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Abstract
In monocular visual-inertial navigation, it is desirable to initialize the system as quickly and robustly as possible. A
state-of-the-art initialization method typically constructs a linear system to find a closed-form solution using the image
features and inertial measurements and then refines the states with a nonlinear optimization. These methods generally
require a few seconds of data, which however can be expedited (less than a second) by adding constraints from a
robust but only up-to-scale monocular depth network in the nonlinear optimization. To further accelerate this process, in
this work, we leverage the scale-less depth measurements instead in the linear initialization step that is performed prior
to the nonlinear one, which only requires a single depth image for the first frame. Importantly, we show that the typical
estimation of all feature states independently in the closed-form solution can be modeled as estimating only the scale
and bias parameters of the learned depth map. As such, our formulation enables building a smaller minimal problem
than the state of the art, which can be seamlessly integrated into RANSAC for robust estimation. Experiments show
that our method has state-of-the-art initialization performance in simulation as well as on popular real-world datasets
(TUM-VI, and EuRoC MAV). For the TUM-VI dataset in simulation as well as real-world, we demonstrate the superior
initialization performance with only a 0.3 sec window of data, which is the smallest ever reported, and validate that our
method can initialize more often, robustly, and accurately in different challenging scenarios.
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1 Introduction

Visual-inertial odometry (VIO) facilitates real-time 3D
motion tracking through the utilization of a camera and
an inertial measurement unit (IMU) (Huang 2019). The
small size, low cost, efficiency, and complementary sensing
characteristics have made VIO emerge as a foundational
technology for AR/VR, robotics (Chen et al. 2022;
Camurri et al. 2020; Wu et al. 2017), and autonomous
applications (Özaslan et al. 2017; Eisele et al. 2019; Bayard
et al. 2019).

Two typical classes of VIO estimator designs are nonlinear
optimization-based approaches (Leutenegger et al. 2015;
Qin et al. 2018; Usenko et al. 2019; Campos et al. 2021)
and light-weight filter-based ones (e.g. an extended Kalman
filter (EKF)) (Mourikis and Roumeliotis 2007; Li and
Mourikis 2013; Hesch et al. 2014; Bloesch et al. 2017;
Geneva et al. 2020). Both of these approaches rely on
good initial conditions (e.g. velocity and gravity) in order
to run successfully, and it is highly desirable to calculate
the initial conditions as quickly as possible in order to
decrease the time the user or end application has to wait to
start, especially if the VIO system is reset and needs to re-
initialize on the fly. The initial conditions can be recovered
by making assumptions about the motion (e.g. static), but
under dynamic scenarios it is better to solve a visual-inertial
structure from motion (VI-SfM) problem in order to initialize
without making risky assumptions (Dong-Si and Mourikis

2012; Martinelli 2014). However, even VI-SfM can fail,
especially under low-excitation scenarios.

To tackle this initialization problem, a recent method by
Zhou et al. (2022) proposed to leverage learned monocular
depth to provide additional constraints to the VI-SfM and
help in the low excitation case, where the monocular priors
are applied to each keyframe in the final bundle adjustment
(BA) step. To initialize the visual-inertial bundle adjustment
(VI-BA), this method utilizes a closed-form solution similar
to Li and Mourikis (2014), which compared to the nonlinear
VI-BA is far more unstable due to the larger number of linear
approximations required. In this work, we instead propose
a simple yet effective method to utilize learned monocular
depth priors in the closed-form linear initialization instead
of the VI-BA refinement step, leveraging the single-image
depth learned over millions of diverse examples as known
prior information to reduce the number of parameters that
need to be estimated in the fragile linear system. Specifically,
the primary contributions of our work include:
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• We propose a new formulation for closed-form visual-
inertial linear initialization which leverages affine-
invariant (scale-less) single-image depth to reduce the
number of feature parameters to just a scale and bias.

• Our novel formulation allows for seamless integration
of the minimal linear system into a robust RANSAC
outlier rejection algorithm, which can be used to reject
both bad depth priors as well as outlier feature tracks
that may be present, whereas the typical linear system
is less suitable for RANSAC.

• Extensive simulations show the the proposed affine-
invariant depth-aided linear system is able to provide
an improved initial guess and result in lower
orientation and velocity errors for short initialization
windows after nonlinear refinement. Perturbation
studies quantify the impact noise magnitudes and
assumed bias on the recovered states.

• We validate our method on two public real-world
datasets, and show that our method can improve
the performance under the challenging scenario of
0.5sec of data with 5 keyframes. We additionally
show superior initialization performance for the new
and even more challenging scenario of a 0.3sec
initialization window, and extensive ablation studies
show that our method has superior performance in the
presence of outliers and a reduced number of available
feature tracks.

It is important to note that this work significantly extends
our previous conference paper (Merrill et al. 2023) by
including a minimal case analysis, detailed simulations and
sensitivity studies, as well as much more thorough real-
world results. More specifically, a more comprehensive list
of baselines are included for each experiment, a new dataset
(EuRoC Machine Hall) is added, the VIO tracking accuracy
is evaluated on each dataset, the robustness to low number of
feature tracks is evaluated on every dataset, the linear system
results are evaluated on every dataset, and the relative pose
error (RPE) is evaluated for the VIO tracking accuracy on
each dataset. Additionally, timing on an embedded device
(Jetson Orin) is also provided.

The paper is organized as follows: Sec. 2 provides a review
of related works, Sec. 3 provides background on the typical
visual-inertial initialization problem, the proposed method is
detailed in Sec. 4, simulation investigations are performed
in Sec. 6, and then an extensive evaluation on real-world
datasets is performed in Sec. 7 against the state-of-the-art
baselines. Finally, we offer some discussion of the limitations
of our method in Sec. 8 before concluding the paper in Sec. 9.

2 Related Works
Many works have investigated different methods for
performing visual-inertial initialization, and can be generally
divided into two different categories: 1) loosely-coupled
algorithms, and 2) closed-form solutions. Loosely-coupled
algorithms split the problem into first recovering an up-to-
scale camera-only SfM trajectory result and then recover
the scale given the inertial measurements, while closed-form

solutions directly formulate a linear system involving both
visual and inertial measurements.

2.1 Loosely-coupled Algorithms
The works by Mur-Artal and Tardós (2017b) and Qin
and Shen (2017); Qin et al. (2018) use a loosely-coupled
approach. Mur-Artal and Tardós (2017b) leverage ORB-
SLAM (Mur-Artal and Tardós 2017a; Campos et al. 2021)
SfM results and formulate a small linear system involving
the up-to-scale poses and inertial preintegration to directly
recover scale and gravity – which are then refined along with
the accelerometer bias in a secondary step. A later work by
Campos et al. (2020) additionally uses the up-to-scale SfM
poses, but instead directly optimizes up-to-scale velocities,
gravity direction, biases, and scale. Since an initial guess
of scale is required for non-linear optimization, they run
the initialization multiple times at different initial scales and
select the one which gives the smallest cost.

Qin and Shen (2017); Qin et al. (2018) leverage a
simplified SfM pipeline to obtain the up-to-scale trajectory,
and then formulate a linear system that recovers scale,
gravity, and velocity. A more recent work by Zuñiga-
Noël et al. (2021) showed that up-to-scale SfM results
could be leveraged in a quadratically-constrained least-
squares problem, similar to closed-form solutions, which
constrains the known magnitude of gravity to improve the
accuracy. Another work by Concha et al. (2021) proposed
a method that quickly initializes the 6 degrees of freedom
(DoF) pose without motion parallax by decoupling the
problem into the rotation, translation direction (5DoF) and
magnitude of the translation (1DoF). While promising due
to their robustification with RANSAC to handle outliers,
they do not directly leverage inertial information in these
low parallax scenarios. A key downside of loosely-coupled
algorithms is that they are reliant on good SfM results, which
require significant parallax and are typically computationally
expensive to obtain.

2.2 Closed-form Solutions
The earliest works on closed-form solutions are by Dong-
Si and Mourikis (Dong-Si and Mourikis 2012, 2011) and
Martinelli (Martinelli 2011, 2014). In particular, Dong-Si
and Mourikis (2012) proposes the use of a quadratically-
constrained least-squares problem which enforces the gravity
magnitude, and showed improvements over methods which
did not enforce this constraint. They focus on the recovery
of an unknown IMU-to-camera rotation and translation,
and directly recover the 3DoF feature positions in the first
reference frame – where Martinelli (2014) recovers the depth
of each feature for each bearing observation in every frame.
A work by Li and Mourikis (2014) tries to address the lack
of robustness by incorporating measurement noise by using
estimated feature depths to simplify the feature reprojection
cost into an approximate convex minimization problem. A
key drawback is requiring knowledge of the average scene
depth.

Another work by Kaiser et al. (2016) focuses on evaluating
sensitivities to accelerometer and gyroscope biases, which
is further extended by Campos et al. (2019) to include an
observability and consensus test to remove poor initialization
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Figure 1. Overview of the proposed monocular-depth aided visual-inertial initialization method.

results near pure rotation and with limited acceleration
motions. A recent work by Evangelidis and Micusik
(2021) focuses on reducing the computational demands of
Martinelli’s (Martinelli 2014) linear system, and showed that
the marginalization (projection) of the depth of each feature
bearing and redundant 3DoF feature in a reference frame was
possible and efficient.

2.3 Learning-aided Initialization

Recently, a handful of works have emerged which investigate
the use of learning-based methods to aid traditional SfM
and visual-inertial initialization problems. Liu et al. (2022)
utilizes a large MiDaS (Ranftl et al. 2022) depth estimation
model to replace the traditional 5-point algorithm (Nistér
2004) with a PnP alignment to the learned depth cloud.
Another work by Hruby et al. (2022), employes model
learning to select a starting problem solution which could
numerically be continued without requiring significant
samples within a RANSAC formulation. Both of these
methods, while outside of the visual-inertial field, utilize
learning in the linear initialization stage – similar in spirit
to our approach. Linear initialization, whether in visual or
visual-inertial systems, has always been a highly-unstable
processes, and can gain large benefits from learned prior
information.

The work closest to ours is that by Zhou et al. (2022).
This work is the first to leverage learned affine-invariant
depth priors to better constrain the VI-BA – which is
performed after solving a closed-form solution by Li and
Mourikis (2014). This prior work showed that the inclusion
of affine-invariant depth constraints in their VI-BA improved
the problem conditioning, robustness, and accuracy under
low-excitation scenarios. As compared to this, we look to
leverage the affine-invariant depth directly within the linear
initialization stage. As opposed to recovering each feature
state independently, our linear system is simplified to only
recovering the scale and bias of the predicted depth map.
This additionally enables the application of RANSAC to
further robustify the problem to outliers.

3 Monocular Visual-Inertial Linear
Initialization

We consider a sensor platform consisting of a monocular
camera and an inertial measurement unit (IMU). During
the initialization time period N images at [t0, · · · , tN ] are
recorded along with IMU readings. The minimal state we

wish to recover is (Dong-Si and Mourikis 2012, 2011):

x =
[
I0p⊤

f1
. . . I0p⊤

fM
I0v⊤

I0
I0g⊤]⊤ (1)

where {I0} denote the first IMU frame, I0pfi is the 3DoF
feature position with respect to {I0}, and I0vI0 , I0g are the
velocity of the platform and local gravity expressed in the
{I0} frame, respectively.

