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Degenerate Motion Analysis for Aided INS with
Online Spatial and Temporal Sensor Calibration

Yulin Yang1, Patrick Geneva2, Kevin Eckenhoff1 and Guoquan Huang1

Abstract—In this paper we perform in-depth observability
analysis for both spatial and temporal calibration parameters
of an aided inertial navigation system (INS) with global and/or
local sensing modalities. In particular, we analytically show that
both spatial and temporal calibration parameters are observ-
able if the sensor platform undergoes random motion. More
importantly, we identify four degenerate motion primitives that
harm the calibration accuracy and thus should be avoided
in reality whenever possible. Interestingly, we also prove that
these degenerate motions would still hold even in the case
where global pose measurements are available. Leveraging a
particular multi-state constrained Kalman filter (MSCKF)-based
vision-aided inertial navigation system (VINS) with online spatial
and temporal calibration, we perform extensively both Monte-
Carlo simulations and real-world experiments with the identified
degenerate motions to validate our analysis.

Index Terms—Calibration and Identification, Visual-based
Navigation, Inertial Navigation System, Observability Analysis

I. INTRODUCTION AND RELATED WORK

IN recent years, inertial measurement units (IMU) have
emerged as a popular sensing modality for 6DOF motion

estimation. IMUs are proprioceptive devices that provide read-
ings of the local angular velocity and linear acceleration of
a moving platform at a high frequency, thereby providing
good motion estimates over short time intervals. However,
consumer-class MEMS IMUs suffer from non-negligible time-
varying biases and noises, preventing the direct integration
of IMU measurements to obtain accurate velocity, position,
and orientation estimates. To combat long-term drift due to
integrating over solely noisy IMU measurements, fusion with
information from lower frequency exteroceptive sensors (such
as optical or event cameras [1]–[8], LiDAR [9] or sonars [10])
is often performed, resulting in an aided inertial navigation
system (INS).
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When fusing the measurements from external exteroceptive
sensors, it is vital to determine in high precision the spatial
and temporal sensor calibration parameters. In particular, we
must know the rigid-body transformation from one sensor
frame to another in order to correctly fuse motion information
extracted from these sensor measurements. In addition, due to
improper hardware triggering, transmission delays, and clock
synchronization errors, the timestamped sensing data of each
sensor may disagree and thus, a timeline misalignment (time
offset) between different sensor measurements might occur,
which will eventually lead to unstable or inaccurate state
estimates. It is therefore critical that these time offsets should
also be calibrated.

In particular, in vision-aided inertial navigation systems
(VINS), sensor calibration of spatial and/or temporal param-
eters has attracted significant research efforts (e.g., [11]–
[16] and references therein). Among them, notable work
includes the (iterated) EKF-based camera-IMU extrinsic (i.e.,
spatial-only) calibration [11], in which nonlinear observabil-
ity analysis shows that these transformation parameters are
observable given sufficiently excited motions. Similar observ-
ability analysis is also performed in [13], where an UKF-
based visual-inertial online extrinsic calibration that does not
require external calibration aids is developed. Moreover, the
observability/identifiability analysis [12] based on indistin-
guishable trajectories again shows that both the global gravity
and camera-IMU extrinsic calibration are observable provided
general motions. However, all these great works focus only
on camera-IMU spatial calibration and perform observability
analysis assuming general motions. Recently, temporal sensor
calibration has been emerging. For example, in the widely-
used calibration toolbox Kalibr [14], both sensor-sensor spatial
transformation and time offset are estimated offline using cali-
bration targets, within a continuous-time batch maximum like-
lihood estimation (MLE) framework. Online temporal calibra-
tion, however, is first rigorously addressed in [15], [17] based
on the multi-state constrained Kalman filter (MSCKF) [1].
In this camera-IMU online calibration system, observability
(identifiability) analysis is performed showing that the time
offset is in general observable and provides the theoretical
sufficient conditions for the observability of time offset alone,
while practical degenerate motions are not fully examined.
It should also be noted that very recently an optimization-
based online temporal calibration of VINS is introduced in
[16] which directly shifts visual feature observations in time
to best match IMU constraints.

