
MINS: Efficient and Robust
Multisensor-aided
Inertial Navigation System

Journal Title
XX(X):1–29
©The Author(s) 2023
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Woosik Lee, Patrick Geneva, Chuchu Chen, and Guoquan Huang

Abstract
Robust multisensor fusion of multi-modal measurements such as IMUs, wheel encoders, cameras, LiDARs, and GPS
holds great potential due to its innate ability to improve resilience to sensor failures and measurement outliers, thereby
enabling robust autonomy. To the best of our knowledge, this work is among the first to develop a consistent tightly-
coupled Multisensor-aided Inertial Navigation System (MINS) that is capable of fusing the most common navigation
sensors in an efficient filtering framework, by addressing the particular challenges of computational complexity, sensor
asynchronicity, and intra-sensor calibration. In particular, we propose a consistent high-order on-manifold interpolation
scheme to enable efficient asynchronous sensor fusion and state management strategy (i.e. dynamic cloning). The
proposed dynamic cloning leverages motion-induced information to adaptively select interpolation orders to control
computational complexity while minimizing trajectory representation errors. We perform online intrinsic and extrinsic
(spatiotemporal) calibration of all onboard sensors to compensate for poor prior calibration and/or degraded calibration
varying over time. Additionally, we develop an initialization method with only proprioceptive measurements of IMU
and wheel encoders, instead of exteroceptive sensors, which is shown to be less affected by the environment and
more robust in highly dynamic scenarios. We extensively validate the proposed MINS in simulations and large-scale
challenging real-world datasets, outperforming the existing state-of-the-art methods, in terms of localization accuracy,
consistency, and computation efficiency. We have also open-sourced our algorithm, simulator, and evaluation toolbox
for the benefit of the community: https://github.com/rpng/mins.

Keywords
Multisensor system, inertial navigation, sensor fusion, sensor calibration, Monte-Carlo analysis

1 Introduction

Robust, accurate, real-time localization is a fundamental
capability for autonomous vehicles. This is often addressed
by leveraging multisensor fusion approaches, in part due to
the fact that multi-modal sensors can offer complementary
and/or redundant sensing under different environmental
conditions (Lynen et al. 2013; Hackett and Shah 1990).
Among all possible navigation sensors, inertial measurement
units (IMUs), cameras, wheel encoders, global navigation
satellite systems (GNSS), and LiDARs prevail in recent
literature (Cao et al. 2022; Lv et al. 2023; Wang et al.
2021a). While it appears to be straightforward in principle
to fuse all these heterogeneous sensors to achieve optimal
localization performance, there is only limited work that
has used greater than three sensing modalities because of
the inherent difficulties of robust and efficient multisensor
fusion.

As multisensor systems – in particular, those that forgo
hardware-synchronization due to its significant cost –
inevitably produce asynchronous or out-of-sequence data,
it remains challenging to optimally model and update such
asynchronous and delayed multi-modal information. The
ability to seamlessly handle these is a key attribute of
multisensor systems as it endows the systems with greater
flexibility to use more sensors. To this end, multisensor
calibration is another essential but difficult component. Many
existing methods assume perfect offline calibration (Sun

et al. 2022; Nguyen et al. 2021b; Meng et al. 2017), which,
however, inject unmodelled errors into the estimator and thus
degrade localization performance if the prior calibration was
poor or inevitably changes during long-term operation. As
incorporating more sensors increases not only the number
of measurements to process but also the size of the state
to be estimated, highly-efficient fusion of all available
multi-modal measurements is always challenging given
stringent computational resources and latency requirements.
Additionally, system initialization is necessary for robust
estimation and failure recovery but practically is challenging
due to constrained under-actuated motion and short time
horizons.