3.1 Inertial Measurement Model
A canonical three-axis IMU provides linear acceleration,
Iam, and angular velocity, Iωm, measurements expressed in
the local IMU frame {I}:

am(t) = a(t) + I
GR(t)Gg + ba(t) + na(t) (2)

ωm(t) = ω(t) + bg(t) + ng(t) (3)

where Gg ≃ [0, 0, 9.81]⊤ is the gravitational acceleration
expressed in the global frame {G}, and ng , na are zero-mean
white Gaussian noises. I

GR denotes the rotation matrix that
transforms a position expressed in the global frame to one
in the local frame. We assume that the biases ba and bg

are known with reasonable accuracy. The continuous time
IMU kinematics which evolve the state from time tk to tk+1

are (Chatfield 1997; Trawny and Roumeliotis 2005):

Ik+1

G R =
Ik+1

Ik
∆R Ik

G R (4)

GpIk+1
= GpIk + GvIk∆T − 1

2
Gg∆T 2 + Ik

G R⊤IkαIk+1

(5)
GvIk+1

= GvIk − Gg∆T + Ik
G R⊤IkβIk+1

(6)

where Ikαk+1 and Ikβk+1 are the preintegration terms
(Lupton and Sukkarieh 2012; Forster et al. 2015; Eckenhoff
et al. 2019):

IkαIk+1
=

∫ tk+1

tk

∫ s

tk

k
u∆R (am(u)− ba(u)− na(u)) duds

IkβIk+1
=

∫ tk+1

tk

k
u∆R (am(u)− ba(u)− na(u)) du

We can transform an integration from t0 to tk in the global
into the first IMU frame {I0}:

Ik
I0
R ≜ Ik

I0
∆R (7)

I0pIk ≜ I0vI0∆Tk − 1

2
I0g∆T 2

k + I0αIk (8)

I0vIk ≜ I0vI0 − I0g∆Tk + I0βIk (9)

Prepared using sagej.cls



4 Journal Title XX(X)

where ∆Tk = (tk − t0) is the time span for integration.
These can be found by rotating the orientation and velocity
with I0

GR and computing the relative position change
I0pIk = I0

GR(GpIk − GpI0), and defines the relative IMU
integration in the fixed {I0} frame (Geneva and Huang
2022).

3.2 Feature Bearing Observations
Assuming a calibrated perspective camera, the bearing
measurement of the ith feature at timestep tk can be related
to the state by the following:

zi,k := Λ(Ckpfi) + nk (10)
Ckpfi =

C
I R

Ik
I0
R(I0pfi − I0pIk) +

CpI (11)

where Λ([x y z]⊤) = [x/z y/z]⊤ is the camera perspective
projection model, zi,k = [ui,k, vi,k]

⊤ is the normalized
feature bearing measurement with white Gaussian noise
nk ∼ N (0,Rk), and {CI R,CpI} are the known camera-
IMU transformation. Eq. (10) can be re-written as the
following linear constraint (Dong-Si and Mourikis 2012):[

1 0 −ui,k

0 1 −vi,k

]
Ckpfi ≜ Γi,k

Ckpfi =

[
0
0

]
(12)

We can then substitute Eq. (8) and (11) to give:

Ai,k x = bi,k (13)

Ai,k = Υi,k

[
· · · I3 · · · −∆Tk ∆T2

k

]
(14)

bi,k = Υi,k
I0αIk − Γi,k

CpI (15)

where ∆Tk = ∆TkI3 and Υi,k = Γi,k
C
I R

Ik
I0
R. This can

be “stacked” to recover a complete Ax = b, and given
M features from N images, A ∈ R2MN×(3M+6) and
b ∈ R2MN .

3.3 Constrained Linear Least-Squares
We follow the method by Dong-Si and Mourikis (2012,
2011); Geneva and Huang (2022), and formulate a
constrained linear least-squares problem given the stacked
observations (see Eq. (13)):

min ∥Ax− b∥2 = ∥
[
A1 A2

] [x1
I0g

]
− b∥2 (16)

subject to ∥I0g∥2 = g (17)

The optimal solution can be derived using Lagrange
multipliers (Dong-Si and Mourikis 2011). The gravity
constraint has been shown to have a noticeable impact on
shorter trajectory lengths by Kaiser et al. (2016).

4 Learned Depth-Aided Initialization
We now consider we are given a single affine-invariant (up-to
scale and bias) depth map, D, in the first frame of reference
at time t0. As compared to recovering the full feature states
in Eq. (1), we instead formulate all features as a function of
this depth map and the feature bearing in the first camera
frame {C0}. The minimal state we wish to recover is:

x′ =
[
a b I0v⊤

I0
I0g⊤]⊤ (18)

Figure 2. Frame of references used in the problem. Two
features observed from both the {Ck} and {C0} frame are
shown. The transformation from the {Ik} and {I0} is found
through IMU integration. The bearing C0θfi is used along with
the affine-invariant depth to recover the scale a and bias b.

Figure 3. Structure of A⊤A of Dong-Si and Mourikis (2012)
(DS 3D) (left) and the proposed A′⊤A′ (right). The DS 3D
system contains 35 features here (making it 111× 111). While
sparse, it is much larger than the proposed, which is 8× 8 no
matter how many features are included. The log condition
number for DS 3D is 9.35 while the proposed is 8.15.

where we have assumed that the affine-invariant depth map
D is sufficiently accurate and can provide an estimate of the
3D structure in front of the camera up to a scale a and bias
parameter b from just a single frame Ranftl et al. (2022). An
overview of the proposed method can be seen in Fig. 1.

4.1 Depth-Aided Feature Bearing Model
We now modify the feature model in Sec. 3.2 to be a function
of the affine-invariant depth map. We assume that for a single
image the scale a and bias b are constant for the whole
depth map. Specifically, for feature I0pfi we can express the
metric depth scalar zi = Z(ui,0, vi,0) as a function of a, b,
and di = D(ui,0, vi,0):

I0pfi =
I
CR

C0pfi +
IpC

= zi
I0θC0→fi +

IpC

= (adi + b) I0θC0→fi +
IpC (19)

where I0θC0→fi =
I
CR[ui,0 vi,0 1]⊤/

∥∥[ui,0 vi,0 1]
⊤
∥∥ is the

bearing vector of the feature rotated (but not translated) into
the IMU frame, see Fig. 2 for example frame of references.
This treats the normalized 2D coordinates of the feature in
the first camera frame ui,0 and vi,0 as a known quantity.
Substituting Eq. (19) into Eq. (11) we can recover the
following linear system:

A′
i,k x′ = b′

i,k (20)

A′
i,k = Υi,k

[
Bi −∆Tk

1
2∆T2

k

]
(21)

b′
i,k = Υi,k

I0αIk −Υi,k
IpC − Γi,k

CpI (22)

Bi =
[
di

I0θC0→fi
I0θC0→fi

]
. (23)
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Given M features from N images, A′ ∈ R2MN×(2+6) and
b′ ∈ R2MN . One can see that the state size remains constant,
no matter how many features are included in the problem.
The structure of our system can be seen in Fig. 3

Remarks: As evident, this formulation of the linear
initialization problem significantly relaxes the original one
– reducing the need to estimate the 3D position of every
feature to just estimating the scale and bias of the depth map
predicted at t0 – which is shared between all features. Given
a reasonable predicted affine-invariant depth D and a and b
are well-constrained, if the recovered scale parameter a is
positive, all of the features will be in front of the camera as
desired, and there will be no spurious feature positions (e.g.
too close or too far due to high uncertainty).

It should be noted that the monocular depth network
MiDaS (Ranftl et al. 2022) leveraged in this work
actually produces affine-invariant inverse depth maps Dinv,
where D(ui, vi) = 1/Dinv(ui, vi) (dropping the subscript
for clarity), and the metric inverse depth is expressed
as Zinv(ui, vi) = ainvDinv(ui, vi) + binv. The use of affine-
invariant depth instead of inverse depth is also reported
by Liu et al. (2022), which utilizes the same class of depth
networks as us. Due to the division, one may suspect that
the scale and bias for depth, a and b, would be a nonlinear
function of ainv and binv, but in fact, it can be expressed
linearly with the following relationship:

(a D (ui, vi)) + b) (ainv Dinv(ui, vi) + binv) = 1. (24)

Thus, estimating the scale and bias a and b in Eq. (18) instead
of ainv and binv is valid, and ainv, binv can be recovered from a
solution of a, b via stacking and solving

[
(a+ bDinv(ui, vi)) (aD(ui, vi) + b)

] [ainv
binv

]
= 1 (25)

for all ui, vi, which is simply Eq. (24) rearranged. Similarly,
Eq. (24) can be rearranged to recover a and b from estimates
of ainv and binv by just grouping different terms. Conversely
ainv and binv can be similarly recovered from a and b.

The fact that a, b and ainv, binv can be related linearly also
means that we can scale Dinv arbitrarily before using it in the
linear system. To this end, for ensured numeric stability of
D, we scale Dinv, which can have arbitrary value, into the
range [1, 2] before computing D via:

Dinv(ui, vi) =
D0

inv(ui, vi)− min(D0
inv)

max(D0
inv)− min(D0

inv)
+ 1 (26)

where D0
inv is the raw affine-invariant inverse depth map from

the monocular depth network. Note that the range [1, 2] is
chosen arbitrarily to avoid possible division by zero.

4.2 Outlier Rejection in Linear Initialization
A key advantage of our proposed linear system formulation
is its ability to be easily inserted into small minimal problems
in a RANSAC loop to robustify it to outliers. In theory
each measurement in the minimal problem for Eq. (18) can
be chosen from a different feature since each feature track
constrains the same a and b states. However, in practice, we
group the measurements by feature and view in order to 1)

Algorithm 1 Linear Initialization with RANSAC
Require: Blocks A′

ki, b′
ki of the complete linear system for

i ∈ {1, . . . ,M}, k ∈ {1, . . . , N}, minimal problem size
Mmin, Nmin, maximum number of iterations K, thresholds
dmin, γ

Ensure: Robustified solution to linear system x′
best

1: ebest ←∞
2: for i ∈ {1, . . . ,K} do
3: S ← Rand. sample Nmin meas. from Mmin feats.
4: A′

s, b
′
s ← Stack blocks i, k ∈ S

5: a, b, I0vI0 ,
I0g← solve(A′

s, b
′
s)

6: for i, k not in S do
7: r← A′

ik

[
a b I0v⊤

I0
I0g⊤]⊤ − b′

ik

8: if ||r|| < γ then
9: S ← S ∪ (i, k)

10: end if
11: end for
12: if |S| ≥ dmin then
13: A′

inl, b
′
inl ← Stack blocks i, k ∈ S

14: a, b, I0vI0 ,
I0g← solve(A′

inl, b
′
inl)

15: r← A′
inl

[
a b I0v⊤

I0
I0g⊤]⊤ − b′

inl
16: if ||r|| < ebest then
17: ebest ← ||r||
18: x′

best ←
[
a b I0v⊤

I0
I0g⊤]⊤

19: end if
20: end if
21: end for

reject bad feature tracks, and 2) reject bad depth network
predictions. An overview of our RANSAC approach can be
seen in Algo. 1. A minimal set of features and poses are
first randomly grouped and the constrained linear system, Eq.
(16), is solved to recover the scale, bias, velocity, and gravity.
These states are then used to compute the reprojection error
for each measurement not used in the problem, and construct
the inlier measurement set S. The solution from the inlier set
which gives the minimal error is selected as the best state
estimate.