In this work, however, we focus on the degenerate motion
observability analysis for any source-aided INS with both spa-

http://ieeexplore.ieee.org


YANG et al.: DEGENERATE MOTION FOR AIDED INS CALIBRATION 2071

tial and temporal online calibration. In particular, leveraging
our prior work [18], we perform an observability analysis for
linearized aided INS with these spatial and temporal param-
eters for generic exteroceptive sensors, including both local
and/or global measurements. Based on this analysis, we iden-
tify the degenerate motion primitives that can be encountered
in practice and would degrade the calibration performance,
thus providing insights about what motions a practitioner may
consider when performing calibration. Specifically, the main
contributions of this paper include:

• We perform observability analysis for the generalized any
source-aided INS with both spatial and temporal calibra-
tion parameters, showing that under general motion these
calibration parameters are observable.

• We identify four degenerate motion primitives causing
online spatial/temporal calibration to partially fail, which
hold great practical implications and should be avoided
in real applications whenever possible.

• We study the effects of global sensor measurements on
the spatial and temporal calibration, for the first time
showing that the degenerate motions still hold even when
global pose measurements are present.

• We implement the MSCKF-based vision-aided INS with
online spatial and temporal calibration and validate exten-
sively our degenerate motion analysis with both Monte-
Carlo simulations and real-world experiments.

II. PROBLEM STATEMENT

During online navigation, we concurrently estimate the state
variables together with spatial and temporal calibration param-
eters and update them as new measurements are available. The
success of calibration heavily depends on the motion of the
sensor platform, motivating the identification of degenerate
motion profiles that negatively affect the estimation accuracy
of aided INS.

A. State Vector

We consider the state vector with both spatial and temporal
calibration parameters for aided INS: that is the 6DOF rigid-
body transformation xcalib and the temporal time offset td
between the IMU and aiding sensor are included in the state
vector. Thus, the total state vector that is being estimated can
be written as:1

x =
[
x⊤
I x⊤

calib td x⊤
f

]⊤
(1)

where xI and xf represents the IMU and feature states, respec-
tively. For simplicity of the ensuing analysis, we consider one
point feature in the state vector (which can be generalized to
multiple features as in [19]), and express xI and xf as follows:

xI =
[
I
Gq̄

⊤ b⊤
g

Gv⊤
I b⊤

a
Gp⊤

I

]⊤
, xf =

Gpf (2)

1Throughout this paper x̂ is used to denote the estimate of a random variable
x, while x̃ = x − x̂ is the error in this estimate. In×m and 0n×m are the
n × m identity and zero matrices, respectively. The left superscript denotes
the frame of reference the vector is expressed with respect to.

where I
Gq̄ represents the JPL quaternion [20] associated with

the rotation matrix I
GR which rotates vectors from the global

frame into the local IMU frame, GvI and GpI refer to
the velocity and position of the IMU as expressed in the
global frame, and bg and ba represent the gyroscope and
accelerometer biases, respectively. Gpf is the position of an
environmental feature point measured by the exteroceptive
sensors as represented in the global frame. In addition, the
spacial calibration state xcalib contains the relative transform
between the IMU frame and measurement sensor frame, i.e.,
x⊤
calib = [CI q̄

⊤ Cp⊤
I ].

Moreover, due to the inherited nature of electronic hard-
ware (e.g., asynchronous clocks, data transmission delays
and electronic triggering delays), the timestamps reported by
each of the sensors will differ from the “true” time that the
measurements were recorded . We treat the IMU clock as the
true time and estimate the offset of the aiding sensor relative
to this base clock [15], [16]. We model the time offset td as
a constant value:

td = tC − tI (3)

where tC is the time recorded on the sensor measurements,
and tI is the corresponding true IMU time.

B. System Dynamical Model

Based on (1), the system dynamical model including IMU
kinematics [20] can be described as:

I
G
˙̄q(t) =

1

2
Ω
(
Iω(t)

)
I
Gq̄(t)

GṗI(t) =
GvI(t),

Gv̇I(t) =
Ga(t)

ḃg(t) = nwg(t), ḃa(t) = nwa(t)

ẋcalib(t) = 06×1, ṫd(t) = 0, ẋf (t) = 03×1 (4)

where ω and a denote the local angular velocity and linear
acceleration, nwg and nwa are the white Gaussian noises
driving the gyroscope and accelerometer biases. Ω(ω) =[
−⌊ω⌋ ω
−ω⊤ 0

]
and ⌊·⌋ represents a skew symmetric matrix.