To address the aforementioned challenges, in this work,
we develop a novel Multisensor-aided Inertial Navigation
System (MINS), which builds upon the inertial navigation
system (INS) as the backbone and efficiently fuses the multi-
modal measurements of wheel encoders, cameras, LiDARs,
and GNSS while performing full online spatiotemporal
calibration. The proposed MINS employs a continuous-time

Robot Perception and Navigation Group, University of Delaware,
Newark, DE 19716, USA.

Corresponding author:
Woosik Lee, Department of Mechanical Engineering, University of
Delaware, 126 Spencer Lab, Newark, DE 19716, USA.
Email: woosik@udel.edu

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

https://github.com/rpng/mins

state representation to reduce the computational complexity
of asynchronous and delayed measurements and proposes
robust initialization in challenging dynamic scenes, while
achieving accurate real-time localization.

In particular, the main contributions of this work include:

• We, for the first time, design an efficient and
robust filtering-based MINS estimator that fuses
five most commonly-seen navigation sensors in a
tightly-coupled fashion, including an IMU, a pair
of wheel encoders, and an arbitrary number of
cameras, LiDARs, and GNSS receivers. Thanks to
the complementary and redundant sensing capabilities,
the proposed approach is resilient to sensor failures
and measurement depletion (e.g. in a dark room
for cameras, open field for LiDARs, or indoors for
GNSS) as well as measurement outliers, enabling it
to output continuous and uninterrupted estimates for
downstream applications.

• The proposed MINS introduces a consistent high-
order on-manifold state interpolation methodology
to process asynchronous and delayed measurements,
which enables flexibility in adding auxiliary sensors
while ensuring computational efficiency. Furthermore,
we investigate the long-standing loss of trajectory
fidelity introduced by continuous-time representations
and reformulate the measurement model to account
for trajectory representation errors. A dynamic
cloning algorithm which adaptively balances the
computational complexity, estimation accuracy, and
trajectory representation errors is developed and
validated.

• The proposed MINS performs online intrinsic and
extrinsic (spatiotemporal) calibration of all sensors
onboard, which enables the system to be robust to poor
prior calibration or time-varying calibration. More-
over, we develop a robust initialization technique using
only the IMU and wheel-encoder proprioceptive mea-
surements for the case of high speed and dynamic
object filled environments, where conventional meth-
ods which leverage exteroceptive sensors fail to initial-
ize.

• We validate the proposed MINS extensively in
both realistic simulations and large-scale real-world
datasets, showing that the proposed method can
achieve high efficiency, robustness, consistency, and
accuracy in many challenging scenarios. We have also
open-sourced our codebase, simulator, and evaluation
toolbox for the benefit of the research community.

2 Related Work
Although there is a rich literature on multi-sensor fusion
(Chen et al. 2022b; Xu et al. 2022b), we here only review
the most relevant multi-sensor systems with three or more
sensing modalities, while focusing on sensor asynchronicity,
delayed measurements, and online sensor calibration.

2.1 Estimation with Three Sensing Modalities
Visual-Inertial Navigation Systems (VINS) that combine
the inertial reading of the IMU and the visual bearing

{E}

{W} {O}

{C1}
{C2} {I}

{L1}

{L2}

{G1}

{G2}

Figure 1. Frames used in the proposed MINS. In this example,
2 cameras {C}, 2 GNSS sensors {G}, 2 LiDARs {L}, 1 IMU
{I}, and 1 wheel odometry frame {O} are shown along with
local world frame {W} and global ENU frame {E}.

information of the camera have become popular due to their
complementary nature (Huang 2019). Many multi-sensor
navigation systems encompass VINS as a key module of the
whole system due to its compactness and rich information.