We emphasize that the RANSAC approach becomes
feasible due to our relaxation of the original linear system
from the inclusion of the affine-invariant depth map. While
the hard minimal problem for our RANSAC algorithm is 3
views and 2 features (discussed in Sec. 5), we use 3 views
and 4 features in the minimal problems in all experiments for
slightly improved conditioning which we found to be more
robust to a low number of available feature tracks.

4.3 Nonlinear Refinement
We recover the the 3D position of all features (inlier or
not) via Eq. (19), and recover gravity aligned orientation
by transforming the recovered gravity I0g into a gravity
aligned frame Gg = [0, 0, 9.81]⊤. The VI-BA problem
which refines the state estimates, takes into account
measurement uncertainties, and relinearizes the states to
iteratively improve the accuracy. The state vector of this
optimization process can be defined as:

xmle =
[
x⊤
I0

. . . x⊤
IN

Gp⊤
f1

. . . Gp⊤
fM

]⊤
(27)

xIk =
[
Ik
G q̄⊤ Gp⊤

Ik
Gv⊤

Ik
b⊤
g,k b⊤

a,k

]⊤
(28)

where each keyframe has its own bias estimate in order
to model the bias’s time-varying characteristics. Note also
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that we do not include the depth prior in the nonlinear
optimization as Zhou et al. (2022) does, because it would
require estimating the depth for all keyframe images (which
could be computational and energy intensive even if possible
in real time), rather than the single first one (which is all
that is required in our solution). We empirically found that
only including the depth prior in the first keyframe in the VI-
BA optimization leads to the exact same result as optimizing
without it, but perhaps could improve it if we had a scale
prior as in (Zhou et al. 2022). Thus, we omit the depth
prior from the VI-BA and only use it in linear initialization,
although including depth priors for all keyframes in the
optimization helps as shown by Zhou et al. (2022). However,
as shown later in Sec. 7, adding the depth prior in the VI-BA
on top of our method does not always help the performance.

We solve the optimization problem with inertial CI ,
camera CC , and prior CP cost terms:

argmin
xmle

CI + CC + CP (29)

With the following inertial cost function (Lupton and
Sukkarieh 2012; Forster et al. 2015; Eckenhoff et al. 2019):

CI ≜
∑
k

||xIk+1
⊟ f(xIk ,amk

,ωmk
)||2Qk

(30)

where Qk is the linearized measurement noise covariance.
The camera re-projection cost is defined as (Geneva et al.
2020):

CC ≜
∑
i,k

∥zi,k − h(xmle)∥2Ri
(31)

where h(·) includes the camera’s intrinsic distortion,
projection, and camera-to-IMU extrinsic transformation, and
Ri is the image pixel noise covariance.

In addition to constraining the unobservable initial global
position and yaw rotation (Hesch et al. 2013; Zhang
et al. 2018), we found that the gyroscope and especially
accelerometer biases can nearly be unobservable and hard
to initialize, and thus, we provide reasonable priors to these
states to avoid numerical instabilities. The sensitivity to poor
bias priors is investigation in Sec. 6.3. The prior cost is
defined as:

CP ≜ ∥xmle ⊟ x̆mle∥2Ω−1
P

(32)

where x̆mle is the fixed state linearization point and ΩP is the
prior information matrix – where large values are picked for
unobservable state variables.

After the nonlinear refinement, the marginal covariance of
the most recent IMU state in the VI-BA is recovered, and
used to initialize the filter. In practice, we found that the
covariance needs to be inflated a bit in order to properly
initialize the filter.

5 Minimal Case Analysis
It is crucial to determine the minimal number of images and
features required to estimate all the unknown parameters in
Eq. (20). Provided the k-th image, the general matrix form
of Eq. (20) is given by:

DKx′ = b (33)

Figure 4. Simulation TUM-VI Room 1 trajectory and
environmental features generated. We additionally simulate a
∼ 20 features near infinity (∼ 250 meter depths), not pictured.

Table 1. Simulation parameters and prior standard deviations
for measurement perturbations.

Parameter Value Parameter Value

Gyro. White Noise 2.054e-4 Gyro. Rand. Walk 1.111e-5
Accel. White Noise 2.076e-3 Accel. Rand. Walk 4.133e-4
Image Obs. Noise 1.0 Depth-map Noise 5cm
Cam Freq. (Hz) 20 IMU Freq. (Hz) 400

Num. Poses 5 Tracked Feat. 75

Table 2. Average errors over 10 runs of the recovered inertial
state, after solving of the linear system (top half), and after a
following non-linear refinement (bottom half). Feature bearings
and depths were corrupted with 1deg and 5cm respectively.

Win. Algorithm Ori (deg) Vel (m/s) Scale Error (%)

L
in

ea
rS

ys
te

m

0.3sec

DS 3D 13.05 ± 7.96 1.16 ± 0.45 658.08 ± 525.34
DS 1D 13.17 ± 8.09 1.17 ± 0.46 664.15 ± 529.87

Ours w/o RANSAC 13.28 ± 8.19 1.19 ± 0.45 673.86 ± 506.07
Ours 13.50 ± 10.18 1.20 ± 0.50 658.88 ± 474.74

0.5sec

DS 3D 11.60 ± 7.26 1.15 ± 0.47 494.02 ± 379.76
DS 1D 11.99 ± 7.20 1.16 ± 0.48 507.59 ± 381.42

Ours w/o RANSAC 11.96 ± 7.28 1.16 ± 0.48 502.76 ± 367.28
Ours 12.12 ± 7.80 1.19 ± 0.54 483.76 ± 394.49

1.0sec

DS 3D 6.86 ± 4.87 0.90 ± 0.55 309.04 ± 366.85
DS 1D 7.57 ± 5.43 1.00 ± 0.59 328.82 ± 384.71

Ours w/o RANSAC 6.79 ± 4.20 0.94 ± 0.49 318.94 ± 389.18
Ours 7.17 ± 5.64 0.95 ± 0.70 245.73 ± 382.46

A
ft

er
M

L
E

O
pt

im
iz

at
io

n 0.3sec

DS 3D 8.00 ± 5.16 0.61 ± 0.35 232.62 ± 350.39
DS 1D 8.03 ± 5.15 0.60 ± 0.36 224.70 ± 363.11

Ours w/o RANSAC 7.24 ± 4.20 0.47 ± 0.30 95.19 ± 165.55
Ours 7.36 ± 4.73 0.48 ± 0.30 95.24 ± 160.69

0.5sec

DS 3D 3.85 ± 2.91 0.32 ± 0.26 50.98 ± 99.43
DS 1D 3.87 ± 2.94 0.31 ± 0.26 50.92 ± 111.32

Ours w/o RANSAC 3.68 ± 2.53 0.28 ± 0.21 28.06 ± 40.84
Ours 3.71 ± 2.63 0.28 ± 0.21 27.93 ± 38.55

1.0sec

DS 3D 1.34 ± 1.26 0.16 ± 0.17 12.30 ± 17.68
DS 1D 1.31 ± 1.25 0.16 ± 0.16 11.36 ± 15.03

Ours w/o RANSAC 1.33 ± 1.15 0.17 ± 0.16 11.65 ± 17.04
Ours 1.39 ± 1.16 0.17 ± 0.16 11.81 ± 16.50

where we have partitioned the block diagonal matrix D,
dense matrix K, and vector b as follows:

D := diag(Υ1,k, . . . ,ΥM,k) (34)

K :=
[
A′⊤

1,k . . . A′⊤
M,k

]⊤
(35)

b :=
[
b′⊤
1,k . . . b′⊤

M,k

]⊤
(36)

Without loss of generality, we assume that features can
be observed in all images in order to simplify the minimal
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Figure 5. Metric feature errors after linear system recovery for
varying window lengths over 10 runs. We define: DS 3D as 3
(blue), DS 1D as 1 (green), Ours w/o RANSAC as D (black),
and Ours as R (magenta). Note that outliers outside the sample
3σ bound have been filtered for presentation clarity.

Table 3. Estimation accuracy after nonlinear MLE refinement
over 10 runs with 1.5 pixel bearing observation noise.

Algorithm Noise Ori (deg) Vel (m/s) Scale Error (%)

DS 3D - 4.98 ± 3.31 0.43 ± 0.27 84.33 ± 127.91
DS 1D - 5.03 ± 3.21 0.42 ± 0.27 84.00 ± 134.92

Ours w/o
RANSAC

0.00m 4.97 ± 2.87 0.35 ± 0.22 38.71 ± 52.84
0.05m 4.75 ± 2.97 0.35 ± 0.23 40.26 ± 63.36
0.10m 4.77 ± 2.81 0.33 ± 0.21 36.75 ± 53.66

Ours
0.00m 4.73 ± 2.90 0.34 ± 0.22 43.06 ± 95.05
0.05m 4.87 ± 3.24 0.35 ± 0.23 42.26 ± 71.71
0.10m 4.79 ± 3.23 0.35 ± 0.23 41.05 ± 71.57

case analysis. As such, the number of measurements is
2MN , where M is the number of features and N denotes
the number of frames. The state size is 1 + 1 + 3 + 3 = 8,
where include scalar a and b, 3DoF velocity I0vI0 , and 3DoF
gravity I0g.* Thus, the necessary condition is 2MN ≥ 8. We
now identify the following cases for the number of available
images:

• N = 1: The necessary condition is not met, regardless
of the number of features.

• N = 2: The necessary condition will never be met
regardless of the number of features.

• N = 3: The necessary condition is met when M ≥ 2.

• N ≥ 4: The necessary condition is met when M ≥ 1.

Focusing on the two identified minimal cases we have: (i)
two features seen in three images, and (ii) one feature seen in
four images. For both, the number of measurements is higher
than the number of unknown variables, making the problem
over-constrained, allowing for the computation of a distinct,
singular solution. Our focus here is specifically on the rank
of the K sub-matrix within the proposed affine-invariant
depth-aided linear problem, see Eq. (35). For each scenario,
we demonstrate that employing Gaussian elimination can
streamline the matrix structure, revealing the rank, and
facilitate a deeper analysis and understanding.

5.1 Two Images (N = 2)
We begin by considering a scenario involving two images:
the first image captured at t0 with M features, and add
an extra image taken at time tk. Focusing on the K sub-
matrix and defining the base frame I0 as the first one, we

Figure 6. Orientation and velocity errors of the final pose of
each linear system for different noise levels of feature bearings
(px) and depths (m, on scaled depth pre-normalization). We
define: DS 3D as 3 (blue), DS 1D as 1 (green), Ours w/o
RANSAC as D (black), and Ours as R (magenta). Note that
outliers outside the sample 3σ bound have been filtered for
presentation clarity.

can perform a column-wise Gaussian elimination:

K =


I0d1

I0θC0→f1
I0θC0→f1 −∆Tk

1
2∆T2

k
...

...
...