Based on the nonlinear system model (4), the linearized system
state transition matrix Φ(k, 1) from time step 1 to k can be
found analytically and is given by:

Φ(k, 1)=


ΦI(k,1) 015×6 015×1 015×3

06×15 ΦCalib(k,1) 05×1 06×3

01×15 01×6 Φtd(k,1) 01×3

03×15 03×6 03×1 Φf(k,1)

 (5)

where ΦI(k,1), ΦCalib(k,1) = I6, Φtd(k,1) = 1 and Φf(k,1) =
I3 represent the state transition matrix for xI , xcalib, td and
xf , respectively. Note that the linearized state transition matrix
ΦI(k,1) for IMU can be computed as [19]:

ΦI(k,1) =


ΦI11 ΦI12 03 03 03

03 I3 03 03 03

ΦI31 ΦI32 I3 ΦI34 03

03 03 03 I3 03

ΦI51 ΦI52 ΦI53 ΦI54 I3

 (6)
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Note that the error state for quaternion is defined as:

δq̄ = q̄ ⊗ ˆ̄q−1 ≃
[
1
2δθ

⊤ 1
]⊤

(7)

where ⊗ denotes the quaternion multiplication [20].

C. Generic Range/Bearing Measurement Model

While navigating through space, an aiding sensor provides
range and/or bearing information to point features in the envi-
ronment, which can be generically modeled as the following
(linearized) range and/or bearing measurement model [18]:

zC =
[

λr 01×2

02×1 λbI2

]
︸ ︷︷ ︸

Λ

[
z(r)

z(b)

]
= Λ


√

Cpf
⊤Cpf + n(r)

hb

(
Cpf ,n

(b)
)
 (8)

≃ Λ

[
Hr

C p̃f + n(r)

Hb
C p̃f +Hnn

(b)

]
(9)

where z(r) and z(b) = hb(·) are the range and bearing
measurements, respectively. Λ denotes the measurement se-
lection matrix with scalars λr and λb; for example, if λb = 1
and λr = 1, then zC contains both range and bearing
measurements. Cpf represents a 3D point in the sensor frame,
Hr and Hb are the range and bearing measurement Jacobians
with respect to Cpf . Hn is the noise Jacobian, n(r) and
n(b) are zero-mean Gaussian noises for range and bearing
measurements, respectively. To keep our presentation concise,
we also define Hproj as:

Hproj =
∂z̃C
∂C p̃f

= Λ

[
Hr

Hb

]
(10)

Clearly, depending on the selection matrix Λ, Hproj may be
the range-only measurement Jacobian Hr (λr = 1 and λb =
0), bearing-only measurements Jacobian Hb (λr = 0 and λb =
1), or both.

According to our time offset definition (3), the feature Cpf

in the sensor frame with reported time stamp t corresponds to
the time t− td in the IMU base clock. Hence, we have:

Cpf =
C
I R

I
GR(t− td)

(
Gpf − GpI(t− td)

)
+ CpI (11)

where I
GR(t− td) and GpI(t− td) represent the IMU pose at

time t−td, which will be denoted as time step k for simplicity
in the ensuing derivations. Therefore, the measurement Jaco-
bian of zC with respect to the state vector x can be written
as:

HC =
∂z̃C
∂x̃

=
∂z̃C
∂C p̃f

∂C p̃f

∂x̃
= Hproj

∂C p̃f

∂x̃
(12)

D. Global Pose Measurement Model

When calibrating an aided INS, we can limit the drift
of the motion estimation by providing the estimator with
direct measurements of the IMU pose (e.g., a motion capture
system). The direct pose measurement is given by:

zv =

[
q̄n ⊗ I

Gq̄
GpI + np

]
(13)

where q̄n ≃ [ 12n
⊤
θ 1]⊤, and nθ and np represent Gaussian

noises for the orientation and position measurements.

E. Observability Analysis

We perform the observability analysis for the linearized
system with both spatial and temporal calibration parameters.
To this end, the observability matrix is defined as [21]:

M =


M1

M2

...
Mk

 =


H1Φ(1, 1)
H2Φ(2, 1)

...
HkΦ(k, 1)

 (14)

where Mk represents the k-th block row of the observability
matrix M corresponding to time step k. By carefully exam-
ining this matrix, we are able to determine the degenerate
motions for aided INS, which play important roles in keeping
the state estimator healthy.

