc,,) + Do ®)

where {u,v} is the distorted image pixel coordinate; z,, =
[t v,] T represents the normalized image pixel; n¢c denotes
the measurement noise; hy(-) maps the normalized image
pixel onto the image plane based on the lens distortion
models and camera intrinsic parameters Xc;,, :

XCo, = [fu fo Cu co k1 ko p1 pa] ©)

Specifically, x¢,, can represent a pinhole model ({ fu, f,}
denotes focal length and {c,,c,} the center point)
with radial-tangential (radtan) or equivalent-distant
(equidist) distortion.

For radtan distortion model, k; and k; represent the
radial distortion coefficients while p; and p, are tangential
distortion coefficients. We refer the reader to (OpenCV
Developers Team 2021; Geneva et al. 2020) for details on the
equidist distortion model. Note that the radtan model
is used in the following derivations and analysis. With x¢,, ,
h,(-), the radtan model is given by:

ul _ fu 0 Ud Cy

o= Rl () L
ug|  [dun + 2p1unv, + pa(r? + 2u2) a1
va| | dvn + p1(r? + 202) + 2paun vy,

where r2 = w2 +v2;d =1+ k1r? + kar?;

GS cameras expose all pixels at a single time instance,
while RS cameras expose each row sequentially. As shown
by (Guo et al. 2014), it may lead to large estimation errors
if RS effects are not taken into account. Additionally, the
camera and IMU measurement timestamps can be incorrect
due to processing delays, or different clock references. To
address this, we model both the time offset and camera
readout time to ensure all measurements are processed in
a common clock frame of reference and at the correct
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corresponding poses. Specifically, ¢4 denotes the time offset
between IMU and camera timeline while ¢, denotes the
constant RS readout time for the whole image. If ¢ denotes
the time when the pixel is captured, the RS measurement
function for a normalized image pixel z,, is given by:

1 [z
Yy — L (Co.) & [ f} 12
“p; =hi(¢"R. 91, FR,“p1,py)  (13)

- ?Ré(t)R (“pr —“prwy) + “pr

where {R,“p;} represents the rigid transformation
between the IMU and camera frame. As wusual,
{‘;’(t)R, “pr} is the IMU global pose corresponding
to the camera measurement time ¢.

If the image pixel z¢, Eq. (8), is captured in the m-th
row (out of total M rows), and t; is the IMU state time
corresponding to the captured image time ¢ when the first
row of the image is collected, the relationship between ¢;,
to, tq and t,. are expressed as:

tc =tr +tq (14)
m
t=1t;+ Mtr (15)

If the readout time ¢,. = 0, then the camera is actually a GS
camera and all rows are a function of the same pose.

3.3 State Vector

The proposed MVIS can support any number of IMUs and
cameras. For simplicity of presentation, we only consider
one representative sensor (one base IMU, one auxiliary IMU,
one auxiliary gyroscope and one RS camera) of each types in
the state vector. Both simulation and real world experiments
use multiple auxiliary IMUs/gyroscopes and cameras.

The state vector of MVIS contains the base IMU
states X7, the auxiliary IMU states X7, and the auxiliary
gyroscope states Xy, from time stamp t; to ¢x. Additionally,
it also contains all the constant sensor intrinsics X7,
spatiotemporal extrinsics Xg,, and environmental features

x=[x xl xl AL xL xf]T e
T

Xr=[x] xj, x; | (17)

T
X, = [x}al x] xjk} (18)

T T T17
X, = [xlgl Xpoooo Xng:| (19)
where X contains 3D feature positions “p g @=1,---,0):

T

Xp = [“pf, - “pj] (20)

The sub-states x;, xj, and xj, denote the base IMU
state, auxiliary IMU state and auxiliary gyroscope state,
respectively. They contain the following:

xr =[xl |x7]" 2 [$07 €p] Sv] [bI bI]" (1)
xi, = [OvE [xh,]T 2 [Ov] [bh bh]’ (22)
x;. = bg (23)
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where x7, representing the time varying IMU state, contains
IMU navigation state x,,, and bias state xj ; ?0 (i o)
is 3D angle-axis vector corresponding to the rotation ?R
(i R) from the base (auxiliary) IMU frame to global frame
{G}. Note that §6 =log (fR) with log(-) defined as
the log of SO(3) (Barfoot 2017). “p; (®pr,) and “v;
(%v1,) represent the global position and velocity of base
(auxiliary) IMU in {G}. b, and b, denote the gyroscope
and accelerometer bias for base IMU, respectively. ba,
and by, denote the gyroscope and accelerometer bias for
auxiliary IMU, respectively. bg, denotes the gyroscope bias
for auxiliary gyroscope. We did not keep a full navigation
state for auxiliary IMU/gyroscope since the poses can be
recovered by the rigid body transform from the base IMU.
Note that IMU state x; is created based on IMU frame
corresponding to the camera image time. All the IMU
readings between two image timestamps will be used for
state estimation.

X, contains constant base IMU intrinsics x;,,, constant
auxiliary IMU intrinsics X 4,, , constant auxiliary gyroscope
intrinsics x¢,, and camera intrinsics x¢;,,, :

XI" = [XZTVL X:Xin Xgin Xgin]—r (24)
Xin = [XI) Xz—zr X;g ({LHT}T (25)
T T T I T T
xan = [xh, xh, xh, 67] (26)
XGin = XG,, 27)

where x,, (X4,), Xq (Xxa,) contains all the 6 column-
wise parameters from gyroscope correction D, and
accelerometer correction D, for base (auxiliary) IMU,
respectively. x7, (x4,) contains all the 9 parameters for
g-sensitivity T, and T,, from base (auxiliary) IMU,
respectively. 16 (ffaﬂ) denotes the rotation from the
accelerometer frame to the base (auxiliary) IMU frame.
Xq,, denotes the 6 column-wise parameters from gyroscope
correction D,, for auxiliary gyroscope.

Xg, contains the spatiotemporal calibrations for base
IMU to auxiliary IMU x; ,, base IMU to auxiliary gyroscope
X7, and base IMU to camera x;,,, respectively:

Xpo =[x, x[, x| (28)
xi, =507 'pl ta] (29)
xio =107 ta,] (30)
xio = [L07 IpL ta t]' 31)

Note that time offset between auxiliary IMU and base IMU
is defined as: ¢4, = t, — t;, where ¢, and ¢; represent the
auxiliary and base IMU measurement time, respectively. The
IMU-Gyroscope time offset ¢4, and IMU-Camera time offset
tq are defined in a similar way as t4,. ¢, denotes the whole
image reading out time for the RS camera. Note that all the
calibration parameters are summarized in Table 1.

3.4 NLS Formulation

Given measurements zg from a sensor S, with additive white
Gaussian noise ng, we have:

Zg = hs(X) +ng, ng ~ N(O,Rs) (32)
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Table 1. The full-calibration parameters in the proposed MVIS.

Sensor Extrinsics Temporal Intrinsics Qty
Base IMU - - Xin 1
AuxIMU 1 R,'py, ta, XA 21
Aux Gyro L R ta, XG0 >1

Camera LR, 'pc ta, tr X0, >1

where hg(-) denotes the nonlinear observation function.
Then, we can formulate the NLS problem with state x as:
. 2

mxlnz 25 — hs(x) ||z : (33)

An initial guess X© is needed to start the optimization. After

computing the incremental state correction dx, we can refine

the state estimates by X® = X© M dx, where H represents

the state manifold update (Barfoot 2017). In summary, we

have the following NLS equivalent to maximum likelihood
estimation (MLE) under some common assumptions:

min) Cr+» Cr,+» Cp,+) Cc

where C;, Cj,, Cr, and Cc denotes the cost for base
IMU, auxiliary IMUs, auxiliary gyroscopes, and cameras,
respectively, and will be built explicitly later. The NLS
from Eq. (34) can be solved through various nonlinear
least squares solvers (e.g., [POPT (Wichter and Biegler
2006), g2o0 (Kimmerle et al. 2011), GTSAM (Dellaert
2012), Google Ceres (Agarwal et al. 2023)) and yields
the optimal IMU states, point features, and full-calibration
parameters [see (16)]. In this paper, we choose the well-
known GTSAM as our NLS solver for evaluations since it
achieves comparable accuracy to other solvers (Juri¢ et al.
2021), but this should not stop interested readers from using
other solvers.

(34)

4 ACPE: Pre-integration with Intrinsics

In this section, we extend our analytic combined IMU
integration (ACI?) (Yang et al. 2020a) to incorporate
constant IMU intrinsics into preintegration, and propose an
efficient IMU integrator that can be leveraged for constant
IMU intrinsic calibration.