...
I0dM

I0θC0→fM
I0θC0→fM −∆Tk

1
2∆T2

k


1
2∆Tk ∗ C3 + C4∼

I0d1
I0θC0→f1

I0θC0→f1 − 1
2∆T2

k 03

...
...

...
...

I0dM
I0θC0→fM

I0θC0→fM − 1
2∆T2

k 03


We can conclude through inspection of the row rank that:

rank(K) ≤ 8− 3 (37)

Thus this matrix is not full rank and the necessary condition
will never meet regardless of the number of features.

∗We note that if one uses the quadratically-constrained least-squares (as we
do in our system) this would remove 1DoF.
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Figure 7. Orientation and velocity errors of the final pose after
MLE refinement for different noise levels of feature bearings (px)
and depths (m, on scaled depth pre-normalization). We define:
DS 3D as 3 (blue), DS 1D as 1 (green), Ours w/o RANSAC as D
(black), and Ours as R (magenta). Note that outliers outside the
sample 3σ bound have been filtered for presentation clarity.

5.2 Three Images (N = 3)

The K matrix for the case of a base image at time t0, and two
extra images at t1 and t2 can be written as:

K =



I0d1
I0θC0→f1

I0θC0→f1 −∆T1
1
2∆T2

1
...

...
...

...
I0dM

I0θC0→fM
I0θC0→fM −∆T1

1
2∆T2

1
I0d1

I0θC0→f1
I0θC0→f1 −∆T2

1
2∆T2

2
...

...
...

...
I0dM

I0θC0→fM
I0θC0→fM −∆T2

1
2∆T2

2


R3M+i − Ri ∀i ∈ {1, ..., 3M}∼

I0d1
I0θC0→f1

I0θC0→f1 −∆T1
1
2∆T2

1
...

...
...

...
I0dM

I0θC0→fM
I0θC0→fM −∆T1

1
2∆T2

1

0 0 −∆T2 +∆T1
1
2 (∆T2

2 −∆T2
1)

...
...

...
...

0 0 −∆T2 +∆T1
1
2 (∆T2

2 −∆T2
1)


Ri − Ri+1 ∀i ∈ {3M + 1, ..., 6M}∼

Figure 8. Monte-Carlo errors for orientation, velocity, and scale
of the pose from the linear system for different constant
gyroscope bias perturbations (in random direction). We define:
DS 3D as 3 (blue), DS 1D as 1 (green), Ours w/o RANSAC as D
(black), and Ours as R (magenta). Note that outliers outside the
sample 3σ bound have been filtered for presentation clarity.



I0d1
I0θC0→f1

I0θC0→f1 −∆T1
1
2∆T2

1
...

...
...

...
I0dM

I0θC0→fM
I0θC0→fM −∆T1

1
2∆T2

1

0 0 −∆T2 +∆T1
1
2 (∆T2

2 −∆T2
1)

0 0 0 0
...

...
...

...
0 0 0 0



We can conclude through inspection of the row rank that:

rank(K) = min(3M + 3, 8) (38)

The necessary condition will be satisfied if 3N + 3 ≥ 8 ⇒
M ≥ 5/3. The minimal number of features is 2.
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Figure 9. Monte-Carlo errors for orientation, velocity, and scale
of the final pose after MLE refinement for different constant
gyroscope bias perturbations (in random direction). We define:
DS 3D as 3 (blue), DS 1D as 1 (green), Ours w/o RANSAC as D
(black), and Ours as R (magenta). Note that outliers outside the
sample 3σ bound have been filtered for presentation clarity.

5.3 Four Images (N = 4)

The K matrix for the case of a base image at time t0, and
three extra images at t1, t2 and t3 can be written as:

K =



I0d1
I0θC0→f1

I0θC0→f1 −∆T1
1
2∆T2

1
...

...
...

...
I0dM

I0θC0→fM
I0θC0→fM −∆T1

1
2∆T2

1
I0d1

I0θC0→f1
I0θC0→f1 −∆T2

1
2∆T2

2
...

...
...

...
I0dM

I0θC0→fM
I0θC0→fM −∆T2

1
2∆T2

2
I0d1

I0θC0→f1
I0θC0→f1 −∆T3

1
2∆T2

3
...

...
...

...
I0dM

I0θC0→fM
I0θC0→fM −∆T3

1
2∆T2

3


∼

Figure 10. Monte-Carlo errors for orientation, velocity, and
scale of the pose from the linear system for different constant
accelerometer bias perturbations (in random direction). We
define: DS 3D as 3, DS 1D as 1, Ours w/o RANSAC as D, and
Ours as R. Note that outliers outside the sample 3σ bound have
been filtered for presentation clarity.



I0d1
I0θC0→f1

I0θC0→f1 −∆T1
1
2∆T2

1
...

...
...

...
I0dM

I0θC0→fM
I0θC0→fM −∆T1

1
2∆T2

1

0 0 −∆T2 +∆T1
1
2 (∆T2

2 −∆T2
1)

0 0 0 0
...

...
...

...
0 0 0 0
0 0 −∆T3 +∆T1

1
2 (∆T2

3 −∆T2
1)

0 0 0 0
...

...
...

...
0 0 0 0


where we have applied a Gaussian elimination similar to that
in the previous section. We can conclude through inspection
of the row rank that:

rank(K) = min(3M + 6, 8) (39)

The necessary condition will be satisfied if 3M + 6 ≥ 8 ⇒
M ≥ 2/3. The minimal number of features is 1.

6 Simulation Studies
We simulate a realistic 145 meter indoor monocular
handheld trajectory based on the TUM-VI (Schubert et al.
2018) room 1 trajectory (see Fig. 4). Table 1 captures all key
sensor parameters, along with default algorithm parameters
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Table 4. Initialization window ATE (deg/m) from the linear system on TUM-VI (5 KFs, 0.5sec window).

Algorithm room1 room2 room3 room4 room5 room6 Average

DS 3D 4.910 / 0.064 2.615 / 0.086 2.649 / 0.126 1.702 / 0.077 6.587 / 0.140 2.796 / 0.096 3.543 / 0.098
DS 1D 5.851 / 0.079 3.032 / 0.105 3.008 / 0.136 2.975 / 0.090 6.985 / 0.143 2.891 / 0.102 4.124 / 0.109

Ours w/o RANSAC 14.835 / 0.273 5.319 / 0.237 5.689 / 0.256 4.326 / 0.132 9.830 / 0.236 3.573 / 0.137 7.262 / 0.212
Ours 13.397 / 0.242 5.169 / 0.223 5.342 / 0.242 3.865 / 0.110 8.287 / 0.182 3.426 / 0.123 6.581 / 0.187

Table 5. Initialization window ATE (deg/m) on TUM-VI after VI-BA (5 KFs, 0.5sec window)

Algorithm room1 room2 room3 room4 room5 room6 Average

DS 3D 1.707 / 0.021 0.650 / 0.011 0.819 / 0.014 1.371 / 0.035 0.849 / 0.015 0.546 / 0.010 0.990 / 0.018
DS 1D 1.103 / 0.011 0.609 / 0.011 0.742 / 0.010 1.916 / 0.040 1.028 / 0.013 0.457 / 0.010 0.976 / 0.016

DS 3D + DP 0.899 / 0.009 0.648 / 0.011 0.819 / 0.014 1.372 / 0.035 0.852 / 0.015 0.493 / 0.012 0.847 / 0.016
DS 1D + DP 2.458 / 0.020 0.944 / 0.011 2.084 / 0.019 1.327 / 0.013 1.961 / 0.014 0.569 / 0.008 1.557 / 0.014

Ours w/o RANSAC 0.852 / 0.012 0.596 / 0.010 0.709 / 0.009 0.785 / 0.008 1.145 / 0.016 0.440 / 0.009 0.754 / 0.011
Ours 0.866 / 0.011 0.650 / 0.010 0.718 / 0.008 0.814 / 0.011 1.292 / 0.015 0.436 / 0.009 0.796 / 0.011

Ours + DP 0.869 / 0.011 0.711 / 0.012 0.725 / 0.008 0.820 / 0.010 1.318 / 0.016 0.447 / 0.008 0.815 / 0.011

Figure 11. Monte-Carlo errors for orientation, velocity, and
scale of the final pose after MLE refinement for different
constant accelerometer bias perturbations (in random
direction). We define: DS 3D as 3, DS 1D as 1, Ours w/o
RANSAC as D, and Ours as R. Note that outliers outside the
sample 3σ bound have been filtered for presentation clarity.

used throughout the simulation unless otherwise specified.
The performance of the proposed method is compared
against the baseline initialization method by Dong-Si and
Mourikis (2012) (see Sec. 3), which has been implemented
within the existing state-of-the-art method in OpenVINS’s
Geneva et al. (2020) and open sourced within the ov init
package Geneva and Huang (2022). For evaluation, we

Figure 12. Monte-Carlo errors for orientation, velocity, and
scale of the pose from the linear system for different constant
gravity magnitude perturbations (random sign). We define: DS
3D as 3 (blue), DS 1D as 1 (green), Ours w/o RANSAC as D
(black), and Ours as R (magenta). Note that outliers outside the
sample 3σ bound have been filtered for presentation clarity.

compare against two variants of this baseline: DS 3D and DS
1D, which implements the work of Dong-Si and Mourikis
(2012) with 3D and 1D feature states, respectively. DS 3D
is the current default initialization available in OpenVINS
(Geneva et al. 2020). We denote the proposed method
without the addition of RANSAC as Ours w/o RANSAC,
and the proposed system aided with RANSAC as Ours. As
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Figure 13. Monte-Carlo errors for orientation, velocity, and
scale of the final pose after MLE refinement for different
constant gravity magnitude perturbations (random sign). We
define: DS 3D as 3 (blue), DS 1D as 1 (green), Ours w/o
RANSAC as D (black), and Ours as R (magenta). Note that
outliers outside the sample 3σ bound have been filtered for
presentation clarity.

Table 6. Initialization window scale error (%) on TUM-VI after
VI-BA (5 KFs, 0.5sec window)

Algorithm room1 room2 room3 room4 room5 room6 Average

DS 3D 4.693 2.807 0.433 3.774 4.165 2.324 3.033
DS 1D 2.577 2.216 0.563 1.364 4.010 2.177 2.151

DS 3D + DP 2.012 2.617 0.723 6.885 4.093 0.568 2.816
DS 1D + DP 0.616 2.023 19.871 2.518 8.837 3.529 6.232

Ours w/o RANSAC 0.404 1.450 0.534 1.349 3.753 1.746 1.539
Ours 0.471 2.746 0.513 0.490 4.600 2.310 1.855

Ours + DP 0.520 1.944 0.925 4.425 4.664 2.055 2.422

mentioned in the previous section, the proposed RANSAC
minimal problem uses 3 views and 4 features for robustness.

For the specific details on the visual-inertial simulator
which generates realistic visual bearings and inertial
measurements, we refer the reader to the original OpenVINS
paper (Geneva et al. 2020). The continuous-time simulator
was extended to support generation of a sparse depth-map,
which is then normalized to a fixed affine-invariant range
before being passed to the initialization module. We have
chosen to directly perturb the metric sparse depth map, as
compared to the affine-invariant depths, to ensure that a
sufficient realistic magnitude is being added.