III. OBSERVABILITY ANALYSIS OF AIDED INS WITH
CALIBRATION USING LOCAL MEASUREMENTS

Given a bearing and/or range measurement of a point feature
[see (8)], we compute the measurement Jacobian at time step
k with respect to the error state x̃k as follows (note that we
sometimes omit the time index to keep notation concise):

HC = Hproj

[
∂C p̃f

∂x̃I

∂C p̃f

∂x̃calib

∂C p̃f

∂t̃d

∂C p̃f

∂x̃f

]
(15)

By noting that Ik
G Ṙ = −⌊Ikω⌋IkG R, we have:

∂C p̃f

∂δθ
= C

I R̂
Ik
G R̂⌊

(
Gp̂f − Gp̂Ik

)
⌋GIkR̂ (16)

∂C p̃f

∂Gp̃Ik

= −C
I R̂

Ik
G R̂ ,

∂C p̃f

∂Gp̃f
= C

I R̂
Ik
G R̂ (17)

∂C p̃f

∂δθc
= C

I R̂
Ik
G R̂⌊

(
Gp̂f − Gp̂Ik

)
⌋GIkR̂

I
CR̂ (18)

∂C p̃f

∂C p̃I
= C

I R̂
Ik
G R̂G

Ik
R̂I

CR̂ = I3 (19)

∂C p̃f

∂t̃d
= C

I R̂
Ik
G R̂

(
−⌊
(
Gp̂f−Gp̂Ik

)
⌋GIkR̂

Ik ω̂+Gv̂Ik

)
(20)

With these measurement Jacobians, we construct the k-th
block of the observability matrix as follows [see (14)]:

Mk = Hproj
C
I R̂

Ik
G R̂︸ ︷︷ ︸

Ξk

ΞΓk

where we have:

ΞΓk =
[
Γ1 Γ2 −I3δtk Γ3 −I3 Γ4

G
Ik
R̂I

CR̂ Γ5 I3

]
(21)

Γ1 = ⌊Gp̂f − Gp̂I1 − Gp̂I1δtk − 1

2
Ggδt2k⌋GI1R̂ (22)

Γ2 = ⌊Gp̂f − Gp̂Ik⌋GIkR̂ΦI12 −ΦI52 (23)

Γ3 = −ΦI54, Γ4 = ⌊Gp̂f − Gp̂Ik⌋GIkR̂
I
CR̂ (24)

Γ5 = −⌊
(
Gp̂f − Gp̂Ik

)
⌋GIkR̂

Ik ω̂ + Gv̂Ik (25)
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Assuming the system undergoes general (random) motions,
we can find the unobservable directions as the right null space
of the observability matrix as follows:

MkN = ΞkΞΓkN = 0 ⇒ (26)

N =
[
Nr Np

]
=



I1
G R̂Gg 03

03×1 03

⌊Gv̂I1⌋Gg 03

03×1 03

−⌊Gp̂I1⌋Gg I3
03×1 03

03×1 03

0 01×3

−⌊Gp̂f ⌋Gg I3


(27)

We have computed the above null space based on ΞΓkN = 0
and thus this four-dimensional unobservable subspace (i.e.,
span(N)) holds regardless range and/or bearing measure-
ments. Close inspection of these null vectors shows that Nr

is the unobservable direction related to the global yaw while
Np corresponds to the global IMU position. This, as expected,
confirms the observability analysis of vision-aided INS [19],
and importantly, reveals that given random motions both the
spatial and temporal calibration parameters (xcalib and td) are
observable, which also agrees with the analysis results in [11]–
[13], [15].

While these observability properties hold with general mo-
tion, which however may not always be the case in reality,
identifying degenerate motion profiles that cause extra unob-
servable directions to appear in the system, becomes important.
Since degenerate motions for the IMU state xI and the feature
state xf have been studied in our previous work [18], in this
work we will only focus on motions that cause the calibration
parameters to become unobservable.

IV. DEGENERATE MOTION ANALYSIS

Based on our observability analysis, we now present four
degenerate motions that cause unobservability of the spatial
and/or temporal calibration. Note that due to the space limit,
in the following we just sketch some of the proofs while the
detailed derivations can be found in our companion technical
report [22] which is available online.