The IMU dynamic model is given by (Trawny and
Roumeliotis 2005; Sola 2017):

fR={R-['w], “pr=v;

G Gpl G Iy Iy
VI:IRa+ g, bg:nwga b, =Ny,

(35)

where Gg is defined in Eq. (3); n,, and n,, are
the white Gaussian noises driving the gyroscope and
accelerometer biases. ‘w = [w, w, w,]’ and |fw]|=

0 —w., wy
W, 0 —w, | represents a skew symmetric matrix
—Wy Wy 0

(Trawny and Roumeliotis 2005). We also denote X as
estimate of x while X as error states between x and X, i.e.,
x =xHx%. The IMU pose is represented on SO(3)xR?
with error states:

(36)
37)
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where exp(66) ~ I3+ |00 for small angle §6 € R3; Apit1 = Ap; + Av;ot; + AR - Piit1 (57)
exp(-) denotes the exponential operation of SO(3) (Barfoot Avigr = Av; + AR, - vi i (58)
2017). ’
) Abg;11 = Abg; +bgy; 11 (59)
4.1 Preintegration Terms Abgi1 = Abgi + baiit1 (60)
Between two sampling times ¢y and ¢;, we integrate the IMU  (here the increments are defined as:
dynamic model as follows:
G A Tnes it
‘R={R-AR (38) Riiv1=77, R=exp / Twdr (61)
trti
“pr, = “pr, + “vi it + FRAP + ‘gt (39 o e e
Piit1 = / / [ Rradrds (62)
Gva = ka + IkRAV + gét (40) i i
thtit1
by, = by, + Ab, @1 Vi1 2 / IR adr (63)
ba, = bu, + Ab, (42)
’ a Thtitl
where 6t = t; — tj, while AR, Ap, Av, Abg, and Ab,, are bgiit1 = / Nygdr (64)
the IMU pre-integration terms from ¢, to ¢;, described by: t’;*l
k4i+1
b e (65)
AR £ exp (/ I*wdT) = hp(xs,,Xx71,) 43) o trogs
By applying Eq. (56)-(60) to all the IMU readings from ¢,
°1
AP / kRI Tadrds =h (XIA’XI ) 44 1o t;, we can compute both the mean and covariance of
b T the IMU pre-integration terms (i.e. AR, Ap, Av, Ab, and
Av 2 / ﬁ Rl*adr = h, (x1,, XIj) (45) Ab,), as shown in the following sections.
ti
A [l 4.3 Mean Prediction
Abg = / l'lwng = byj - bgk (46) . . . . . .
e ' To simplify the ensuring derivations, we rewrite the IMU
t readings wy; and ag; as:
Ab, 2 / n,,dr = b, — by, (47) ' '
b Wi = Whti + Whti (66)
where we have defined: Qi = Qi + Aprs (67)
h VA CGRTOGR 48
r(X1y, XIJ) L “48) where wg; and aj,; are the error terms that contain IMU
h,(x7,,x I].) £ gRT (Gp 1, = %pr, — “vi,0t - %Gg§t2> (49) noises as defined in Appendix A. With bias terms defined in
A Eq. (54) and (55), @y and a4, are computed as [see Eq.
b, (xp,x1,) = GRT (Ovi, = Cvr, — “git) 50 (4) and (5)]:

In the following, the proposed ACI® recursively computes
the mean and covariance of these pre-integrated terms (i.e.
AR, Ap, Av, Ab, and Ab,) with intrinsics X;,.

4.2 Recursive Formulation

Assuming there are 7 — k 4+ 1 IMU readings between the
timestamps k£ and j, there exits an integer ¢ such that: k& <
k+i<k+i+1< J. ARZ, Apz, Avi, Abgl and Ab(”
denote the integration components using all IMU readings
from time ¢ to g ;:

tr+ti
AR; = exp (/ I’wdr) (51)
123
tti s
Ap; = / / “Rladrds (52)
tr tr
trti
Av; = / R adr (53)
123
Abgi = bgk+1ﬂ - bgk (54)
Abg; = bg,,, — bq, (55)

With that, we compute the pre-integration in the following
recursive form:

ARiy1 = AR; - Ry i1 (56)
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(.:’kJri = {UR]jw (wwmk+i_ABgi_ng_Tgék+i) (68)
ék—i—i = LILR]f)a (aavnk+i - ABai - Bak) (69)

Assuming that @y; and a;, are constant during the IMU
sampling interval [t , tgtit1], we have:

Riit1 = exp (Wg1i0t;) (70)
~ "Lt 1
Dijit1 = / P Rdrds - Ak (71)
Jtpti tk+1
Y N— A
= 22 Qg
~ trtit1 Tossgs R
Viitl = / ITHRdT 3 Ve (72)
thti
A
=B apti
Bgi,iJrl = 0351, baiit1 = 03x1 (73)
where E; and =5 are defined below.
thtit1 I R
=2 = T Rdr (74)
thys T
Thtitl
= / / 1+leTds (75)
A+1 k+1
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We thus recursively compute the IMU pre-integration mean:

AR;y1 = AR, Ry (76)
Apit1 = AP + AVidt; + AR; - piir1 (77)
Avii = AV + ARy - V441 (78)
A}Sgi—i-l = ABgi + Bgi,i+1 (79)
Abgii1 = Abgi + baiir1 (80)

4.4 Covariance Prediction

To compute the covariance of the preintegration measure-
ments, we need to obtain the state transition matrix and
noise Jacobians of the recursive formulation by linearizing
the three preintegration terms [see Eq. (56)-(58)]:

Riip1 = Ri,i+1Ri7i+1 (81)
= Rmﬂ exp (Jr(éi,i+1)‘:—’k+i6ti) (82)
Piit1 = Diit1 + Piit1 (83)
= Piyit1 — BaWpti + By (84)
Viitl = Vi1 + Viit1 (85)
= Viit1 — 23@Whti + Z18p4i (86)

where éi’7;+1 = a)k+i6ti and Jr(éi,iJrl) ES JT ((;Jk+z(5t2)
denotes the right Jacobian of SO(3) (Chirikjian 2011). The
integrated components =3 and =, are defined as:

[

tretitt
52 / R Ay |3, (@r4:67) 67 dr 87)
i

(1>

n

Thtit1
/ o / R Ay, 0, (@r467) 07 drds (88)
thai thai

Note that =;,4 = {1...4} can be evaluated analytically
with detailed derivations in (Yang et al. 2020b, 2023b) or
numerically using Runge—Kutta fourth-order (RK4) method.
The IMU pre-integration error states are given by:

— [6A6] Ap] A¥] AB], AB]]T (89
with these errors states defined from Eq. (51) - (55):
AR; = AR, exp (6A8;) (90)
Ap; = Ap; + Ap; oD
Ab,; = Aby; + Aby, (93)
Ab,; = Abg; + Aby, (94)

Given that,
becomes:

the linearized IMU pre-integration model

Iiy1 — (I)z 7,+1ZI + <I’bxbk + (ﬁznxzn + G; iXdr (95)

where ®;,1;, ®,, ®;, and G; are given in Appendix B.
Finally, the measurement covariance Q; follows the
recursive form:

where Qg denotes the discretized noises of (ng, ng, n,,, and
n,,,) from IMU readings. Through recursive evaluation of
the above equation, we can recover the pre-integrated IMU
measurement covariance between ¢ and ¢;.

(96)
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5 Base Inertial Costs

Since constant IMU intrinsics and biases are needed for IMU
integration, AR, Ap and Av are also functions of IMU
biases xp, and constant IMU intrinsics x;,, . In order to avoid
re-integration and re-linearization in iterative solvers when
the IMU intrinsics and bias estimates are refined, the IMU
pre-integration needs to fix the linearization points not only
for IMU biases xy, as in (Forster et al. 2016), but for constant
IMU intrinsics X;,, .

To this end, we model the pre-integrated IMU measure-
ments between time ?;, and t; as zy ~ N(zr, Qr):

10g(AR) IOg(AR(ka y Xiny ng))
o Ap Ap(xbk s Xin, n[))
zZ; = Av AV(ka  Xin, nv) (97)
Axy n,

where the accumulated noises of IMU measurements are
denoted with n; = [nj n] n) n)]" and n; ~ N (0,Qy)
from Section 4.4. We linearize the above measurements at
the current state estimate x as:

. AO A
AR — ARexp(65~ %, + 0805 +n9> (98)
a bk ax’L’ﬂ
OAD _ OAD
Ap = AP+ -=Pxy, + =P%,, +n, (99)
ox Xby ox Xin
Avenvt % LAY i, (100)
ox Xbye ox Xin

Appendix C details the Jacobian computations.

We now wish to fix the linearization points for the bias
and IMU intrinsics states about their initial guesses to
avoid costly re-integration during iterative solving. If we
use x(©) denote the initial estimates while %(°) denote the
corresponding initial error states, then we have:

!

%0 1+ %O (101)

(102)

X=X+X=

—xO 4 x 2 A%+ x

The IMU measurements can be linearized with the initial
estimates (9 as:

AR = AR ex (ama %) ‘%~A9 94 ng)  (103)
aka 8 Xin
= hr(xr,,x1,)
aAp OAp .
(0) (0) P_.(0)
Ap = Ap"Y + — D%, Xp, T —aimxm +n, (104)
= hp(X]k_,XI )
OAV _ OAV
_ (0) (0) = (0)
Av =AvY 4+ — %, Xy, T 0%, Nin +n, (105)

= h'l)(XIk7ij)

By applying Eq. (102) to Eq. (103)-(105), the pre-integrated
IMU measurement with initial biases and initial IMU
intrinsic estimates can be rewritten as:

Af{(o) = hR(XIk,X[j)

00A0 00A0
exp (— )N(bk (A)A(bk + f(z,k) — 9%, (A)A(m + 5(,‘,") — ng>
N OAp
Ap(o) = hp(xlk5xlj) a % (Aka + ka)
k
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OAp

8xm

AV = h, (x7,,x1,) —

(szn + in) — 1y

O0AV

(3'Xb (Axbk + ka)

k
_ 0AV

OXin,

(A&in + iin) — Ny

We define 0.+, Peorr and Ve, as the orientation, position
and velocity correction terms due to the linearization point
changes of IMU biases x;, and constant IMU intrinsics x;y,

00A0 00A0

acorr = ~7AA X —AX in 106

0%y, 0 T g, AXin (100)
~ OAD 8Ap

corr — A = AX in 107

P 0y, 0 T B (107

Veorr = aAV Axbk 8~Av szn (108)
ox Xby, ox Xin

Finally, the base IMU preintegration measurements is
formulated in Eq. (109). The new IMU measurement noise
n’; is computed as:

nj, ng
ra (Dp| _ Jr(facorr) O3x12 n, 2 H
ny = - 0 I =Huyny
n, 12x3 12 n,
ny H,, np
(110)

with covariance n} ~ N (0,Q}) and Q; = H,,Q/H,,
Finally, the corresponding base IMU pre-integration cost is:

Cr £ ||z} Bh(xs,, %1, Xin) H @)1 (111)
As compared to other IMU pre-integration (Lupton and
Sukkarieh 2012; Forster et al. 2016; Fourmy et al. 2021)
with only mean correction from bias terms, we support IMU
intrinsics calibration and have both the mean correction [see
Eq. (106)-(108)] and covariance correction [see Eq. (110)]
when linearization points change for time-varying biases and
constant IMU intrinsics. In addition, the cross correlations
between IMU navigation state and bias are modeled in Q/,

which are missing from (Forster et al. 2016; Fourmy et al.
2021).