6.1 Effect of Temporal Initialization Window
The first simulation study is on the effect of the window
size on the accuracy of both the linear and nonlinear refined
estimates. We fix the total number of keyframe (KF) poses
to five, and change the length of time they are spread
over. One would expect the depth of features to become
more recoverable as the window length increases due to the
additional translation and rotation observed, and thus the
proposed method should have the largest benefit for the small
window low-parallax cases.

Summarized in Table 2, we can first observe that both
the baseline and proposed linear systems perform with
similar levels of accuracy. Note that the scale error reported
throughout the paper is the scale error of the estimated
positions. We fit a Sim(3) between the estimated and ground
truth trajectory, and with a Sim(3) with scale s, the scale
error is calculated as 100(max(s, 1/s)− 1). If we look at
the metric feature error in Fig. 5, it is clear that the proposed
method is able to provide a better initial guess for the
non-linear refinement, further supporting why inclusion of
affine-invariant depth provides benefits. Looking at the errors
after non-linear refinement (going back to Table 2), we can
confirm that the proposed method provides the largest benefit
at the shorter low-parallax window sizes, with it providing
minimal improvements at the much longer 1 second window
length. Note that we have not simulated any outliers and thus
any benefits from robustness is absent (see Sec. 7.3.3 for this
impact).

6.2 Effect of Measurement Noise
Next we investigate the impact of measurement noise on
the initialization accuracy. As seen in Fig. 6, the pixel
bearing noise has little effect on the linear system. As
the depth measurement error is increased, even with 10cm
perturbations, the proposed method does not have any
sufficient degradation when compared to the baseline, which
does not leverage these measurements. However, in Fig. 7,
it is clear that all methods after MLE refinement suffer a
similar amount to the feature bearing observation noise, with
the baseline methods having a much more varied scale range
as compared to the proposed method. On the other hand,
our method after MLE refinement is similarly not affected
much by the depth measurement noise. For 1.5px noise levels
after MLE refinement, we have summarized the statistics
in Table 3. The proposed approach has clear gains in the
velocity recovery throughout all noise levels, while the depth
map noise has little effect on the final state accuracy levels.

6.3 Sensitivities to Perturbations
A key assumption of all methods is that the IMU biases
with sufficient accuracy are known a priori. These biases
are treated as true within the linear system, and with a
0.01rad/s and 0.05m/s2 prior during non-linear refinement
for the gyroscope and accelerometer, respectively. We first
investigate large unknown perturbations to the gyroscope
bias for the linear system in Fig. 8 and after MLE refinement
in Fig. 9. The linear system is not affected much by the
perturbation in gyroscope bias – perhaps due to the fact
that the orientation errors coming from the linear system
are already very large, so perturbations in the gyroscope
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Table 7. Visual-inertial odometry tracking ATE (deg/m) on TUM-VI (5 KFs, 0.5sec window for init)

Algorithm room1 room2 room3 room4 room5 room6 Average

DS 3D 1.478 / 0.140 0.809 / 0.036 1.384 / 0.056 2.047 / 0.178 0.971 / 0.047 1.809 / 0.482 1.417 / 0.156
DS 1D 1.285 / 0.096 0.789 / 0.037 1.319 / 0.051 2.305 / 0.203 0.958 / 0.049 1.782 / 0.432 1.406 / 0.145

DS 3D + DP 1.558 / 0.150 0.814 / 0.037 1.113 / 0.046 2.159 / 0.339 0.919 / 0.046 1.364 / 0.130 1.321 / 0.125
DS 1D + DP 1.250 / 0.065 0.820 / 0.039 1.715 / 1.028 1.561 / 0.083 2.692 / 0.713 0.955 / 0.073 1.499 / 0.334

Ours w/o RANSAC 1.257 / 0.101 0.797 / 0.037 1.317 / 0.051 1.691 / 0.185 1.019 / 0.053 1.842 / 0.361 1.321 / 0.131
Ours 1.417 / 0.184 0.806 / 0.038 1.354 / 0.049 2.125 / 0.296 1.099 / 0.057 1.836 / 0.360 1.440 / 0.164

Ours + DP 1.437 / 0.128 0.818 / 0.036 1.408 / 0.050 1.872 / 0.248 1.028 / 0.058 1.565 / 0.222 1.355 / 0.124

Table 8. Percent of successful initializations on TUM-VI
(averaged over all rooms) with 5KFs and 0.5sec window.

Algorithm 60 feats 45 feats 30 feats 15 feats

DS 3D 100.0 100.0 100.0 68.8
DS 1D 100.0 100.0 100.0 78.8

DS 3D + DP 100.0 100.0 100.0 67.5
DS 1D + DP 100.0 100.0 100.0 78.8

Ours w/o RANSAC 100.0 100.0 100.0 88.8
Ours 100.0 100.0 100.0 88.8

Ours + DP 100.0 100.0 100.0 87.5

bias may not affect the results as much. On the other hand,
the MLE result is noticeably affected by the gyroscope bias
perturbation. The roll pitch errors after MLE refinement all
quickly increase by large amounts for all methods along with
the velocities. There is a clear scale accuracy improvement
after MLE refinement provided by the proposed method for
the lower gyroscope bias perturbation levels. When looking
at the accelerometer bias sensitivity in Figs. 10 and 11,
we can see a similar story. Shown in Figs. 12 and 13
is the sensitivity to perturbations in the simulated gravity
magnitude. Again, the linear system results are mostly not
affected by the perturbation.

On the other hand, it can be observed that the proposed
method after MLE refinement has comparable orientation
and velocity error, but improved scale error over the
baselines. We found it impressive that the initialization states
did not have higher errors due to such large perturbation,
which shows the robustness of all methods – with the
proposed having a particularly good ability to recover
accurate scale throughout.

7 Real-World Experiments

To validate the proposed singe-image depth-aided monocular
VIO initialization in the real world, we employ the two most
popular public VI datasets: EuRoC MAV (Burri et al. 2016)
and TUM-VI (Schubert et al. 2018). We choose an evaluation
method similar to that of Zhou et al. (2022), where we divide
each sequence into 10 second windows, run initialization for
each of the entry points, and averaging the results from each
successful run. This evaluation method has the advantage
that it initializes in many places within each sequence and
tests not only the accuracy of the initialization window
poses, but also the accuracy of VIO using the initialization
result. A run is considered successful if 1) the linear system
successfully returned a result, 2) the MLE optimization
has converged, and 3) the covariance could successfully be
recovered without being rank-deficient.

In our experiments, we mainly consider the absolute
trajectory error (ATE) (Zhang and Scaramuzza 2018)
metric for position and orientation. We additionally use all
recovered poses to perform a Sim(3) alignment to the ground
truth in order to report the scale error (defined in Sec. 6.1).
For the ATE, trajectories are aligned to the ground truth
using the first frame by solving for the optimal position and
yaw transform between the estimate and ground truth (see
Zhang and Scaramuzza (2018)). Since we do not use a scale-
aware alignment such as Sim(3) to compute the ATE, scale
accuracy will directly impact the position, and gravity errors
will also affect the orientation ATE. For the VIO tracking
accuracy, we also consider the relative pose error (RPE),
where the trajectory is grouped into segments of different
length and then the error of those segments is calculated.
Since VIO is only run for a maximum of 10 seconds for
each initialization, the RPE window lengths are shorter than
typically reported due to the fact that VIO does not travel
very far within this period. RPE is generally considered
a more important metric than ATE since it investigates
the accuracy more thoroughly at multiple different window
lengths rather than just for the whole trajectory at once, and
might capture some insights that the ATE can not.

7.1 Implementation Details
Unless otherwise noted, 75 features on average are used
during initialization. For the monocular depth network, we
leverage an off-the-shelf pre-trained MiDaS network (the
v2.1 small model) (Ranftl et al. 2022). This particular model
is one of the most efficient available from the MiDaS model
zoo, and is suitable to run on mobile devices. During all
experiments, the network is run on the available GPU.
Ceres solver (Agarwal et al. 2023) is used for all nonlinear
optimizations. A separate thread is launched for initialization
from the main tracking thread, but no extra thread is used to
run the depth network asynchronously. While this could be
done to improve initialization latency, we choose to simply
run the network on-demand since it is only required to run
once per initialization window (the first frame), unless the
depth prior is used in the VI-BA, in which case it has to be
run for each keyframe.

7.2 Baseline Methods
ThFor evaluation, we mainly consider two methods: 1) DS
3D and DS 1D, variants of Dong-Si and Mourikis (2012),
and 2) DS 3D + DP and DS 1D + DP (DP standing for depth
prior in the VI-BA), which is our re-implementation of Zhou
et al. (2022) using the OpenVINS implementation of Dong-
Si and Mourikis (2012) and the MiDaS v2.1 small network
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Table 9. Initialization window ATE (deg/m) from the linear system on TUM-VI with extreme settings (5 KFs, 0.3sec window).

Algorithm room1 room2 room3 room4 room5 room6 Average

DS 3D 5.922 / 0.111 2.939 / 0.115 5.412 / 0.130 1.806 / 0.070 7.532 / 0.114 2.417 / 0.070 4.338 / 0.102
DS 1D 8.013 / 0.106 4.872 / 0.115 5.101 / 0.112 3.412 / 0.075 6.382 / 0.085 2.791 / 0.065 5.095 / 0.093

Ours w/o RANSAC 15.529 / 0.145 5.320 / 0.140 7.010 / 0.141 5.860 / 0.088 11.193 / 0.120 3.347 / 0.073 8.043 / 0.118
Ours 15.123 / 0.180 4.796 / 0.145 6.957 / 0.157 4.752 / 0.092 9.976 / 0.129 3.307 / 0.080 7.485 / 0.131

Ours (DA) 15.244 / 0.155 5.166 / 0.146 6.892 / 0.148 4.170 / 0.094 10.673 / 0.140 3.169 / 0.079 7.552 / 0.127

Table 10. Initialization window ATE (deg/m) on TUM-VI after VI-BA with extreme settings (5 KFs, 0.3sec window)

Algorithm room1 room2 room3 room4 room5 room6 Average

DS 3D 1.475 / 0.026 1.002 / 0.011 2.021 / 0.019 0.673 / 0.024 1.545 / 0.017 0.738 / 0.014 1.243 / 0.018
DS 1D 2.548 / 0.020 0.940 / 0.011 2.167 / 0.020 1.142 / 0.013 2.848 / 0.020 0.556 / 0.008 1.700 / 0.015

DS 3D + DP 1.523 / 0.026 1.014 / 0.012 2.022 / 0.019 0.681 / 0.024 1.675 / 0.023 0.712 / 0.014 1.271 / 0.020
DS 1D + DP 2.458 / 0.020 0.943 / 0.009 2.083 / 0.019 1.327 / 0.013 1.964 / 0.014 0.570 / 0.008 1.557 / 0.014

Ours w/o RANSAC 1.670 / 0.010 0.660 / 0.007 1.345 / 0.010 1.879 / 0.017 1.149 / 0.010 0.695 / 0.010 1.233 / 0.011
Ours 1.546 / 0.014 0.841 / 0.008 1.829 / 0.016 0.839 / 0.010 1.459 / 0.010 0.681 / 0.012 1.199 / 0.011

Ours (DA) 2.106 / 0.014 0.814 / 0.007 1.673 / 0.012 0.822 / 0.016 1.247 / 0.010 0.652 / 0.008 1.219 / 0.011
Ours + DP 1.416 / 0.013 0.840 / 0.010 1.796 / 0.013 1.248 / 0.014 1.475 / 0.010 0.698 / 0.012 1.245 / 0.012

Table 11. Initialization window scale error (%) on TUM-VI after
VI-BA with extreme settings (5 KFs, 0.3sec window)

Algorithm room1 room2 room3 room4 room5 room6 Average

DS 3D 13.686 1.245 19.176 8.074 4.360 8.644 9.197
DS 1D 1.165 2.120 24.799 4.230 2.939 3.739 6.499

DS 3D + DP 13.913 1.113 19.183 8.699 0.973 9.304 8.864
DS 1D + DP 0.616 1.060 19.883 2.541 8.830 3.615 6.091

Ours w/o RANSAC 9.765 0.784 5.485 11.095 8.504 6.271 6.984
Ours 1.607 0.015 7.508 7.817 10.232 8.169 5.891

Ours (DA) 8.558 1.235 7.366 3.653 9.689 0.243 5.124
Ours + DP 1.361 2.076 7.274 15.155 10.870 5.175 6.985

Figure 14. Qualitative result of the MiDaS (Ranftl et al. 2022)
v2.1 small on the raw fisheye images of TUM-VI. We found that
the network produces reasonable depth maps despite not being
explicitly trained for this camera model; however, training the
network with fisheye data could potentially improve
performance.