A. Pure Translation (No Rotation)

Lemma 1. If the aided INS undergoes pure translation (no
rotation), the translation part CpI of the spatial calibration
will be unobservable, with unobservable directions as:

Npt =
[
03×15 03 I3 03×1 −(GI1R̂

I
CR̂)⊤

]⊤
(28)

Proof. If performing pure translation, we have for any k:
G
Ik
R̂ = G

I1R̂
I1
Ik
R̂ = G

I1R̂I3 = G
I1R̂ (29)

With this identity, we can verify that [see (21) and (28)]:

MkNpt = Ξk

(
G
Ik
R̂I

CR̂− G
I1R̂

I
CR̂
)
= 0 (30)

⇒ MNpt = 0 (31)

This completes the proof.

Note that as (30) holds no matter what Hproj contains, the
null space Npt is valid for either range or bearing measure-
ments. To geometrically interpret this unobservable direction,
we perturb the calibration translation with δp:

C p̂′
I = C p̂I + δp (32)

where (′) is used to describe the perturbed parameter. The
corresponding feature position change along this null space
can be modeled as:

Gp̂′
f =

Gp̂f − G
I1R̂

I
CR̂δp (33)

Substitution of (32) and (33) into (11) yields:

C p̂′
f =

C
I R̂

Ik
G R̂

(
Gp̂′

f − Gp̂Ik

)
+ C p̂′

I

= C
I R̂

Ik
G R̂

(
Gp̂f − Gp̂Ik

)
+ C p̂I

= C p̂f (34)

It is clear that the system cannot identify this perturbation δp
to CpI given the feature measurements (11), and thus Npt

is related to the IMU-sensor translation part [see (1)], which
implies that if there is no rotation, the translation parameters
of spatial calibration are unobservable.

B. One-Axis Rotation

Lemma 2. If the aided INS undergoes random (general)
translation but with only one-axis rotation, the translation
calibration parameter CpI along the rotation axis will be
unobservable, with the following unobservable direction:

Noa =
[
01×18 (CI R̂

I k̂)⊤ 01 −(GI1R̂
I k̂)⊤

]⊤
(35)

where Ik is the constant rotation axis in the IMU frame {I}.

Proof. See [22].

By careful inspection of the structure of the null space
Noa (35), we can conclude that if performing only one-axis
rotation, the calibration translation along the rotation axis I k̂ is
unobservable, while the orientation calibration and time offset
are still observable.

C. Constant Local Angular and Linear Velocities

Lemma 3. If the aided INS undergoes constant local angular
velocity Iω and linear velocity Iv, the time offset td will be
unobservable with the following unobservable direction:

Nt1=
[
01×15 (CI R̂

Iω̂)⊤ −(CI R̂
I v̂)⊤ 1 01×3

]⊤
(36)

Proof. Based on (21) and (36), we have for any k:

MkNt1 = Ξk

[
Γ4

C
I R̂

Iω̂ − G
Ik
R̂I

CR̂
C
I R̂

I v̂ + Γ5

]
=

Ξk

[
⌊Gp̂f − Gp̂Ik⌋GIkR̂

I
CR̂

C
I R̂

Iω̂ − G
Ik
R̂I

CR̂
C
I R̂

I v̂−

⌊
(
Gp̂f − Gp̂Ik

)
⌋GIkR̂

Ik ω̂ + Gv̂Ik

]
= 0

⇒ MNt1 = 0

This completes the proof.
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TABLE I: Observability of spatial and temporal calibration of
aided INS with different motions

Motion Unobservable Observable
No motion CpI , C

I R and td –
Pure Translation CpI

C
I R and td

One-axis Rotation CpI along rotation axis C
I R and td

Constant Iω td and C
I R

Constant Iv CpI along rotation axis
Constant Iω td and C

I R
Constant Ga CpI along rotation axis
One global axis translation

– C
I R, CpI , tdTwo-axis rotation

Random motion – C
I R, CpI , td

D. Constant Local Angular Velocity and Global Linear Ac-
celeration

Lemma 4. If the aided INS undergoes constant local angular
velocity Iω and global acceleration Ga, the time offset td will
be unobservable with the following unobservable direction:

Nt2 =
[
01×6

Gâ 01×6 (CI R̂
Iω̂)⊤ 01×3 1 −(Gv̂I1)

⊤
]⊤

(37)

Proof. See [22].