2.1.1 LiDAR-VINS
LiDAR is one of the popular sensors to be fused with
VINS due to its measurement being invariant to the light
and its ability to provide depth information directly, which
can compensate for the degeneracy of the camera in many
scenarios, such as in a dark cave or facing featureless wall
(Xu et al. 2022b). V-LOAM (Zhang and Singh 2018) is
one of the early works that loosely couples a LiDAR to
the camera and IMU frame-to-frame leveraging VINS to get
the initial matching of the LiDAR point cloud. Wang et al.
(2019) improved this by designing a graph-based estimator
including loop closure, while similar approaches can be
found in many other works (Camurri et al. 2020; Khattak
et al. 2020). A focus of loosely coupled systems has been to
address the degeneracy issues of the independent camera and
LiDAR odometry algorithms. For example LiDAR (+ IMU)
odometry is combined with VINS in a graph formulation
as separate sub-systems to enable robustness (Shan et al.
2021; Shao et al. 2019; Zhao et al. 2021). Many studies
adapt filtering frameworks to design more tightly coupled
systems which come with the estimate consistency and
accuracy gains. MSCKF-based (Mourikis and Roumeliotis
2007) designs are popular and adapted by many works to
great success (Zuo et al. 2019a, 2020; Lee et al. 2021; Yang
et al. 2019b). In those works, features, such as planes or lines,
are extracted from the LiDAR measurements and fused with
camera measurements in a tightly coupled way. Similarly,
the error state iterated Kalman filter (ESIKF) is adapted (Lin
et al. 2021; Lin and Zhang 2022; Zheng et al. 2022) while
fusing LiDAR without extracting the features (a.k.a. direct
method) was also studied (Lin and Zhang 2022; Zheng et al.
2022).

2.1.2 GNSS-VINS
A GNSS sensor directly provides absolute position
information, although the accuracy of it is highly dependent
on the surrounding environment and the availability of
external correction data. For these reasons, GNSS fusion
with VINS has been investigated to provide locally precise

and globally accurate localization. There are many works
fusing GNSS with VINS in a graph formulation via
both loosely (Qin et al. 2019; Merfels and Stachniss
2016, 2017) and tightly (Mascaro et al. 2018; Cioffi and
Scaramuzza 2020; Rehder et al. 2012; Wang et al. 2021b;
Han et al. 2022). One of the most popular graph-based
works is VINS-Fusion (Qin et al. 2019) which takes both
VINS estimation and GNSS measurements to build a pose
graph for optimization. However, GNSS measurements
are often intermittent and asynchronous to other sensors
which max graph construction a complex design. Cioffi
and Scaramuzza (2020) addressed this issue by creating
synthetic synchronized global measurements using both
IMU and GNSS measurements, but introduced inconsistent
measurement re-use of inertial information. There exist
many filter-based techniques (Lee et al. 2016; Ramanandan
et al. 2019; Chambers et al. 2014; Lynen et al. 2013)
which fused GNSS with VINS, with Lee et al. (2020a)
being the first to address the asynchronicity issue by
interpolating historical stochastically cloned IMU poses.
More recent works have focused on fusing lower-level GNSS
measurements (GNSS satellite signals) with VINS (Dong
and Zhang 2022; Liu et al. 2021b; Lee et al. 2022; Cao
et al. 2022) showing robustness in limited FOV scenarios and
improved localization performance.

2.1.3 Wheel-VINS
Many of the simultaneous localization and mapping (SLAM)
applications are on ground vehicles. Therefore, it appears to
be straightforward in principle to fuse the wheel (encoder)
with other sensors for ground robot navigation. Especially
for VINS on wheeled robots, it is known that their
estimated state can have addititional unobservable directions
beyond the standard 4 degrees of freedom (DOF) depending
on the motion (Wu et al. 2017) (calibration parameters
have additional challenges, (Yang et al. 2019a)). Thus the
fusion of additional scale information from other sensors is
necessary to build a consistent estimator. To this end, wheel
odometry fusion with VINS has been investigated in both
graph form (Kang et al. 2019; Dang et al. 2018; Zheng and
Liu 2019; Liu et al. 2021a; Zuo et al. 2019b) and the filter
form (Wu et al. 2017; Lee et al. 2020b; Serov et al. 2021; Ma
et al. 2019, 2020).