6 Auxiliary Inertial Costs

Leveraging the base IMU pre-integration measurements [see
Eq. (109)], we now show how to derive the costs for
the auxiliary IMU and gyroscope by using the rigid body
constraints between the base and auxiliary IMUs.

6.1 Auxiliary IMU Cost

As the auxiliary IMUs are considered to be temporally
asynchronous with the base IMU, we employ pose
interpolation to associate the base IMU state with the
auxiliary IMU state. The rigid body constraint between the
auxiliary and base IMU with interpolation terms is given by:

[ﬁR GPIQ} a [?R Gplm] [LR "p1,

112
O1x3 1 01x3 1 01x3 1} (112)
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where {¢ 7. R, Gpy,.} is the interpolated pose and repre-
sented in SO(S)XR3 space. It can be computed with con-
stant linear velocity “v; and constant angular velocity ‘w
assumption:

gnR prm _ ?R Spr exp(lwtda) GV]tda
013 1 O1x3 1 01x3 1

The auxiliary IMU pose {i R, %py, } can be found with the
base IMU pose {¥R, “p;} as:

iR = GReXp(thdG)fﬂR
“pr, = YR rtq, + “pr + ?Rexp(lwtda)

(113)
Tpr, (114)

Note that ‘w denotes the angular velocity from the base
IMU. Since ‘w is not in the state vector, we need to use the
current best estimate of the 7&.

There is no need to keep auxiliary IMU pose in the state
vector, because the auxiliary IMU pose can be expressed
by the base IMU state x; and extrinsics xy,. The auxiliary
IMU state, Eq. (22), only contains the auxiliary IMU velocity
and biases. We need to reformulate the pre-integration Eq.
(48)-(50) for the auxiliary IMU cost with the Eq. (113)-
(114) rigid body constraints. Following Eq. (109), with some
abuse of the notations for the auxiliary IMU pre-integrated
measurements z7 and noises n; , we can define auxiliary
IMU residual as Eq. (115). We have defined hgr(-), h,(-)
and h, (+) for the auxiliary IMU:

hp(-) £ ?

S (,kRexp(fkwtdaﬁ R) §Rexp(wty, )} R

a 7 a

RTG R

hp(xr,,X1;,X1,)
1
h, () £¢ RT (praj - Gplak — GVI% ot — §Gg5t2>

p(X1s X1, X1, s X1,)
:R,—r (GV]av — GV[a,C
J

A
= hU(XIk ’ Xla

— ngt)
kaxfaj 7XIA)

Following Eq. (106)-(108), the linearization correction terms
of orientation 84, , position p 4., and velocity v 4,,, .. for
the auxiliary IMU are given by:

corr

A A
04, = 8? BAf(Ab + 00 GAXA“L (116)
ox X Ay, k ox XA
O0Ap O0ADp
= AX AX 117
pAco'r”r- 8)~{Ab XAbk + 8 A XALn ( )
AV AV
va, = 28Y Ay, + OBV A%s. (118)
8XAh k ox in

Finally, the corresponding auxiliary IMU cost is given by:

Cr, & ||z'Ia Hh(x,n} ) 2

My @19

6.2 Auxiliary Gyroscope Cost

Similarly, the auxiliary gyroscope cost can be derived as the
integration of angular velocity and gyroscope biases. The
gyroscope state is defined as gyroscope biases, the intrinsics
Xq, and the extrinsics xj,. The rotation constraint when
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log (Af{(o)) log (hR(x[k,xlj) exp(— %‘;ﬁf Xp,, — %‘;ﬁ?f{m — BCOM> exp(—né))
. AAP - OAP
Ap(o) hp(XIknyj) - 85‘: by — W:in — Pcorr — Iy (109)
AvO B h _ oAV 9AvL _
v v (Xlk ) XIJ- ) aibk Xby, OXin Xin Veorr 1,
O6x1 Xb; — Xp, — Iy
~—_———
zII h](X[k,X[j 1xin7nlj)
log(ARO)]  [log (bl exp(~ 52250, — 2050, — O, ) exp(—ny))
. OAp = IAD &
AI:)(O) _ hp(.) - 8)2Ap Apr — achp XA'in - pAcOT'r‘ - np (115)
AV hv(') a?(AAV XAy, — 3(33,‘_, XA = VAgprr — Dy
061 XAy, — XA, — Dy
N———— :
zlja ha(x n’ )
considering a time offset is written as: where ? R and 7 G R denote the orientation of the
G Ie. I I auxiliary IMU Wthh can be computed from base IMU
R =7Rexp('wt R 120
Iy p( dg ) Iy (120) orientation with IMU-IMU extrinsics.

Reusing the notation hg(-), see Eq. (48), we get the
gyroscope rotation function as:

hp() 2§

RT%;J_R

(1>

T
(iRexp(Ikwtdg)§QR> gRexp(ijtdg)iR
£ hp(x1,, X1, X15)

where we still use the current best estimate for the ‘w. The
pre-integrated auxiliary gyroscope measurements and noises
is defined in Eq. (121). The linearization correction term is
defined as:

0AO | ~ 0AO
Goorr = LN Abgq + 8~ A)A(Gin (122)
8bG9k * GXGm ’
Finally, the auxiliary gyroscope cost is given by:
Cr. 2|z, Bhxn)) ‘2 (123)
g I, ) g (Q/Ig)—l

6.3 Auxiliary Inertial Sensor Initialization

An initial linearization point of the auxiliary inertial states
is required to perform optimization. This can be done by
leveraging the initial linearization point of the base IMU.
Specifically, we initialize the auxiliary IMU state x;_ , which
contains the velocity Gy 1, and biases (b4, and b, ) of the
auxiliary IMU, as follows:

* The initial velocity of the auxiliary IMU is computed
based on the rigid body constraints:

“vi, =%+ R R"w|'py, (124)
* For b A, » We integrate the angular velocity measure-
ments with zero bias for auxiliary IMU to get AR,,.
Then the following linear system can be solved:
00A0 -

- -b
dby,, Ao

— log (ARng RTikHR) (125)

Prepared using sagej.cls

e For BA% , the accelerometer bias is initialized to O3 .

7 Visual Costs

We build the complete camera measurement function he(+)
by incorporating the distortion function hy(-) [see Eq.
(8)], the projection function hy,(-) [see Eq. (12)] and the
transformation function h;(-) [see Eq. (13)] (Geneva et al.
2020; Eckenhoff et al. 2021):

z¢ = he(x) +ne (126)
= hqy(zn,xc,,) +nc (127)
= hd(hp(cpf),xcm) +ng (128)
= hy(h,(hy(ER, “pc, “py)),xc,,) +n0 (129)

We need to linearize the camera model for update, which is
given by:
zc¢ ~Hex +ne (130)

Ozc

where Z¢ = zoc — he(%) and Hp £
rule, we get the following Jacobian matnx

. Using the chain

_[02c 03¢ _03c  93c
Hc = [asq o%1, 0%c,, afcf} (131)
— (g 2%Bs 0By ¢ 9By
(Y PfDR;, Oxc,, P OR;

where Hy,, = géc 880ZT'_.We refer the reader to the technical
n 9Py

9°p; 9%p; 9Py

o%; > 0%, ox, and Hp,

(Yang et al. 2023a). Hence, the visual cost can be formulated.

report for how to compute

s _ 2
(CC == ||ZC hc(X)lngl (132)
Pose interpolation, which has been verified for accurate
temporal calibration (Guo et al. 2014; Lee et al. 2020;
Eckenhoff et al. 2021; Lee et al. 2021), is leveraged to model
the time offset and RS calibration in this work. Note that
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g (ARO)] _ [iog (i) exp( - 522 B, - #8056, ~ B, ) exnl-m)) ) o
031 bg,; —bg,, —n,
N———— _
z/Ig h(x,n}g)

the pose interpolation follows manifold in SO(3) xR? space.
For example, if the feature measurement is in the m-th row
with total M rows in an image, we can find two bounding
poses k and k + 1 based on the measurement time ¢. The
corresponding time ¢ is between two IMU poses, ¢, <t <
tr11. We can then find the virtual IMU pose {?(t)R, Gpl(t)}
between poses at k and k + 1:

m
A=+ gpte = te)/(beer — i) (133)
foR = Rexp (Mog (FRT | R))  (134)
“prwy = (1-N°ps, + X%y, (135)

8 Observability Analysis

Observability analysis plays an important role in state
estimation for VINS (Huang 2012; Martinelli 2013). This
analysis allows for determining the minimum measurements
needed to determine the state and identify degenerate
motions which may degrade system performance by
introducing additional unobservable directions for certain
parameters (Wu et al. 2017; Yang et al. 2019; Lee et al. 2020;
Yang et al. 2020b). As MVIS continues to gain popularity,
the observability analysis for such a system with full
calibration parameters, especially IMU-IMU spatiotemporal
calibration, is needed to better understand the fundamental
properties of the underlying system.