E. Summary

Table I summaries our analysis identifying the degenerate
motions of temporal and spatial sensor calibration in aided
INS. Clearly, as compared to the translation calibration, the
observability of the orientation calibration is less sensitive
to different motions, and in most cases it is observable. In
general, pure three-axis rotation of the aiding sensor is not
a degenerate motion for calibration parameters, but may be
degenerate for other state variables; for example, we have
shown before that pure rotation for monocular camera causes
loss of feature scale [18]. Similar to the analysis in [11]–[13],
in order to get reliable translation calibration, at least two-axis
rotation (with random translation) is needed. However, here
we have advanced our understanding even further by analyti-
cally showing that one-axis rotation will cause the translation
calibration to become unobservable along the rotation axis.
Therefore, the minimum motion requirement for a reliable
spatial and temporal calibration is at least one global axis
translation and two-axes rotation, and it is not recommended to
perform online IMU-camera calibration under planar motions
(e.g., planar VINS for autonomous driving). Interestingly, the
time offset calibration generally is observable, except for
very strict motions. We want to point out again that these
findings are not only important to perform successful spatial
and temporal sensor calibration but also useful to monitor the
estimator health (if undergoing degenerate motions, the system
should be alerted).

V. AIDED INS WITH GLOBAL SENSOR MEASUREMENTS

A straightforward way to improve the accuracy of the total
estimation (including motion and calibration parameters) is to
include additional global measurements of the state (e.g., pose

measurements from Vicon). In the following, we investigate
the effects on the observability of the calibration parameters
by the inclusion of global information .

A. Observability Analysis

If the system is also fed with global pose measurements,
zv , we have the following measurement Jacobian [see (1)]:

HV =
∂z̃v
∂x̃

=
[
∂z̃v

∂x̃I

∂z̃v

∂x̃calib

∂z̃v

∂t̃d

∂z̃v

∂x̃f

]
(38)

where ∂z̃v

∂δθ =
[
I3 03

]⊤
and ∂z̃v

∂Gp̃I
=
[
03 I3

]⊤
. Combined

with measurements from the other exteroceptive aiding sen-
sors, the overall measurement Jacobian is given by [see (15)
and (38)]:

Hk =

[
HCk

HVk

]
(39)

Thus, for this aided INS supplemented with additional
global pose information, the k-th block of the observability
matrix is given by (21):

M
(g)
k =

[
Ξk 0
0 I6

]
︸ ︷︷ ︸

Ξ
(g)
k

× (40)

Γ1 Γ2 −I3δk Γ3 −I3 Γ4
G
Ik
R̂I

CR̂ Γ5 I3
I3 03 03 03 03 03 03 03×1 03

03 03 03 03 I3 03 03 03×1 03


Based on this matrix (40) and thus the observability ma-
trix (14), we can see that an aided INS undergoing random
motion, with both generic range/bearing and global pose mea-
surements, as expected, will have all calibration parameters
observable. However, in the next section, we for the first
time show that degenerate motions still hold even with global
measurements, which, to our understanding, is interesting and
important to report as it may counter one’s intuition.

B. Degenerate Motion Analysis

If the system undergoes degenerate motions, based on
the structure of the observability matrix (40), we have the
following results:

Lemma 5. If aided INS undergoes degenerate motion for
calibration parameters, using extra global measurements will
not cause the calibration to become observable, that is:

• For the pure translation, the unobservable directions Npt

w.r.t. translation calibration still holds.
• For the one-axis rotation, the unobservable direction Noa

w.r.t. translation calibration along the rotation axis still
holds.

• In the case of constant Iω and Iv, the unobservable
direction Nt1 w.r.t. time offset calibration still holds.

• In the case of constant Iω and Ga, the unobservable
direction Nt2 w.r.t. time offset calibration still holds.