(Ranftl et al. 2022). Note that since we utilize MiDaS, which
is completely affine-invariant (scale-less), as opposed to the
custom depth network in Zhou et al. (2022), which is weakly-
supervised with metric scale, we are unable to include the
1, 0 prior on the scale and bias (a and b) in the VI-BA.
Including this prior could potentially improve the results, but
it is unfortunately not applicable to MiDaS. Other than this
difference, we strictly followed the formulation presented
by Zhou et al. (2022) for this re-implementation. We also
investigate the benefit of adding the additional depth prior to
our method, which does require running the network for all
keyframes rather than just the first one.

7.3 TUM-VI Dataset
The first dataset we consider is the TUM-VI dataset
(Schubert et al. 2018), where we only evaluate using the left

Figure 15. RPE for VIO tracking on TUM-VI with 5KFs and
0.5sec window.

fisheye image. While the MiDaS v2.1 small network was
not explicitly trained on fisheye to our knowledge (some
datasets used by MiDaS are proprietary), we observe that
the network still produces reasonable depth maps when run
on the raw fisheye images (which we prefer in order to
maintain the full FoV). Some qualitative results of the raw
MiDaS output can be seen in Fig. 14. The results of the linear
systems are reported in Table 4, where it can be seen that
our method has less accurate pose accuracy coming from the
linear system. However, as shown in simulation, our linear
system typically produces more accurate feature positions,
which unfortunately can not be shown in the real world
experiments due to a lack of ground-truth feature positions.
All methods initialized 100% of the time here.

On the other hand, the results shown in Tables 5 and 6
show that the proposed method is able to achieve higher
accuracy in the average for all metrics for the initialization
window accuracy. One can also see that including the depth
priors in the VI-BA, as in Zhou et al. (2022), improves
over the baseline Dong-Si Dong-Si and Mourikis (2012)
method as expected but is slightly less accurate than ours.
Interestingly, adding the depth prior to our method (Ours +
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Table 12. Visual-inertial odometry tracking ATE (deg/m) on TUM-VI with extreme settings (5 KFs, 0.3sec window for init)

Algorithm room1 room2 room3 room4 room5 room6 Average

DS 3D 1.255 / 0.210 0.859 / 0.043 1.445 / 0.059 2.318 / 0.368 1.457 / 0.045 0.946 / 0.074 1.380 / 0.133
DS 1D 1.648 / 0.284 0.822 / 0.039 1.870 / 1.029 1.739 / 0.103 3.155 / 0.535 0.970 / 0.071 1.701 / 0.343

DS 3D + DP 1.246 / 0.205 0.835 / 0.043 1.535 / 0.061 2.298 / 0.311 1.427 / 0.050 0.976 / 0.076 1.386 / 0.124
DS 1D + DP 1.251 / 0.065 0.815 / 0.039 1.728 / 1.028 1.574 / 0.083 2.701 / 0.712 0.955 / 0.074 1.504 / 0.334

Ours w/o RANSAC 1.110 / 0.073 0.831 / 0.043 1.641 / 0.069 1.851 / 0.096 2.194 / 0.256 0.919 / 0.074 1.424 / 0.102
Ours 0.986 / 0.037 0.833 / 0.043 1.762 / 0.075 1.488 / 0.080 1.024 / 0.035 0.845 / 0.052 1.156 / 0.054

Ours (DA) 1.189 / 0.077 0.796 / 0.038 2.537 / 0.296 1.166 / 0.113 1.624 / 0.078 0.896 / 0.058 1.368 / 0.110
Ours + DP 0.988 / 0.036 0.882 / 0.043 1.476 / 0.069 1.717 / 0.086 0.963 / 0.036 0.845 / 0.053 1.145 / 0.054

Table 13. Percent of successful initializations on TUM-VI
(averaged over all rooms) with 5KFs and 0.3sec window.

Algorithm 60 feats 45 feats 30 feats 15 feats

DS 3D 81.3 17.5 33.8 2.5
DS 1D 100.0 81.3 82.5 26.3

DS 3D + DP 78.8 16.3 32.5 2.5
DS 1D + DP 100.0 80.0 82.5 25.0

Ours w/o RANSAC 100.0 98.8 97.5 55.0
Ours 100.0 95.0 96.3 47.5

Ours + DP 100.0 95.0 96.3 50.0

DP) does not improve over just using the depth in the linear
system in this case.

In Table 7 and Fig. 15 we report the VIO tracking accuracy
using the initialization results. While the ATE results in
Table 7 show that our method is not the best, the RPE results
in Fig. 15 show that our method has comparable RPE to
the rest of the methods. Adding the additional depth prior to
our method seems to improve the VIO performance on this
dataset. All methods were successfully initialized for 100%
(80/80) of the 10sec windows generated for this experiment.

To showcase the capability of our method to initialize with
less information, we experiment with reducing the number of
features being tracked during initialization. All experiments
up until now have used 75 features, while here we experiment
with 60, 45, 30, and 15 features – simulating a reduced
number of available measurements due to low texture or
other tracking failures. Table 8 reports the results. It is clear
that our method is more robust to a low number of feature
tracks available than the others, and that adding the depth
prior to our method actually slightly hurts the performance.

7.3.1 Timing Analysis Here we investigate the compu-
tational cost for the different initialization algorithms on
the TUM-VI room1 dataset. Timings for a desktop device
equipped with an Intel i5-6600K CPU and Nvidia RTX 2070
Super GPU are reported in Fig. 16. In particular, we report
the network inference time, building and solving the linear
system, building and solving the optimization problem, and
recovering the covariance. As expected, the proposed method
is able to solve the linear system more efficiently due to the
simplified linear model and the reduction of state size, but it
should be noted that we do not take into account any sparsity
when solving the linear system for any method. The depth
network inference time is reasonably efficient given it only
needs to be performed once for a 0.3 - 0.5 second window.
The cost of building and solving the MLE problem is similar
across methods, while the covariance recovery takes most of
the time. We also timed the system on an embedded Jetson

Figure 16. Timing results on a desktop device on the TUM-VI
room1 sequence.

Figure 17. Timing results on an embedded Jetson Orin device
on the TUM-VI room1 sequence.

Orin device. The results are reported in Fig. 17, where it can
be seen that our method is overall more efficient than the
baseline DS 3D.

7.3.2 Extreme Low-Parallax Scenario To further show-
case the benefit of our method, we investigate a new and even
more challenging scenario: initialization with 5 keyframes
over a 0.3sec window. To the best of our knowledge, this is
the shortest initialization window ever reported for monocu-
lar VIO with unknown initial conditions. The linear system
results are reported in Table 9. Again, our method is less
accurate than the baselines from the linear system, however,
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Table 14. Outlier ablation study of VIO tracking ATE (deg/m) on TUM-VI dataset after VI-BA with extreme settings (5KFs and
0.3sec window).

Outliers Algorithm room1 room2 room3 room4 room5 room6 Average

5%

DS 3D 1.169 / 0.054 0.894 / 0.043 1.361 / 0.052 2.843 / 0.999 1.455 / 0.070 1.003 / 0.069 1.454 / 0.215
DS 1D 1.581 / 0.840 0.802 / 0.043 1.521 / 0.072 4.186 / 0.848 1.406 / 0.078 1.274 / 0.087 1.795 / 0.328

DS 3D + DP 1.097 / 0.054 0.866 / 0.043 2.204 / 0.582 2.882 / 1.095 1.432 / 0.067 0.981 / 0.067 1.577 / 0.318
DS 1D + DP 1.503 / 0.555 0.844 / 0.044 1.429 / 0.069 2.178 / 0.315 1.407 / 0.923 1.277 / 0.087 1.440 / 0.332

Ours w/o RANSAC 1.012 / 0.059 0.797 / 0.042 1.967 / 0.092 2.214 / 0.188 1.409 / 2.343 0.854 / 0.045 1.375 / 0.461
Ours 1.104 / 0.053 0.892 / 0.039 1.321 / 0.042 1.297 / 0.132 1.582 / 0.043 0.764 / 0.038 1.160 / 0.058

Ours + DP 1.189 / 0.055 0.894 / 0.041 1.309 / 0.045 2.306 / 0.212 1.172 / 0.038 0.770 / 0.040 1.273 / 0.072

10%

DS 3D 0.919 / 0.044 1.107 / 0.096 1.723 / 0.059 1.754 / 0.270 1.405 / 0.083 1.003 / 0.071 1.318 / 0.104
DS 1D 1.496 / 0.428 0.794 / 0.043 1.576 / 0.086 1.520 / 0.498 1.519 / 2.235 1.222 / 0.094 1.355 / 0.564

DS 3D + DP 1.017 / 0.049 1.101 / 0.098 1.648 / 0.059 1.880 / 0.278 1.538 / 0.089 1.039 / 0.073 1.371 / 0.108
DS 1D + DP 2.522 / 3.080 0.866 / 0.047 1.605 / 0.085 1.231 / 0.103 1.856 / 0.952 1.271 / 0.097 1.559 / 0.727

Ours w/o RANSAC 1.536 / 0.076 0.827 / 0.039 1.244 / 0.048 2.044 / 0.326 2.710 / 1.298 1.207 / 1.458 1.595 / 0.541
Ours 1.585 / 0.071 0.908 / 0.033 1.271 / 0.048 2.236 / 0.430 3.626 / 0.237 0.717 / 0.056 1.724 / 0.146

Ours + DP 1.626 / 0.076 0.947 / 0.035 1.228 / 0.049 1.836 / 0.164 3.616 / 0.223 0.703 / 0.068 1.660 / 0.102

25%

DS 3D 3.760 / 8.652 0.964 / 0.082 2.233 / 1.848 2.922 / 0.663 1.816 / 0.357 1.171 / 0.105 2.144 / 1.951
DS 1D 3.482 / 6.572 1.017 / 0.070 1.563 / 0.700 2.187 / 0.727 2.581 / 1.120 2.279 / 0.288 2.185 / 1.580