8.1 Reduced State Vector

Although the proposed MVIS supports arbitrary number of
auxiliary inertial sensors and cameras, for simplicity and
without loss of generality, we use a typical system consisting
of only one base IMU, one auxiliary IMU, one auxiliary
gyroscope and one RS camera as unique sensors for the
following observability analysis (Hesch et al. 2014; Yang
and Huang 2019; Yang et al. 2023b).

To simplify the ensuing derivation, we re-order the state
vector and assume that the base IMU, auxiliary inertial
sensors are all kept as full states (i.e. including the full
auxiliary inertial state). All the states will be propagated
forward with time, while the rigid body constraints and
visual measurements will be used to update these states.
Specifically, the state vector includes all the necessary
parameters for the observability analysis as:

T T

X:[XB X

N (136)

T T G T
Xa  Xealib pf
A T T T T T T T T

GpT1T
= [X7 Xin X, X4, X7, XG,, X Xe,, OPp] (137)

Note that the auxiliary IMU and gyroscope states are:

GpT GoT GoT
70 I, VI,

bh b} ] T

(138)
(139)

XIQZ[ p

x;, = [f07 bE,)
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After propagation, the visual measurements and rigid body
constraints between inertial sensors are used to update the
states with:

&ozh z2h]" (140)

z = [zc Z, Zgo
where zc denotes the visual cost [see Eq. (126)]. For
simplicity, z4 and zg represent the rigid body pose
constraints between auxiliary and base inertial sensors:

log ({R"¢R] R) }
= a a 141
ZA {Gpla ~6p, — YRip, (141)
¢ = log (? RTYRL R) (142)
8.2 Linearized Observability Analysis
The overall state transition matrix can be written as:
® = Diag{®p, P4, ®c, Pcativ; Pr} (143)

The detailed derivations for ® g, ® 4, Pg, Peeiip and P
can be found in Appendix D. The corresponding linearization
Jacobians for Eq. (140) are:

0z _ | &%
7 = | % (144)

[Hep 0 0 Hcee Her
Hap Hqsa 0 Hyc O
Hegp 0 Hge Hge O

where Hzx denotes the Jacobians of measurement Z
regarding to state parameter X and are defined in Appendix
E. The observability matrix M is defined as:

071
M, o P
M2 r;2 . @ 271
M= | | a|% @Y (145)
M L2k TRy

where z; and x; denote the measurement and state at
timestamp ty; <I>(k71) is the state transition matrix from
timestamp ¢; to timestamp ¢; based on Eq. (143). The k-th
block row of the observability matrix IM can be written as:

0z,
FT Ax, B (146)
Hep®p 0 0 Hec®eawiw Her®r
= |Hap®p HpaPy 0 Hac®Pcain 0
| Hep®B 0 Hee®e Heo®Peain 0
Mcp 0 0 Mcc Mcr
£ |Map Muaa 0 Mac 0
| Mgg 0 Mg Mge O
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where M, are computed in Appendix F. If the M is of full
column rank, the proposed system is fully observable. If we
can find a null space matrix N s.t. M - N = 0, the proposed
system is unobservable and the N is denoted as unobservable
directions.

By closely inspecting the observability matrix, we have
the following Lemma:

Lemma 1. The proposed MVIS has four unobservable
directions N corresponding to the global yaw rotation and
the global translation.

ERGg 0; |
—%pr, % I3
_I_thJGg 03

030x1 030x3

éllRGg 03
—-1%p1,, /98 Iy
o GV JGg 0

N= |V, 3 (147)
030x1 030x3

éﬁRGg 03
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0271 O27x3
—|%psl9g  Is

These four unobservable directions are inferred based
on the 4 classical unobservable directions for a monocular
VINS system (Hesch et al. 2014). Hence, we can interpret
the N accordingly: the first column of NN as the rotation
about gravity, and the last three that which relate the
global positions Gp I Gp 1, and Gp ¢. From this lemma,
we can conclude that the system observability will not be
improved by simply adding more inertial sensors (IMUs
or gyroscopes). It should also be pointed out that the
velocity of IMU state will become unobservable if no visual
measurements to static landmarks are available. Hence,
without cameras, naively adding auxiliary IMUs will not
significantly improve the system localization accuracy due
to lack of global constraints to the base IMU velocity. It can
be observed that the calibration parameters, including base
IMU intrinsics X;y,, auxiliary IMU intrinsics x 4,,,, auxiliary
gyroscope intrinsics Xg,, and spatiotemporal calibration
Xp, , are highly related to the sensor motion. Under fully
excited motions, these parameters are observable, which can
be seen from our simulation results in Section 10.1.

9 Degenerate Motion Analysis

While the degenerate motions for the IMU-camera spa-
tiotemporal parameters, IMU intrinsics and camera intrinsics
have been studied (Yang et al. 2019, 2020b, 2023b), in this
paper, we for the first time study the degenerate motions for
the IMU-IMU and IMU-Gyroscope spatiotemporal calibra-
tion of MVIS.
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Table 2. Degenerate motions with related unobservable
parameters for auxiliary IMU and gyroscope.

Motion Types

No Rotation Ipr, ng and tq,

7, R along rot. axis
LR along rot. axis, t,
LR along rot. axis, t,
LR along rot. axis, t,

Auxiliary IMU Auxiliary Gyroscope

One-axis Rotation Ipy, along rot. axis
Ipy, along rot. axis
Ipy, along rot. axis, tq,

Ip;, along rot. axis

Constant {w
Constant ‘w and v
Constant ‘w and 'v

9.1 Spatiotemporal Calibration of Auxiliary

Inertial Sensors

In particular, we have identified the degenerate motions for
the spatiotemporal calibration between the auxiliary inertial
sensors and the base IMU, as summarized in Table 2, which
will be explained in detail below. We refer interested readers
to our companion technical report for the unobservable
directions not reported below (Yang et al. 2023a).

9.1.1 No Rotation If the MVIS undergoes 3D motion but
without rotation, the translation £ pr, between the auxiliary
and base IMUs, the rotation { R and time offset between the
auxiliary gyroscope and the base IMU, will be unobservable.
The unobservable directions Ny are given by:

[039x3  0O39x3  O39x1 |
03 03 03x1
I; 03 0351

033x3  0O33x3  O33x1
03 I3 0351
Ogx3  Ogx3z  Ogx1
Nyg=|--—- —— ——— (148)
03 03 03x1
aR 03 0351
O1x3  O1x3 0
03 I3 0351
O1x3  O1x3 1
O16x3  0O16x3  Oiex1
L 03 03 O3x1 |

9.1.2 One-Axis Rotation If the system undergoes 3D
motion but with only one-axis rotation (which is common
for aerial and ground vehicles), the translation /p;, between
the auxiliary and base IMUs, the rotation LR between the
auxiliary gyroscope and the base IMU will be unobservable,
along with the rotation axis k. Note that we, for the first
time, explicitly found that one-axis rotation will cause the
rotation calibration between the auxiliary gyroscope and
base IMU to become unobservable. We verify this finding
with simulations in Section 10.2. Specifically the additional
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unobservable directions are given by:

[ 030x1  O39x1 |
0351 03x1
gRIlk 03%1
O33x1 Os3x1
0351 Tork
091 O9x1
Noa=|-——> ——-— (149)
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0 0
O16x1  O16x1
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9.1.3 Constant Local Angular Velocity If the MVIS
undergoes non-zero constant local angular velocity with
random 3D translation for the base IMU, the translation PI,
between the base and auxiliary IMUs is still unobservable
along the rotation axis. In addition, the rotation LR and
the time offset ¢ I, between the base IMU and the auxiliary
gyroscope become unobservable.

9.1.4 Constant Local Angular and Global Linear Velocity
If the MVIS undergoes non-zero constant w and constant
Gy for base IMU, the translation and time offsets between
the base and auxiliary IMUs, the rotation and time offset
between the base IMU and the auxiliary gyroscope become
unobservable.