Proof. We sketch the proof for each case as follows:
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TABLE II: Simulation setup parameters
Parameters Values
True C

I q̄ [0, 0, 0, 1]⊤

True CpI [0.01, 0.02, 0.02]⊤ (m)
True td 0.04 (sec)
Initial C

I q̄ [0.0099, 0.0198,−0.0099, 0.9997]⊤

Initial CpI [0.05, 0.06,−0.02]⊤ (m)
Initial td 0.02 (sec)
Initial σ for calib orientation 0.04 (rad)
Initial σ for calib translation 0.05 (m)
Initial σ for calib time offset 0.02 (sec)

• Given pure translation (no rotation), we verify Npt [see
(40), (28) and Section IV-A]:

M
(g)
k Npt = Ξ

(g)
k

[(
G
Ik
R̂I

CR̂− G
I1
R̂I

CR̂
)

0

]
= 0 (41)

• Given one-axis rotation, we verify Noa [see (40), (35)
and Section IV-B]:

M
(g)
k Noa = Ξ

(g)
k

[(
G
I1
R̂I k̂− G

I1
R̂I k̂

)
0

]
= 0 (42)

• Given constant Iω and constant Iv, we verify Nt1 [see
(40), (36) and Section IV-C]:

M
(g)
k Nt1 = Ξ

(g)
k ×

(
⌊Gp̂f − Gp̂Ik⌋GIkR̂

I
CR̂

C
I R̂

Iω̂ − G
Ik
R̂I

CR̂
C
I R̂

I v̂

−⌊
(
Gp̂f − Gp̂Ik

)
⌋GIkR̂

Ik ω̂ + Gv̂Ik

)
0


= 0 (43)

• Given constant Iω and constant Ga, we verify Nt2 [see
(40), (37) and Section IV-D]:

M
(g)
k Nt2 = Ξ

(g)
k ×

(
⌊Gp̂f−Gp̂Ik⌋GIkR̂

I
CR̂

C
I R̂

Iω̂

−⌊
(
Gp̂f−Gp̂Ik

)
⌋GIkR̂

Ik ω̂+Gv̂Ik−Gv̂I1−Gâδtk

)
0


= 0 (44)

This completes the proof.

With these insightful findings, we stress that if the calibra-
tion parameters are observable (e.g., under random motion),
the additional global measurements will help to improve the
calibration accuracy, because they can make the navigation
system observable. However, if the system undergoes degener-
ate motions for calibration, the additional global measurements
will not make the parameters observable. These results are
profound, in particular, for practitioners, as naively using
global sensors may not necessarily guarantee good calibration.

VI. SIMULATION RESULTS

To validate our observability analysis and the identified de-
generate motions for sensor calibration, We have implemented
the MSCKF-based vision-aided INS (VINS) [1] with online
spatial and temporal IMU/camera calibration similar to [15].
In our implementation [22], a fixed-size sliding window is
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Fig. 1: Averaged RMSE results of Monte-Carlo simulation for
the IMU pose estimates from MSCKF-based VINS with online
spatial and temporal calibration in four considered motion
cases.

built by stacking cloned IMU poses and corresponding visual
feature measurements that are marginalized during update. The
system has been tested in Monte-Carlo simulations with four
motions: (i) random motion with varying linear acceleration
and angular velocity, in which both spatial and temporal
calibration parameters should be observable; (ii) one-axis
rotational motion with varying linear acceleration and only
varying angular motion around one axis, in which only the
translation along the rotation axis should be unobservable;
(iii) circular planar motion with constant local linear and
angular velocity, in which both the translation and time offset
calibration should be unobservable; (iv) straight line motion
with constant velocity and no rotation, in which both the
translation and time offset calibration should be unobservable.
Table II shows the realistic parameters used in our simulation
setup. The root mean squared errors (RMSE) [23] are used to
quantify the accuracy of both calibration and localization.