DS 3D + DP 3.591 / 8.554 0.968 / 0.103 1.819 / 0.979 1.327 / 0.134 1.407 / 0.080 1.067 / 0.064 1.697 / 1.652
DS 1D + DP 3.676 / 6.625 0.926 / 0.070 1.573 / 0.682 1.993 / 0.558 2.571 / 1.130 2.261 / 0.290 2.167 / 1.559

Ours w/o RANSAC 3.224 / 4.804 1.199 / 0.086 1.578 / 0.137 3.341 / 0.291 4.613 / 3.992 2.173 / 2.651 2.688 / 1.993
Ours 1.055 / 0.044 2.972 / 2.152 1.322 / 0.063 1.958 / 1.053 1.504 / 1.173 3.933 / 1.160 2.124 / 0.941

Ours + DP 1.110 / 0.045 3.245 / 1.291 1.209 / 0.039 1.395 / 0.162 1.594 / 1.407 4.087 / 1.209 2.107 / 0.692

40%

DS 3D 5.946 / 11.371 1.263 / 0.158 1.561 / 1.588 1.351 / 0.081 3.269 / 1.177 1.706 / 0.715 2.516 / 2.515
DS 1D 7.338 / 14.876 2.012 / 0.236 2.559 / 0.144 2.588 / 0.536 2.622 / 2.350 4.458 / 3.226 3.596 / 3.561

DS 3D + DP 5.737 / 11.216 1.574 / 0.171 1.578 / 1.586 2.851 / 0.161 4.240 / 5.030 1.700 / 0.709 2.947 / 3.145
DS 1D + DP 8.117 / 14.498 1.912 / 0.177 3.176 / 0.264 2.085 / 0.331 2.701 / 2.373 4.471 / 3.227 3.744 / 3.478

Ours w/o RANSAC 3.772 / 3.992 1.945 / 0.621 2.013 / 1.427 8.966 / 5.144 2.448 / 1.921 5.531 / 2.980 4.112 / 2.681
Ours 1.490 / 0.066 1.486 / 0.601 3.124 / 3.827 5.515 / 3.284 1.880 / 0.066 4.683 / 2.300 3.030 / 1.691

Ours + DP 1.453 / 0.070 1.913 / 0.666 3.145 / 3.942 6.164 / 6.042 3.138 / 2.426 2.599 / 1.600 3.069 / 2.458

Table 15. Initialization window ATE (deg/m) from the linear system on EuRoC Vicon Room (5 KFs, 0.5sec window).

Algorithm V101 V102 V103 V201 V202 V203 Average

DS 3D 1.725 / 0.099 2.660 / 0.133 5.614 / 0.097 1.404 / 0.035 2.832 / 0.099 3.719 / 0.116 2.992 / 0.096
DS 1D 1.767 / 0.104 2.769 / 0.149 5.998 / 0.109 1.428 / 0.038 3.107 / 0.115 4.209 / 0.142 3.213 / 0.110

Ours w/o RANSAC 1.892 / 0.125 5.358 / 0.225 7.256 / 0.157 1.682 / 0.061 4.943 / 0.164 4.796 / 0.194 4.321 / 0.154
Ours 1.949 / 0.123 4.903 / 0.219 7.269 / 0.152 1.656 / 0.059 4.470 / 0.156 5.452 / 0.189 4.283 / 0.150

Table 16. Initialization window ATE (deg/m) on EuRoC Vicon Room after VI-BA (5 KFs, 0.5sec window).

Algorithm V101 V102 V103 V201 V202 V203 Average

DS 3D 1.317 / 0.042 0.797 / 0.021 1.611 / 0.018 0.931 / 0.010 1.454 / 0.028 1.933 / 0.040 1.340 / 0.027
DS 1D 1.034 / 0.029 0.817 / 0.019 1.544 / 0.017 0.940 / 0.009 1.671 / 0.027 1.697 / 0.029 1.284 / 0.022

DS + DP 1.322 / 0.041 0.867 / 0.022 1.989 / 0.026 0.940 / 0.010 1.470 / 0.029 1.131 / 0.036 1.286 / 0.028
Zhou et al. (2022) * - / 0.021 - / 0.038 - / 0.025 - / 0.015 - / 0.015 - / 0.033 - / 0.024
Ours w/o RANSAC 0.998 / 0.020 0.751 / 0.013 1.695 / 0.018 0.924 / 0.010 2.939 / 0.079 1.613 / 0.030 1.487 / 0.028

Ours 0.998 / 0.020 0.734 / 0.013 1.436 / 0.016 0.936 / 0.010 2.008 / 0.045 1.488 / 0.029 1.267 / 0.022
Ours + DP 0.969 / 0.019 0.780 / 0.013 1.477 / 0.017 0.926 / 0.010 1.786 / 0.024 1.119 / 0.036 1.176 / 0.020

*Results quoted from Table 1 in Zhou et al. (2022).

Table 17. Initialization window scale error (%) on EuRoC Vicon
Room after VI-BA (5 KFs, 0.5sec window)

Algorithm V101 V102 V103 V201 V202 V203 Avg.

DS 3D 7.014 8.953 6.700 2.958 0.489 41.604 11.286
DS 1D 3.249 4.553 9.238 2.871 0.710 35.911 9.422

DS + DP 6.795 4.887 12.009 3.176 0.169 32.385 9.903
Ours w/o RANSAC 1.361 0.423 4.020 2.934 29.629 10.208 8.096

Ours 1.438 0.255 4.195 3.116 10.005 20.806 6.636
Ours + DP 2.661 0.113 3.580 2.956 1.142 25.462 5.986

DS 3D only initialized 78 out of 80 times here while the other
methods we successfull 100% of the time.

To evaluate the sensitivity of our method to different
depth estimation networks, we additionally evaluate our
method with the more accurate DepthAnything Yang et al.
(2024) ViT-Small network, which, while the most efficient
of the DepthAnything networks, is far more computationally
expensive than the MiDaS small network we employ.
Denoted as “Ours (DA)”, it can be seen in Table 9 that using
the more-accurate DepthAnything network does not improve
the result. This shows that our method is not highly-sensitive
to the quality of the depth prediction.
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Table 18. Visual-inertial odometry tracking ATE (deg/m) on EuRoC Vicon Room (5 KFs, 0.5sec window for init).

Algorithm V101 V102 V103 V201 V202 V203 Average

DS 3D 1.821 / 1.101 1.279 / 0.096 2.961 / 0.424 1.630 / 0.074 1.912 / 0.099 4.756 / 4.479 2.393 / 1.046
DS 1D 1.394 / 0.168 1.273 / 0.097 3.498 / 0.504 1.589 / 0.073 2.016 / 0.099 4.995 / 5.793 2.461 / 1.122

DS + DP 2.070 / 0.962 1.389 / 0.095 3.144 / 1.229 1.673 / 0.075 1.975 / 0.110 4.970 / 2.968 2.537 / 0.907
Zhou et al. (2022) * - / 0.082 - / 0.097 - / 0.059 - / 0.046 - / 0.060 - / 0.567 - / 0.152
Ours w/o RANSAC 1.063 / 0.087 1.358 / 0.115 2.931 / 0.492 1.565 / 0.075 5.088 / 5.425 2.991 / 2.203 2.499 / 1.400

Ours 1.060 / 0.088 1.417 / 0.117 2.191 / 0.175 1.611 / 0.077 3.318 / 0.646 3.337 / 3.914 2.156 / 0.836
Ours + DP 1.070 / 0.089 1.422 / 0.105 2.269 / 0.171 1.574 / 0.073 2.053 / 0.106 4.192 / 3.115 2.097 / 0.610

*Results quoted from Table 3 in Zhou et al. (2022).

Table 19. Percent of successful initializations on EuRoC Vicon
Room (averaged over all sequences) with 5KFs and 0.5sec
window.

Algorithm 60 feats 45 feats 30 feats 15 feats

DS 3D 100.0 100.0 100.0 76.9
DS 1D 100.0 100.0 100.0 93.8

DS 3D + DP 100.0 100.0 100.0 76.9
DS 1D + DP 98.5 100.0 100.0 93.8

Ours w/o RANSAC 100.0 100.0 100.0 95.4
Ours 100.0 100.0 100.0 95.4

Ours + DP 100.0 100.0 100.0 95.4

Figure 18. RPE for VIO tracking on TUM-VI with 5KFs and
0.3sec window.

Tables 10 and 11 report the ATE and scale error
of the initialization window, respectively. The proposed
method has overall superior orientation, position, and scale
accuracy in the initialization window, and, again, utilizing
the more-accurate DepthAnything network does not improve
the performance. Table 12 and Fig. 18 report the VIO
tracking error. The VIO tracking accuracy for this extremely
challenging scenario shows that the proposed method
gains significant accuracy. Adding the depth prior to our
method achieves a slight improvement in ATE (for the
orientation) but actually slightly worse RPE. Not all methods
successfully initialized in every run in this experiment. Both
DS 3D methods (with and without depth prior in VI-BA)
were successful 78 times, while all other methods (including
the proposed methods) successfully initialized 80 times out
of the 80 10sec windows over the datasets.

Table 13 reports the results of reducing the number
of feature tracks. The proposed method can tolerate a
severe reduction in the number of features available, while
the proposed RANSAC method can still outperform the
baselines and, as shown in the next experiment, remain
robust to outliers. Adding the depth prior helped slightly in
this case.

7.3.3 Robustness to Outliers We additionally investigate
how robust the proposed RANSAC method is to outliers.
Given a set of features selected for initialization, a percent
of them are selected to be outliers. All observations for
these features are perturbed with a normally distributed 10px
feature distribution. The mixture of inlier and outlier features
are then fed into the rest of the initialization process.

Shown in Table 14, as the outlier percentage increases
the proposed initialization method with and without the
additional depth prior are the least affected by the added
outliers. The proposed RANSAC method is able to robustly
provide reliable initial guesses even in the case of 40%
outlier features. We stress that this RANSAC formulation is
only enabled by leveraging the affine-invariant depth map
to ensure the state remains independent to the number of
features, and thus is unique to our formulation.

7.4 EuRoC MAV Dataset
We next evaluate on the EuRoC MAV dataset (Burri et al.
2016). In this section, we also include a direct comparison
to the state-of-the-art work by Zhou et al. (2022) (denoted as
Zhou et al. (2022)). This comparison is only partial since the
implementation of Zhou et al. (2022) is not open-sourced,
thus we are forced to quote results from the paper where
applicable. We measure the full orientation error and scale
error over the whole trajectory rather than just the gravity and
scale error over well-excited trajectory segments, and thus
can not directly compare to their orientation and scale. We
selected the closest equivalent challenging configuration of
of 5KFs evenly spaced over a 0.5sec window.

7.4.1 Vicon Room Sequences We first evaluate the
system on the EuRoC Vicon Room sequences. Similar to the
TUM-VI dataset, these sequences take place in a small room
equipped with a motion capture device. Fig. 20 shows some
qualitative results of the depth network’s performance on
these sequences. Despite the network being confused about
some unusual strips on the floor, our method still performs
well due to the incorporation of RANSAC to reject these bad
depth points.
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Table 20. Initialization window ATE (deg/m) from the linear system on EuRoC Machine Hall (5 KFs, 0.5sec window).