9.1.5 Constant Local Angular and Linear Velocity When
the Yw and v are constant and non-zero for the base IMU,
the time offset ¢; between the base IMU and camera, as
well as the time offset ¢4, between the base IMU and the
gyroscope are both unobservable. However, the time offset
tq, between the base and auxiliary IMUs is still observable
(see Fig. 6), which is unexpected. This is due to the fact that
the local constant velocity assumption will be invalid for the
auxiliary IMU if the base IMU is undergoing constant local
linear and angular velocity. The local angular velocity and
acceleration of the auxiliary IMU can be represented as:

gy = " Rlw (150)
Loay = "R (Tap + ") pr, + ['w]['w]'ps,) (151

where L refers to the angular acceleration of the base IMU,
the local sensor body acceleration ‘ay, is defined in Eq. (3).
If the base IMU undergoes constant local linear and angular
velocity motion, the angular velocity of the auxiliary IMU
Ta iy is also constant [see Eq. (150)]. The Ta, and Y« of the
base IMU should be zeros. Hence, Eq. (151) yields:

I“ab:%R(Lij Llelpja) (152)
If w is constant but not zero, the local linear acceleration
Ta g, should not be zero. This breaks the local constant linear
velocity assumption for the auxiliary IMU. Furthermore, we
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Table 3. Summary of basic degenerate motions for auxiliary
inertial intrinsics calibration. Any combinations of these unit
motion primitives are degenerate. Note that d 4. is column-wise
element from D 4., with dg,, is column-wise element from

Dg¢,,- Ty, &= 1...9 are the elements from Ta, for
g-sensitivity.
Motion Types Nullspace Dim. Unobservable Parameters
constant v w; 1 da,,
constant 4w s, 2 Ay da,,
constant 4w ws 3 AAysr AAs, QA e
constant = a; 3 da,,» pitch and yaw of II;GR
constant 4 gy 3 dAa,z:da,,, roll of ,IaiLa R
constant 4 ag 3 QA s> da,s,da,,
I,
constant . ay 3 LA, ta,., A,
constant I“ as 3 Tagastags,tag,
constant ‘e ag 3 LAy ta,e ta,
constant v w, 1 dg,,
constant G ws 2 dg,,, dG.,;
constant Ev ws 3 AG s Ada s> dGus

Table 4. Simulation parameters and prior standard deviations
that perturbations of measurements and initial states were

drawn from.
Parameter Value Parameter Value
IMU Dw 0.003 IMU Da 0.003
Rot. atol (rad) 0.003 IMU Tg 0.001
Gyro. Noise Gyro. Bias
(rad s vHz=T) 1.696e-04 (rads~2 ViIz-T) 1.939¢-05
Accel. Noise Accel. Bias
(ms~2 VT 2.000e-3 (ms—3 VT 3.000e-3
Focal Len. (px/m) 1.0 Cam. Center (px) 1.0
dl and d2 0.002 d3 and d4 0.002
Rot. Ctol (Hz) 0.004 Pos. IinC (m) 0.008
Pixel Proj. (px) 1 Cam-IMU Toff (s) 0.008
IMU-IMU Toff (s) 0.003 Gyro-IMU Toff (s) 0.003
Rot. Tatolb (rad) 0.003 Pos. Tainlb (m) 0.005
Cam Freq. (Hz) 10/10 IMU Freq. (Hz) 250/300/200
find that the norm of ‘= v is constant:
Too, _ Ig I I I
v=rR(v+['wl'p1,) (153)

But the non-zero acceleration ‘=a; will cause the bearing
change of local velocity, which makes the time offset
between the base and auxiliary IMUs observable. This is
further verified through our simulation results (see Fig. 6).

9.2 Intrinsics for Auxiliary Inertial Sensors

In our previous work (Yang et al. 2020b, 2023b), the
degenerate motions of IMU intrinsics for monocular VINS
have been studied. In this work, we have found that the
degenerate motion primitives in (Yang et al. 2023b) still
hold for the auxiliary IMU intrinsics with our inertial model
choice (see Table 3). Note that fully excited motions are
needed in order to make all intrinsic parameters observable
for the auxiliary IMUs/gyroscopes.

10 Simulation Results

The simulator, which is provided within the OpenVINS
project (Geneva et al. 2020) along with the multi-IMU
and RS extension from (Eckenhoff et al. 2021) and IMU
intrinsic extension (Yang et al. 2023b), is leveraged to
provide synthetic measurements with perfect groundtruth for
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Figure 2. Simulated trajectories. Left: calib_3d with fully excited 3D motion, total length: 89.4 m; Middle: tum_room with 1 axis
rotation and 3D translation, total length: 134.5 m; Right: circle_planar with circular planar motion (constant z and only yaw rotation),
total length: 157.1 m. The green triangle and red circle denote the beginning and ending of these trajectories, respectively.
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Figure 3. Simulation results for fully-excited motion. All the cameras (CAMO and CAM1) related parameters converge nicely. 3o
bounds (dashed line) and estimation errors (solid line) are plotted for five different runs (shown in different colors) with different

initial calibration perturbations.

verification of the proposed MVIS under different motion
conditions. In the simulation, one base IMU IMUDb, one
auxiliary IMU IMUaO, one auxiliary gyroscope IMUal, one
global shutter (GS) camera CAMO and one rolling shutter
(RS) camera CAM1 are simulated. Note that both cameras are
simulated with 10hz frame rates. The basic configuration of
the simulator is listed in Table 4. The three trajectories used
for the simulation Fig. 2 are as follows:

* Fully-excited motion (left of Fig. 2): All axes of the
accelerometer and gyroscope are fully excited with a
general 3D handheld trajectory.

* One-axis motion (middle of Fig. 2): The sensor suite
moves in 3D space but with only yaw rotation.
The trajectory is modified based on fum_rooml from
(Schubert et al. 2018).

¢ Circular-planar motion (right of Fig. 2): The sensor
suite moves in x-y plane with constant local angular
and linear velocities.

Specifically, we first build a B-spline with trajectory
keyframes of the base IMU trajectory. Then, we can
compute the acceleration of base IMU by calculating double
derivatives for the position component of the B-spline at
specified time stamp. We leverage rigid body constraints
between base and auxiliary IMU to simulate the auxiliary
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IMU readings. The base IMU acceleration can be transferred
to the auxiliary IMU frame with the groundtruth angular
velocity and acceleration, which are also computed from
derivatives of base IMU B-spline. The angular velocity of the
auxiliary IMU can be simply computed with angular velocity
from base IMU and the rigid rotation between based IMU
and auxiliary IMU. Then white Gaussian noises are added to
the auxiliary IMU readings based on Eq. (1) and (2).

To simulate RS visual bearing measurements, we follow
the same logic in (Li and Mourikis 2014; Eckenhoff et al.
2021; Yang et al. 2023b). Static environmental features
are first generated along the trajectory at random depths
and bearings. Then, for a given imaging time, we project
each feature in view into the current image frame using
the true camera intrinsic and distortion model and find the
corresponding observation row. Given this projected row and
image time, we can find the pose at which that RS row should
have been exposed. We can then re-project this feature into
the new pose and iterate until the projected row does not
change (which typically requires 2-3 iterations). We now
have a feature measurement which occurs at the correct pose
given its RS row. This measurement is then corrupted with
white noise. The imaging timestamp corresponding to the
starting row is then shifted by the true IMU-Camera time
offset ¢4 to simulate cross-sensor delay. In the following
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Figure 4. Simulation results for fully-excited motion. All the base IMU (I1MUb) and auxiliary IMUs (IMUa0, IMUa1l) related
parameters converge nicely. 3o bounds (dashed line) and estimation errors (solid line) are plotted for five different runs (shown in

different colors) with different initial calibration perturbations.
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Figure 5. Simulation results for One-axis motion. The translation of CAM0-IMUb (y component) and IMUa0-IMUDb (z component),
the rotation of IMUa1-IMUb (z component), the dy1, dw2 and d,3 of IMUb, IMUaO and IMUal show inability to converge (sigma

bound does not decrease due to no information gain). 3o bounds (dashed line) and estimation errors (solid line) are plotted for five
different runs (shown in different colors) with different initial calibration perturbations.

simulations, the RPNG IMU model [see Section 3.1] is used
to be aligned with the analysis.

It is important to note that, in the following sections, we
only present the most prominent results due to space limits,
while comprehensive simulation and experimental results
can be found in our companion technical report (Yang et al.
2023a).
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10.1 Fully-Excited Motion

We first evaluate the proposed system on a general 3D
handheld trajectory, see Fig. 2, which fully excites all 6
axes of the sensor platform. To save space, only selected
parameters are presented, but all parameters are perturbed
and estimated during our simulation runs. The camera related
results are shown in Fig. 3 while the IMU related results are
shown in Fig. 4. For each figure, there are five different runs
with different initial state perturbations.
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Figure 7. Simulation results for Circular-planar motion. The gyroscope and acceleration related parameters (gyroscope correction
D.,, accelerometer correction D, and g-sensitivity T) for both base and auxiliary IMUs do not converge or converge much slower
than the case of fully-excited motions. 30 bounds (dashed line) and estimation errors (solid line) are plotted for five different runs
(shown in different colors) with different initial calibration perturbations.

It is clear that all parameters are able to converge
towards the true value within the first 20-40 seconds of
the trajectory, which verifies our conclusion that all the
calibration parameters for MVIS are observable given fully-
excited motions. These results also verify that the proposed
MVIS indeed is able to perform calibration of all parameters
for visual and inertial sensors.
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10.2 Degenerate One-Axis Motion

We now perform a simulation where the trajectory only
exhibits one-axis rotation about the global z-axis to verify
our identified degenerate motion, see Fig. 2. Shown in Fig.
5, multiple parameters are unable to converge with either
estimation errors or estimation uncertainties (30 bounds).
This matches the parameters which we have identified as
unobservable under this motion. We can see that the 3
parameters dy,1, dy2 and d,,3 for both the base IMU IMUD,
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auxiliary IMU IMUaO, and auxiliary gyroscope IMUal are
unable to be calibrated. Additionally, the y component for
the rigid position between the camera to base IMU (CAMO-
IMUDb Pos . ) cannot converge at all. The z component for the
position of the auxiliary IMU to base IMU (IMUa0-IMUb
Pos.) is unable to be calibrated as expected. Note that the y
component of /p¢ and the z component of /p;, are all along
the rotation axis which is degenerate.

Furthermore, it can be seen that we are unable to calibrate
a portion of the relative rotation between the base IMU and
auxiliary gyroscope (IMUal-IMUDb Ori.) due to one-axis
rotation, which can be calibrated nicely in the fully-excited
motion case. This further confirms our degenerate motion
analysis summarized in Table 2.