Fig. 1 shows the averaged RMSE results of the IMU pose
estimates (localization) in all four considered motion cases,
while Fig. 2 depicts the RMSE values of both the spatial and
temporal calibration parameters. Note that straight line motion
will cause the orientation of VINS unobservable, therefore, it
drifts faster than other motion patterns. Moreover, it is clear
from Fig. 2 that, in the case of random motion, the RMSE
of all calibration parameters converge to very small errors,
indicating that these parameters converge to the true values.
In the case of one-axis rotation, the accuracy of translation
does not improve over time, as it is unobservable, while
the orientation and td converge to reasonable values as they
remain observable. In the case of circular planar motion, both
the time offset td and translation calibration fail to improve,
since they are unobservable given constant angular and linear
velocities. Examining more carefully, in the case of random
motion, each component of translation CpI converges close
to the true value as shown in Fig. 2, while in the case of
one-axis rotation, there is almost no improvement for the
translation along y axis (which is the rotation axis in our
tests) through online calibration. In the case of circular planar
motion, both the time offset td and the translation along y axis
are unobservable and thus their estimates do not improve or
become even worse. Similarly, the time offset and translation
calibration estimates are not improved in the case of straight
line motion. All these results confirm what we found in our
analysis. Due to limited space, more results regarding these
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Fig. 2: Averaged RMSE of the spatial and temporal calibration in all four considered motion cases. (a) Calibration errors of
both spatial and temporal parameters. (b) Three-axis translation error of spatial calibration.

degenerate motions with true td = 0.0 and with additional
global position measurements can be found in [22].

VII. EXPERIMENTAL RESULTS

To further validate our analysis of these identified degen-
erate motions, we collected a series of real-world datasets
that showcase these degenerate conditions. The left grayscale
camera images and inertial readings from a MYNT EYE2

sensor were used to provide a testbed for camera and IMU
calibration. For quantitative comparison, the calibration results
from the Kalibr calibration toolbox [14] were treated as
reference values3 to which our results would be compared.
The implemented system leveraged standard MSCKF features
during updates, tracked a maximum of 400 features, and
remained real-time during all evaluations. Three datasets with
different motion profiles were collected and evaluated: (i)
random motion, (ii) generic planar motion with one-axis
rotation, and (iii) circular planar motion. The random motion
trajectory captured hand-held motion while both the generic
planar and circular planar motion were achieved by mounting
the sensor testbed to a cart which was pushed in the desired
motion profile. Fig. 3 shows the estimated trajectories of our
VINS estimators in the three considered motion scenarios.

When evaluating, the initial guesses for both spatial and
temporal calibration from the reference Kalibr calibration
values were perturbed (see [22]). The main results are shown
in Fig. 4. As evident, in the case of 3D random motion,
all calibration parameters were observable as the calibration
estimates were able to quickly converge to the reference Kalibr
values. However, in the case of random planar motion with
one-axis rotation, the orientation and td were able to converge
while the translation was unable due to the unobservability

2https://mynteyeai.com/
3Calib orientation C

I q̄ =
[
0.0001, 0.0011, 0.7108, 0.7034

]⊤, calib trans-
lation CpI =

[
0.0441, 0.0029,−0.0184

]⊤, and time offset td = 0.0024.

about the rotation axis. This confirms our analysis that single-
axis rotation is a degenerate case for translation calibration.
In the case of circular planar motion (constant local angular
and linear velocities), the orientation was able to converge a
few degrees before drifting, while both the translation and td
were unable to converge, which again confirms our analysis.
The increasing errors in rotation calibration after ten seconds
might be caused by the incorrect td estimate which we found
greatly impacts the rotation estimate if incorrect.

While for single-axis planar motion, a square trajectory
with abrupt changes in velocity ensured good convergence of
orientation and td. We found that in most cases semi-circular
planar path produced poor results due to the large errors in td
preventing the convergence of the rotation calibration.

VIII. CONCLUSION AND FUTURE WORK

We have performed observability analysis for the linearized
aided INS with both spatial and temporal calibration param-
eters, and shown that both spatial and temporal calibration
parameters are observable if the sensor platform undergoes
general random motion. More importantly, we have identified
four non-trivial degenerate motions that are often encountered
in realistic scenarios and might cause the online spatial and
temporal calibration to fail. In addition, we have also studied
the effects of global pose measurements on the spatial and
temporal calibration, and analytically shown that the identi-
fied degenerate motions for these calibration parameters still
hold even with global pose measurements. Finally, we have
implemented the MSCKF-based VINS with online temporal
and spatial calibration, and extensively validated our analysis
with both Monte-Carlo simulations and real-world experiments
on the typical degenerate motion profiles. In the future, we
will extend our work to multi-sensor (e.g., camera, IMU and
LiDAR) spatial and temporal calibration, as well as investigate
the case where the time offset is time-varying (e.g. [24]).

https://mynteyeai.com/
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