Algorithm MH01 MH02 MH03 MH04 MH05 Average

DS 3D 1.507 / 0.071 2.062 / 0.066 3.127 / 0.175 1.877 / 0.169 2.380 / 0.215 2.190 / 0.139
DS 1D 1.626 / 0.077 2.229 / 0.073 3.327 / 0.198 1.982 / 0.178 2.505 / 0.225 2.334 / 0.150

Ours w/o RANSAC 2.179 / 0.110 2.853 / 0.102 4.300 / 0.305 2.263 / 0.197 2.957 / 0.273 2.910 / 0.197
Ours 2.080 / 0.101 2.747 / 0.097 4.408 / 0.286 2.302 / 0.197 2.807 / 0.270 2.869 / 0.190

Table 21. Initialization window ATE (deg/m) on EuRoC Machine Hall after VI-BA (5 KFs, 0.5sec window).

Algorithm MH01 MH02 MH03 MH04 MH05 Average

DS 3D 1.143 / 0.021 1.028 / 0.007 1.190 / 0.033 1.056 / 0.020 0.970 / 0.027 1.077 / 0.022
DS 1D 1.119 / 0.018 1.064 / 0.008 1.149 / 0.034 1.099 / 0.023 0.974 / 0.028 1.081 / 0.022

DS 3D + DP 1.018 / 0.020 0.999 / 0.008 1.158 / 0.033 1.075 / 0.021 0.847 / 0.026 1.019 / 0.022
DS 1D + DP 1.068 / 0.016 0.970 / 0.007 1.148 / 0.034 1.140 / 0.024 0.855 / 0.035 1.036 / 0.023

Zhou et al. (2022) * - / 0.025 - / 0.026 - / 0.055 - / 0.075 - / 0.063 - / 0.049
Ours w/o RANSAC 1.154 / 0.025 1.298 / 0.017 1.734 / 0.069 1.433 / 0.036 2.143 / 0.055 1.552 / 0.040

Ours 1.126 / 0.025 0.968 / 0.007 1.424 / 0.036 1.116 / 0.028 1.105 / 0.058 1.148 / 0.031
Ours + DP 1.812 / 0.035 1.750 / 0.020 1.850 / 0.052 1.471 / 0.040 1.142 / 0.058 1.605 / 0.041

*Results quoted from Table 1 in Zhou et al. (2022).

Table 22. Initialization window scale error (%) on EuRoC
Machine Hall after VI-BA (5 KFs, 0.5sec window)

MH01 MH02 MH03 MH04 MH05 Average

DS 3D 11.922 5.729 13.562 10.865 10.042 10.424
DS 1D 8.320 41.925 12.059 9.738 10.296 16.468

DS 3D + DP 0.611 7.494 13.657 10.597 3.925 7.257
DS 1D 8.025 7.616 12.646 1.648 15.847 9.156

Ours w/o RANSAC 52.709 12.462 137.833 12.413 102.917 63.667
Ours 52.444 3.868 0.134 1.152 217.949 55.109

Ours + DP 50.045 25.043 42.106 12.113 217.945 69.451

Figure 19. RPE for VIO tracking on EuRoC Vicon Room with
5KFs and 0.5sec window.

Figure 20. Qualitative result of the MiDaS Ranftl et al. (2022)
v2.1 small on the EuRoC Vicon Room 1 sequence. The network
can easily get confused about the unusual decor, such as on
strips the floor.

We report the results of the linear system solutions (no
VI-BA refinement) in Table 15. Again, our method is
less accurate than the baselines. All systems successfully
initialized 100% of the time in this experiment.

Looking now to results which perform the VI-BA
refinement after closed-form recovery, Tables 16 and 17
report the ATE and scale error, respectively. We can observe
that our system outperforms all the baselines in the average
case, and adding the depth prior helped in this case. We can
see that the proposed system without RANSAC enabled (i.e.
using all available measurements outlier or not) hurts the
performance, while leveraging RANSAC has improved scale
and ATE accuracy. All methods successfully initialized 65
out of 65 10sec windows in this experiment except for DS
3D + DP, which succeeded 64 times.

The results of VIO tracking are also reported in Table 18
and Fig. 19. Our methods (with and without the depth prior in
the VI-BA) are shown to be the most accurate out of the ones
implemented on top of OpenVINS, while Zhou et al. (2022)
is the most accurate out of all the methods. It is tough to know
if this accuracy gain is due to the feature tracking front-end
or a difference in evaluation due to the closed-source nature
of Zhou et al. (2022) and the similar error magnitude levels
achieved by all re-implemented methods which build on top
of the open-sourced OpenVINS (Geneva et al. 2019).

The robustness to reduced number of features is also
reported in this section. Table 19 reports the results. It can
be seen that all three of our methods (with and without
RANSAC as well as with depth prior) are the most robust
to reduced number of features in this case, especially with
very low number of feature tracks available.

7.4.2 Machine Hall Sequences We additionally evaluate
on the Machine Hall sequences of the EuRoC dataset. These
sequences are more challenging than the Vicon Room due to
the larger scale of the scene, and high amounts of clutter and
small objects such as pipes which are challenging for low-
resolution dense reconstruction methods. Qualitative results
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Table 23. Visual-inertial odometry tracking ATE (deg/m) on EuRoC Machine Hall (5 KFs, 0.5sec window for init).

Algorithm MH01 MH02 MH03 MH04 MH05 Average

DS 3d 2.294 / 0.610 3.675 / 0.438 2.426 / 0.202 3.523 / 0.967 2.820 / 0.928 2.948 / 0.629
DS 1D 2.513 / 1.118 3.882 / 0.324 2.018 / 0.238 3.431 / 0.912 2.758 / 0.908 2.920 / 0.700

DS 3D + DP 2.524 / 0.260 3.704 / 0.342 2.515 / 0.202 3.705 / 1.590 3.153 / 0.813 3.120 / 0.641
DS 1D + DP 2.137 / 0.199 3.735 / 0.357 2.067 / 0.233 2.570 / 0.722 3.202 / 0.409 2.742 / 0.384

Zhou et al. (2022) * - / 0.543 - / 0.071 - / 1.299 - / 0.124 - / 0.910 - / 0.589
Ours w/o RANSAC 2.712 / 0.942 4.520 / 0.394 3.114 / 0.358 2.969 / 0.750 4.434 / 1.916 3.550 / 0.872

Ours 2.282 / 0.184 3.970 / 1.204 2.006 / 0.164 2.368 / 0.438 2.888 / 0.864 2.703 / 0.571
Ours + DP 3.669 / 3.984 4.074 / 2.693 2.312 / 1.605 2.798 / 0.632 2.911 / 0.851 3.153 / 1.953

*Results quoted from Table 3 in Zhou et al. (2022).

Table 24. Percent of successful initializations on EuRoC
Machine Hall (averaged over all sequences) with 5KFs and
0.5sec window.

Algorithm 60 feats 45 feats 30 feats 15 feats

DS 3D 100.0 96.9 100.0 95.4
DS 1D 98.5 96.9 100.0 100.0

DS 3D + DP 100.0 96.9 100.0 95.4
DS 1D + DP 98.5 96.9 100.0 100.0

Ours w/o RANSAC 98.5 96.9 100.0 100.0
Ours 98.5 98.5 100.0 100.0

Ours + DP 98.5 98.5 100.0 100.0

Figure 21. RPE for VIO tracking on EuRoC Machine Hall with
5KFs and 0.5sec window.

Figure 22. Qualitative result of the MiDaS Ranftl et al. (2022)
v2.1 small on the EuRoC Machine Hall 1 sequence. Larger
scale and small objects (e.g., pipes) make these sequences
challenging for the depth network.

of the depth network’s performance on these sequences can
be seen in Fig. 22.

In this section, we will show an interesting case where
our method is less accurate by all measures except for VIO

tracking accuracy, the most important metric, where it is tied
for the best and even beats the state-of-the-art baseline Zhou
et al. (2022). This shows that the other metrics, such as
initialization window accuracy, may not always show the true
performance of a visual-inertial initialization system.

First, the linear system is evaluated (without BA
refinement). Table 20 reports the results. As usual, our
linear system pose accuracy is worse than the baselines. All
systems successfully initialized 100% of the time in this
experiment.

We also evaluate the performance after performing the VI-
BA. The results of the initialization window can be seen
in Tables 21 and 22, which show the ATE and scale error,
respectively. Our method is not the best in terms of the
initialization window accuracy. However, in Table 23 it can
be seen that our method has some of the best accuracy for
VIO tracking – the best orientation and second best position.
The RPE results of VIO tracking are reported in Fig. 21,
where it can be seen that our method is comparable to
the others. In general, our method outperforms Zhou et al.
(2022) on the Machine Hall sequences. Not all methods
initialized all of the time in this experiment. DS 1D, Ours,
and Ours + DP initialized 64 out of 65 times successfully,
while the others (including our method without RANSAC)
successfully initialized 65 out of 65 times.

Table 24 reports the results of reducing the number of
available feature tracks. It is clear that our method with and
without the extra depth prior is more robust to a low number
of feature tracks available than the others.

8 Discussion and Limitations

While we have shown that the proposed method has
state-of-the-art initialization performance on short time
windows (0.3sec and 0.5sec), we admit that its performance
diminishes as the initialization time window increases and
more parallax/excitation is available. We believe that this
is due to the fact that our method relies on the learned
monocular depth to aid in the low excitation cases, but
as a consequence, can not benefit from the classical
triangulation that works very well when all the states
are observable with sufficient baselines. If extremely fast
monocular initialization is desired, then the proposed method
reigns supreme, while if a longer initialization window is
acceptable or stereo feature tracks are available, we would
recommend to simply use a traditional method.
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We additionally make no claim that the proposed method
is able to initialize with zero excitation, since some motion
and orientation change is required to recover scale. We also
do not claim to improve any observability properties of
the initialization problem – only that we can reduce the
number of states required to be estimated, which improves
the robustness to low number of feature tracks and lack of
excitation while also being easily integrated into RANSAC
for added robustness to outlier measurements.

9 Conclusions and Future Work
In this work, we have introduced a new state-of-the-art
method to initialize monocular VIO extremely quickly and
robustly with the help of a learned monocular depth network.
As opposed to utilizing the learned depth in the VI-BA
refinement step, we instead proposed to leverage it as known
prior information in the fragile linear initialization stage –
greatly reducing the number of parameters that need to be
estimated. Not only does our method only require the depth
to be predicted in one frame instead of all of them, it also
conveniently allows for the entire linear initialization to be
placed as a small minimal problem in a RANSAC loop –
which robustifies the linear system that is already highly
unstable outside of ideal conditions.

The proposed initialization method displays superior
initialization accuracy and robustness in simulation and
on two public benchmark datasets (EuRoC and TUM-VI)
for short window initialization. Additionally, on TUM-VI
our method shows an overall superior performance when
initializing with only a 0.3 second window of data – which
is the shortest ever reported. Adding the depth priors in the
VI-BA on top of our method did not help in all cases, which
shows that our method can simply be used on its own. While
our method utilizes monocular depth to aid in initialization, it
does not explicitly use it after to benefit the VIO performance
as in Zuo et al. (2021); Zhao et al. (2022) – which would be
an important point to improve upon in the future.
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