10.3 Degenerate Circular-Planar Motion

We also perform a simulation where the sensors follow a
circular-planar motion shown in Fig. 2. This is a typical
example motion of constant angular and linear velocity.
The translation and the time offset of CAM0-IMUb, CAMI-
IMUD, the translation of IMUa0-IMUDb and the orientation of
IMUal-IMUD are not observable. Shown in Fig. 6, their 30
bounds and estimate errors are kept as almost straight lines
and do not converge at all. These results further verifies our
identified degenerate motions shown in Table 2.

The time offset between auxiliary gyroscope and based
IMU (IMUal-IMUb Toff) also are unable to be calibrated,
while the time offset between auxiliary IMU to base IMU
(IMUaO-IMUb Toff) is still observable. This can be seen
by the estimation errors converging in Fig. 6 and thus verifies
our degenerate motion analysis in Section 9.1.5. Note that
the rolling shutter readout time of the CAM1 converges quite
slowly, given that the sensor motion is not fully excited.

The calibration results for IMU related intrinsics are
shown in Fig. 7. It is clear that the gyroscope correction
D,, and the accelerometer correction D, do not converge
at all. The convergence of g-sensitivity T, also becomes
much worse compared to fully excited motion in Fig. 4 which
results from fully-excited motions.

11 Experimental Results

The proposed self-calibration system is further evaluated
using our own visual-inertial sensor rig (VI-Rig) as shown
in Fig. 8. Specifically, it contains a MS-GX-25, MS-GX-
35, Xsens MTi 100, FLIR blackfly camera, RealSense T265
tracking camera (which contains an integrated BMIOS5
IMU along with a fisheye stereo global shutter camera),
and 640x480 ELP-960P2CAM-V90-VC USB 2.0 RS-stereo
camera. We perform three sets of experiments. "

* Fully-excited motion with 4 IMUs + 3 GS Cameras.

¢ Fully-excited motion with 4 IMUs + 2 GS Cameras +
2 RS Cameras.

¢ Planar motion with 4 IMUs + 2 GS cameras.

In these experiments, we evaluate the intrinsic calibration
with Kalibr model [see Section 3.1], in order to facilitate a
direct comparison to Kalibr—the calibration toolbox (Furgale
et al. 2013). We also investigate if the joint calibration
performance changes with different number of IMU/Camera
sets. In addition, planar motion, one of the most commonly
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Figure 8. The self-assembled sensor rigs in real-world
experiments, containing one Mircostrain GX-25, one
MircroStrain GX-35 , one MTI Xsens IMU, one BalckFly camera,
one IntelRealsense T265 tracking camera (with a GS fisheye
stereo camera and an BMI055 IMU inside) and one ELP stereo
RS camera.

seen degenerate motions, is also investigated to show
its effects on calibration. The results further verify our
degeneration motion analysis and has significant practical
implications on practitioners performing calibration on
constrained autonomous platforms (e.g. aerial or ground
vehicles).

The boxplots are used to demonstrate the calibration
results for the proposed MVIS and Kalibr. When drawing
the boxplots for the translation part of extrinsics, the camera
intrinsics and time offsets, we use the average estimates
of the MVIS with all available sensors as reference value
and then compute the error of each estimate from Kalibr or
MVIS to this reference. When drawing the boxplots for the
orientation extrinsic, we select the first estimate of MVIS
with all available sensors for reference value. The middle
line of each boxplot indicates the average errors while the
red star + indicates outliers. IMU intrinsics are computed
relative to the “ideal” inertial model, with identity matrices
for gyroscope correction D!, accelerometer correction D,
and {DR, except for g-sensitivity, Ty, which is set as zero
matrix.

11.1 4 IMUs + 3 GS Cameras

All the four IMUs, FLIR blackfly camera and the GS stereo
camera from RealSense T265 are used for this evaluation.
All cameras used in this experiments are not rolling shutter to
ensure fair comparison against the baseline Kalibr (Furgale
et al. 2013) which only supports IMU-Camera calibration
with global shutter cameras. Total 10 datasets were collected
with an AprilTag board, on which both the proposed system
and the Kalibr calibration toolbox were run to evaluate
the calibration accuracy and repeatability statistics on all
calibration parameters. During data collection, all 6-axis
motion of the VI-Rig were excited to avoid degenerate
motions for calibration parameters.

11.1.1 Calibration with Different Number of Cameras
When running Kalibr, all the IMUs and cameras are used
to achieve the best calibration results from Kalibr. When
running our proposed MVIS, we use all the four IMUs with

TMore details about the project are at: https://openmvis.com/.
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Figure 9. Calibration results for CAMO and four IMUs related parameters over 10 datasets collected with Intel Realsense T265
(GS), FLIR Blackfly camera (GS) and four IMUs. The proposed MVIS was run with one (green), two (black), and three (blue) of the
cameras. The baseline Kalibr (magenta) was run on all three cameras and all four IMUs. The x-axis of figures in the second and
third row denotes the base IMU (IMUDb) as b and auxiliary IMU (IMUa0-IMUa2) as 0, 1 and 2 respectively. For IMU-IMU
transformation {R_Iitolb, p_liinlb}, i=0, 1, 2. Note that the calibration convergence of camera/IMU intrinsics and camera to IMU
translation are improved if more cameras are used.
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Figure 10. Calibration results over 15 different datasets collected with Intel Realsense T265 (GS), ELP-960P2CAM-V90-VC USB
2.0 (RS, 640x480) and four IMUs. The proposed MVIS (blue, using all the sensors) and Kalibr baseline (magenta, using only T265
cameras with all the IMUs) statistics are reported. The top x-axis denote the two global shutter cameras (CAMO0, CAM1) as 0 and 1,
respectively; The bottom x-axis denotes the base IMU (IMUDb) as b, and auxiliary IMUs (IMUa0, IMUal and IMUa2)as 0, 1 and 2,
respectively. For CAM-IMU transformation {R_Citol, p_Ciinl}, 1=0, 1. For IMU-IMU transformation {R_Iitolb, p_liinlb},

i=0,1, 2.
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Figure 11. Calibration results over 15 different datasets collected with Intel Realsense T265 (GS), ELP-960P2CAM-V90-VC USB
2.0 (RS, 640x480) and four IMUs. The proposed MVIS (blue, using all the sensors) and Kalibr rolling shutter baseline (magenta,
using only the RS cameras with all IMUs) statistics are reported. The top x-axis denote the two rolling shutter cameras (CaM2,
CAM3) as 2 and 3, respectively; The bottom x-axis denotes the base IMU (IMUb) as b, and auxiliary IMUs (IMUa0, IMUal and
IMUa2) as 0, 1 and 2. For CAM-IMU transformation {R_Citol, p_Ciinl}, i=2, 3. For IMU-IMU transformation {R_litolb,
p_liinlb}, i=0, 1, 2.

1/2/3 camera, respectively. In this way, we can evaluate the box plots in Fig. 9. The proposed MVIS was run with
how the number of used cameras affect the calibration one (green), two (black), and three (blue) of the cameras.
performance. The baseline Kalibr (magenta) was run on all three cameras.

The final converged estimates of the calibration parame- The x-axis of figures in the second and third row denotes the
ters from both systems on these 10 datasets can be shown in ~ Pase IMU (GX-25 IMUD) as b and auxiliary IMU (GX-35
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Figure 12. Temporal calibration results over 15 different
datasets with Intel Realsense T265 (GS),
ELP-960P2CAM-V90-VC USB 2.0 (RS, 640x480) and four
IMUs. The proposed MVIS (blue) and Kalibr rolling shutter
baseline (magenta) statistics are reported. The x-axis of the left
3 figures denotes the two global shutter camera CAMO, CAM1,
two rolling shutter camera CAM2, CAM3. The x-axis of the right
figure denotes the time offsets between the base IMU (IMUD),
and auxiliary IMUs (IMUa0, IMUal, IMUa2).
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Figure 13. Calibration results over 15 different datasets with
Intel Realsense T265 and four IMUs. The proposed MVIS with a
base IMU and only gyroscopes of the 3 auxiliary IMUs (black),
MVIS with a base IMU and 3 auxiliary IMUs (blue) and Kalibr
baseline (magenta) statistics are reported. The x-axis denotes
the base IMU (IMUb) and auxiliary IMUs (IMUaO, IMUal,
IMUa?2) for all algorithms. For IMU-IMU transformation
{R_litolb}, i=0, 1,2

IMUaO, Xsens IMUal, T265 IMU IMUa2) as 0, 1 and 2
respectively. Note that the camera intrinsics are required to
be fixed for Kalibr when performing IMU-Camera calibra-
tion. Hence there is only one value for each camera intrinsics
for Kalibr in Fig. 9.

The range of the boxplot in the figure indicates the
convergence repeatability of calibration parameters. The
proposed MVIS needs an initial guess for the calibration
parameters to start the optimization and the initial guess
distribution are shown in the first row of Fig. 9 for the
proposed method. The initial guess for dy of CAMO distortion
model is within £0.5 while the final estimated values are
between 0 and 0.1. The initial guess for time offset for CAMO-
IMUb is within +5 ms, while the final converged values from
the proposed MVIS are most cases around £0.5 ms. These
results show that the calibration parameters can converge
robustly with the proposed MVIS.

It can be observed from Fig. 9 that the calibration
estimation convergence of IMU/camera intrinsics and CAMO-
IMUb translation are better in blue color than those in
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green or black colors, which indicate that more cameras can
be used to improve overall calibration convergence. This
is probably due to improved visual feature estimates from
longer feature tracks or wider field-of-view due to multi-view
constraints when more cameras are used in the experiment.

11.1.2 Comparison with Kalibr One major difference
between the Kalibr and our MVIS is how to represent the
sensor-platform’s trajectory. Kalibr leverages the camera
poses, based on AprilTag-based visual odometry (VO), to
build a B-spline-based continuous-time representation of the
trajectory. As such, the IMU and camera measurements can
be easily modeled with the poses at any time given by this B-
spline. Kalibr optimizes both the calibration parameters and
the B-spline parameters (knots).

In contrast, the MVIS represents the trajectory using
the discrete-time IMU states at imaging times. The IMU
measurements are used to build the IMU factors with pre-
integration while the asynchronous visual/auxiliary inertial
measurements are related to the trajectory through linear
interpolation (see Sections 6 and 7). The mean values of each
boxplot in Fig. 9 clearly demonstrate that the proposed MVIS
achieves competing calibration accuracy as the Kalibr.

11.1.3 IMU Intrinsic Quality By evaluating the IMU
calibration results across the four IMUs of IMUb, IMUaO,
IMUal and IMUa2 (denoted as b, 0, 1, 2 in the second
and third row in Fig. 9) used in the experiments, we
clearly see that IMUa2, a relatively low-cost BMIOSS
IMU, demonstrates larger scale correction for gyroscope
and accelerometer than other three high-end IMUs (GX-25
IMUb, GX-35 IMUaO and Xsens IMUal). This is expected
as the IMUb, IMUaO and IMUal are supposed to have more
stable and sophisticated factory calibration than IMUaZ2.
This result, aligned with our previous work for single-IMU-
camera calibration (Yang et al. 2023b), further validates
the proposed MVIS can generate reasonable and accurate
calibration for IMUs.

11.1.4 Timing Evaluation While the
continuous-time representation naturally enables the
incorporation of asynchronous sensor measurements,
multiple high-frequency IMUs can easily causes thousands
of IMU cost terms to be inserted into the optimization,
significantly increasing the computation. The proposed
MVIS leverages ACI? to integrate all the IMU measurements
from one IMU between two image frames into one single
factor, which greatly simplifies the graph and saves
computation. To see this, in our experiments, we also
recorded the processing time of the proposed MVIS and
Kalibr when running the calibration with all the IMUs and
cameras on these 10 datasets.

Specifically, a ThinkPad P52 with Intel i7-8850H
CPU@2.60GHzx12 and 32GB RAM was used. The average
processing time for MVIS is approximately 807.4s, and
2208.3s for Kalibr. We attribute the computation savings
of the proposed MVIS primarily because: (1) Kalibr by
default has 100 knot poses per second for constructing the
B-Spline, while the MVIS creates IMU states based on
camera frequency (30 Hz). (2) Kalibr needs to form IMU
cost terms based on IMU frequency (more than 100 Hz),
while the MVIS leverages the pre-integration and all the
IMU measurements between two camera timestamps are

B-spline-based



20

Journal Title XX(X)

used together, leading to a significant smaller number of IMU
factors in the MVIS. Note that we have also implemented
both numerical and analytical Jacobians for the proposed
MVIS. The numerical and analytical Jacobians can achieve
similar accuracy results but with 10-14% running time saving
when using analytical Jacobians.

11.2 4 IMUs + 2 GS Cameras + 2 RS
Cameras

All the four IMUs, GS stereo camera from RealSense T265
and ELP RS stereo camera are used in this evaluation. Both
GS and RS cameras are used in this experiment to show that
our proposed MVIS supports full-parameter joint calibration
with GS and RS cameras, while Kalibr does not support
joint calibration of IMU and RS cameras, nor GS and RS
cameras. Total 15 datasets were collected with an AprilTag
board, on which both the proposed MVIS and the Kalibr
calibration toolbox were run to report calibration accuracy
and repeatability statistics. During data collection, all 6-
axis motion of the VI-Rig were excited to avoid degenerate
motions for calibration parameters.

11.2.1 Calibration for IMU and GS/RS During evalua-
tion, all the GS/RS cameras and IMUs are used for the
proposed MVIS. Since Kalibr does not support hybrid cal-
ibration of GS and RS cameras, we first run Kalibr with all
four IMUs and only GS stereo camera from RealSense T265
(CAMO&CAM1). The results with boxplots are presented in
Fig. 10. Then, we run Kalibr with all four IMUs and ELP
RS stereo camera (CAM2&CAM3) using a Kalibr extension
(Huai et al. 2022). The results are presented in Fig. 11. Note
that in the evaluations, the left&right cameras from the stereo
of RealSense T265 are denoted as CAMO&CAMI, while
the left&right cameras from ELP RS stereo are denoted as
CAM2&CAMS3. In this experiment, we did camera calibration
for each collected dataset with Kalibr. Therefore, we can
have the statistics for the camera intrinsic estimates in Fig.
10 and 11 , from which, we can see that the mean estimates
of both the IMU and camera related parameters are similar
for both the proposed MVIS and Kalibr.

The boxplot ranges of camera and IMU related parameters
from the proposed MVIS are much smaller than those of
the Kalibr, which shows that MVIS is able to achieve
much better estimation convergence and repeatability than
Kalibr, especially for the case of using ELP RS cameras.
This result verifies that the proposed MVIS can handle the
joint calibration of IMU-GS/RS cameras, which is missing
from Kalibr. In this experiment, MVIS used both GS/RS
cameras while the Kalibr is evaluated on only GS or only RS
cameras. Hence, this experiment further proves that the joint
calibration of multiple sensors (i.e. cameras) does improve
the calibration accuracy and repeatability.

It is interesting to see that the IMU calibration results (the
scale terms for gyroscope correction D,, and accelerometer
correction D,) between these two experiments (Fig. 9 in
Section 11.1 and Fig. 10 or Fig. 11 in Section 11.2) are very
similar. This further validates the stability of the proposed
MVIS.

11.2.2 Evaluation of Multiple Gyroscopes Calibration
We further evaluate the proposed MVIS with multiple
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auxiliary gyroscopes. With the same 15 datasets, all cameras,
base IMU (GX-25 IMUDb) and the gyroscopes of three
auxiliary IMUs (GX-35 IMUaO, Xsens IMUal and T265
IMU IMUa?2) are used for evaluation with MVIS. The
calibration results of MVIS with these auxiliary gyroscopes
(in black), compared to the MVIS (in blue) and Kalibr (in
magenta) with full auxiliary IMUs, are shown in Fig. 13.
Note that the auxiliary gyroscope does not contain . R.
Hence, we set L R = I3 as default.

It is clear from the results that MVIS with multiple
auxiliary gyroscopes still can achieve almost the same
estimates for gyroscope scales and time offsets as MVIS and
Kalibr with full auxiliary IMUs.

At the same time, we can also see that the calibration
of rotation between auxiliary gyroscope and base IMU (the
second row of Fig. 13) from MVIS with multiple gyroscopes,
is slightly worse than that of MVIS and Kalibr with full
IMUs, especially for IMUa2. This might be due to the fact
that accelerometer measurement can benefit the extrinsic
calibration between IMUs. We also want to point out that the
rotation calibration difference is smaller than 0.5°, which is
not significant.

11.2.3 Temporal Calibration The temporal calibration,
including time offsets and rolling shutter readout time, are
presented in Fig. 12, which shows the results using base IMU
and all the full auxiliary IMUs. The 0, 1, 2 and 3 from the
CAM Toff and Readout refers to CAMO - CAM3. From
Fig. 12, it is clear that the time offset calibration is almost
the same for the proposed MVIS and the Kalibr. The readout
time calibration errors are all within 2 ms.

From the results, we can also find out that the triggering
time offset of the RealSence T265 is not stable. As can be
seen from the left of Fig. 12, there are outliers as large as
30ms between the base IMU IMUDb and the right camera
of T265. Similarly, the time offset of the IMU from T265
(IMUa2) to base IMU (IMUD) is also slightly unstable from
the estimates of MVIS and Kalibr, as outliers (red crosses)
in right of Fig. 12 are obvious. Note that the 0, 1 and 2 in
the plot of IMU Toff from right of Fig. 12 denote the time
offsets of IMUa0, IMUal and IMUa?2 to IMUD, respectively.

As shown in the right of Fig. 12, the time offset between
based IMU IMUDb and the auxiliary IMU IMUa2 (BMIO55
from T265) also has 10 ms offsets (from near -5 ms to 5 ms).
This is probably due to the build-in drivers of this relatively
low-cost sensor (T265). This figure shows that the estimate
results from Kalibr (magenta) and the proposed M VIS (blue)
can identify the temporal calibration problems of T265,
which validates that the proposed MVIS can be used to
identify the temporal instability of T265 and provide reliable
calibration results.

11.3 Planar Motion with 4 IMUs + 2 GS
Cameras

We further verify the degenerate motions with a dataset
collected under planar motion. All four IMUs and the
GS stereo camera from RealSense T265 are used for data
collection. When collecting data, the VI-Rig is put on a chair
with wheels and moved about the room in planar motion. The
proposed MVIS is run on this dataset 4 times with different
perturbations to the initial values of IMU-IMU translations.
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Under planar motion, the rotation axis, roughly along the
local z-axis for the base IMU, is fixed for the VI-Rig. Hence,
the IMU-IMU translation along the rotation axis and the
dw1, dya, dyws from gyroscope correction D,, should be
unobservable. The calibration results for these parameters
can be clearly seen in Fig. 14 and they diverge erroneously
during optimization.

As a comparison, we use the same sensor rig and same
perturbations to IMU-IMU translation to run the proposed
MVIS under fully-excited motions. As shown in Fig. 15, all
these calibration parameters can converge well when fully-
excited motions are given, as compared to Fig. 14.

11.4 Discussion on Estimation Convergence

We formulate the MVIS calibration and estimation as a
nonlinear least squares (NLS) problem, which is a non-
convex optimization problem and its global minimum is hard
to guarantee. Also, as it is almost impossible to obtain the
“true” calibration for real sensor rigs, evaluating the global
optimum in real world becomes formidable. As such, we
often use engineering intuitions to improve the calibration
in terms of accuracy, convergence and repeatability, e.g., by
fully exciting sensor motions, improving calibration priors
and delaying adding auxiliary IMU factors. Although there is
no theoretical guarantee, our simulation results have shown
that the proposed M VIS calibration is able to converge to the
true values.

Based on our analysis, we need fully excited motions
(3D rotation and 3D translation) for all the sensors to make
sure all the related calibration parameters can converge (see
Section 10.1, 11.1 and 11.2). If the MVIS undergoes any
degenerate motions listed in Section 9, some calibration
parameters are unlikely to converge (see Section 10.2, 10.3
and 11.3). From the extensive simulations and real world
experiments, we find that the proposed MVIS estimation
with full-parameter calibration can converge in most cases.

Given fully excited motions, the initial guess and prior
information for these calibration parameters are also crucial
for estimator convergence. As discussed earlier, the IMU
intrinsics are in most cases not large in values, and hence
initialized with “ideal” intrinsic values: identity matrices for
gyroscope correction D, accelerometer correction D, I R,
and zero matrix for g-sensitivity T, . Although the camera
intrinsic and distortion parameters are usually initialized
based on the camera calibration using OpenCV (OpenCV
Developers Team 2021) or Kalibr (Furgale et al. 2013),
the proposed MVIS can handle inaccurate camera intrinsics
as shown in Fig. 9. For the IMU-IMU/camera extrinsics,
the initial orientation part is decided manually while the
translation part can be measured by hand. This can be
improved by using trajectory alignment of visual trajectories
and IMU integrated trajectory segments. The temporal
related parameters are most cases initialized through
orientation alignment. Through real-world experiments, see
first row of Fig. 9 and IMU-IMU Pos. in Fig. 15, we
find that the proposed MVIS estimation with full-parameter
calibration can converge even with various perturbations to
initial guesses.

The more sensors used, the more calibration parameters
will be included in the state, resulting in larger NLS
problems. This would potentially pose challenges to
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convergence of the proposed MVIS when estimating all
the related calibrations at once, especially when the initial
guesses for these calibrations are not of good quality. To
address this issue, we add the cost terms from auxiliary
sensors later than the base inertial sensor costs, after
base inertial sensor related parameters converge. In our
experiments, we first only optimize the base IMU and the
cameras related costs until the landmark feature estimates
converge. After that, the auxiliary IMUs/gyroscopes cost
terms will be added to the NLS for solving their related
calibration parameters. In effect, from our experiences on
the data collected using VI-Rig, 5-20s of the data with fully-
excited motions are sufficient for the landmarks to converge.

12 Conclusions and Future Work

In this paper, we have developed a multi-visual-inertial
system (MVIS) estimation algorithm which can fuse
multiple IMUs, gyroscopes and GS/RS cameras, with a
special focus on full-calibration of all intrinsics, extrinsics,
and temporal parameters (including time offsets and
readout times for RS cameras). In particular, we proposed
ACI3, a novel IMU pre-integration which incorporates
IMU intrinsic parameters. Based on ACI®, we fuse
multiple IMU measurements by leveraging IMU-IMU
rigid body constraints with spatiotemporal and inertial
intrinsic calibration. We have performed M VIS observability
analysis, proving that four standard unobservable directions
corresponding to global yaw and global translation remain,
while the calibration parameters are observable under fully
excited motion. Moreover, we have also, for the first
time, identified the commonly seen degenerate motions
that can cause IMU-IMU calibration parameters to become
unobservable. We show that the rotation calibration between
IMU and gyroscopes is unobservable given one-axis
rotation, while the time offset between IMUs is observable
given non-zero constant local angular and linear velocity
for one of the IMUs. Extensive simulations have been
performed to evaluate the proposed system and verify
the degenerate motions identified for these calibration
parameters. Moreover, a self-made sensor rig that consists
of multiple commonly-used IMUs and GS/RS cameras
were used for data collection and system evaluation. In
particular, three sets of experiments were performed to fully
evaluate the calibration accuracy of the proposed MVIS
against the state-of-art sensor calibration framework Kalibr.
A total of 25 datasets were collected with the VI-Rigs to
provide detailed statistics for calibration convergence and
repeatability of the proposed MVIS and Kalibr.

In the future, we will investigate vehicle dynamics (e.g.,
wheel odometry on ground vehicle (Lee et al. 2020), contact
dynamics from legged robots (Fourmy et al. 2021), or
MAV dynamics (Chen et al. 2022)) in MVIS calibration.
Calibrating MVIS under degenerate motions is of particular
interest along with how sensor configurations/installation
affect calibration performance. We will also develop efficient
marginalization to enable the proposed batch optimization-
based MVIS to perform online calibration amenable for real-
time performance.
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Figure 14. Calibration results for one planar motion dataset collected with Intel Realsense T265 and four IMUs. The translation of
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under planar motions, which verifies our observability analysis. Different colors represent different initial perturbations to the
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Figure 15. Calibration results for one fully-exicted motion dataset collected with Intel Realsense T265 and four IMUs. The
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A IMU Readings

To simplify the derivations, we have the following:
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Note that the wy,+; and ay_,; are actually function of constant
IMU intrinsics x;5, and biases x;, . The angular velocity and
linear acceleration estimates can be written as:
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For simplicity of derivations, we also define:
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Let’s first define the error states for the wy; and ag; as:
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Note that if the RPNG model is used, Hp,,, Hp,, Hr, and
H;, are computed with:
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If the Kalibr modelisused, Hp,, Hp,, Hy, and Hy,, are
computed with:
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B Linearization Prediction

R, i+1 from Eq. (56), can be written as:
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The block Jacobians for Eq. (95) are written as:
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C Bias and Intrinsic Jacobians

The biases or IMU intrinsic Jacobians can be recursively
computed as:
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where * denotes by or in. Then, these Jacobians can be
rewritten as:
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D State Transition Matrix

The detailed derivations for ®g, ® 4, P, Peuiip and Pp
can be found as:
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The state transition of ® g and ® 4 have the same structure.
We can grab the gyroscope part of ® g to get ® . Therefore,
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only ® p is shown in this paper for clarity. The ®; is:
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E Measurement Jacobians

Jacobians of camera measurements are computed as:
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Note that t; =tgc —tg =tc — tqy — t4. The measurement
Jacobians for auxiliary IMU constraints are computed as:

_ {raR 03 03 03 03 O3x24
HAB = lgBiIa
I7R['Pr,] —Is 03 03 03 O03x24
H,, = [—I3 03 03 03 03 O3x24
103 I3 03 03 O3 O3x24
HAC' = _13 03A _{aw 03><20:|
103 _IGR “vi+ ?RLI‘*’J IPL, 0320

Note that t; =t, —tq, =t, —tq, —tq, is used when
computing the Jacobians for the t4,. The measurement
Jacobians for auxiliary gyroscope constraints are computed
as:

HGB = HQR 03 03 03 03 03><24}
Hge = [-I3 03 03 03]
Hoo = [0sx7 Is —Ts@ 03xs  Osys)

Note that t; =14, — ta, =tg — ta, — fdg is used when
computing the Jacobians for the Z4,,.

F Observability Matrix

For the component Mg, we have:
Mcg = Hep®s
= prICRTIGRT X
[1"1 s I's Ty I's I's I'y Ty Fg]

where:

1 N
Fl = Lpr — Gpll — GV]l(St — §Gg5t2JIG1R

T =-1I3

s = —I30t

Ty=|%ps— GPIkJIGkR'I’M — Py

I's = Lpr - GPIkJiR‘I’w — Pos

I's = Lpr - GPIkJiR‘I’mn — P
' = Lpr - GPIkJiR‘I’mlz - Pin2
Ts = |%ps — “pr ) R®ip13 — Binos
'y = LGPf - GPIkJiR‘i’mM — Pina4

For the component M 4 5, we have:

Map =Hsp®p
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It
_ s R 03 «
0; I3
®;; 03 03 P14 P15 Pir Piniz Pinis
ral raZ Fu3 ru4 ruB Fuﬁ Fa7 ra8
where:
1
Lo = |p1,, — “pr, — “vi, 0t — §Gg5t2Jﬁ
e E
I'y3 =150t

Dy — Py
D5 — Pos

Loy = ﬁf{LIfna
Lus = ﬁf{LlfU
Lo = if{LIfU
Tur = ¢ R["p;
Fa8 = iﬂl_lf)la
Fag = iRI_IIA)IQ

a

DPin11 — Pinot

a

DPin12 — Pinoe

a

DPini13 — Pinos

- o o L L

DPin1a — Pinoa
For the component M 4 4, we have:

Muaa =HyaP4

_ —13 03 03 03 03 03><24 (I)Ia
03 I3 03 03 03 03><24 0

For the component M 5, we have:
M¢gp = Hgp®p

R P
:[?R 03 03 03 O3 03><24}|:01

For the component M, we have:
Mce = Hge®q

P
=[-I3 03 03 O3 O3 03><24][01g

Due to @450 = I and @ = I, we have:

Mcce = Hee
Muc = Hac
Mcc = Hge
Mcr = Her

Prepared using sagej.cls
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