One of the problems of wheel fusion is that the readings
typically provide 2D motion information while the estimated
robot state is generally in 3D space. Many studies address
this issue through either tightly coupled integration of inertial
and the wheel in 3D (Liu et al. 2019; Su et al. 2021; Quan
et al. 2019; Liu et al. 2021a; Jung et al. 2020), projecting
the 3D state onto the local 2D plane (Wu et al. 2017;
Geneva et al. 2020b; Lee et al. 2020b), or applying planar
motion constraint (Kang et al. 2019; Zheng and Liu 2019).
Leveraging the ground shape information, such as plane
model (Wu et al. 2017) or quadratic polynomial (Zhang et al.
2021; Zuo et al. 2019b), has shown to improve the robot pose
estimation. The most common kinematic model of the wheel
adapted is the differential drive (Wu et al. 2017; Lee et al.
2020b) while other models, such as 2 DOF vehicle dynamics
model (Kang et al. 2019), Ackermann model (Ma et al. 2019,
2020), or ICR model (Zuo et al. 2019b) are used for different
types of platforms.

2.2 Estimation with Four or More Sensing
Modalities

Despite many advantages, such as robustness, accuracy, and
applicability, a relatively small number of systems equipped
with 4 or more sensor modalities have been introduced in part
due to the difficulty of handling large computation and sensor
measurements that are either asynchronous, delayed, or both.
However, the ability to properly handle asynchronous and
delayed sensor measurements is important for multi-sensor
systems because it enables the system to flexibly add an
arbitrary number of sensors that are either homogeneous
or heterogeneous, model measurements more precisely, and
include all the information without naively dropping it. Table
1 summarizes the related literature.

2.2.1 Graph-based Systems
The graph formulations can easily handle the delayed
measurements owing to their nature of carrying all/part
of the history of measurements which allows for delayed
states to be inserted into the optimization problem (Chiu
et al. 2014). The more recent VINS-Fusion (Qin et al.
2019) employs a pose graph which loosely couples VINS
(tightly coupled IMU and camera) with other global sensors,
such as GNSS, magnetometer, or barometer but assumes
sensors are perfectly synchronized. There exist other graph
formulations, such as SVIn2 (Rahman et al. 2022), which
fused IMU, camera, water pressure sensor, and sonar to
perform underwater SLAM in pose graph formulations,
Lvio-fusion (Jia et al. 2021) tightly fused IMU, camera, and
LiDAR for trajectory estimation and in turn, loosely fused
GNSS in a pose graph, or GR-Fusion (Wang et al. 2021a),
which tightly fused IMU, camera, LiDAR, wheel, and GNSS
in the graph along with ground estimation and mapping.
However, all of these works assumed the measurements are
perfectly synchronized which prevents their plug-and-play
use. The direct extension of these graph-based methods to
asynchronous systems requires the estimation of the state
at every measurement time, which requires techniques to
bound computation, such as performing updates with only
a subset of sensors (Chiu et al. 2014), to maintain real-time
performance. Another challenge is the inclusion of temporal
calibration parameter of sensors, which typically has been
ignored or handled by hardware-synchronization (i.e. PTP
network time protocol (Eidson et al. 2002)).

On the other hand, VIRAL SLAM (Nguyen et al. 2021b)
which fused IMU and stereo camera with multiple UWBs
and LiDARs handled asynchronicity by synchronizing all
the sensors to the base LiDAR measurement time. To do
so, IMU and UWBs are interpolated, non-base LiDAR point
clouds are unwarped to the base LiDAR measurement time,
and camera measurements that are closest to the time are
admitted while others are dropped. The system is improved
to a more general multi-sensor system, VIRAL-Fusion
(Nguyen et al. 2021a), synchronizing the sensors by creating
the state independent of the sensor measurement timings,
interpolating the states to handle UWB measurements, and
generating synthetic measurements at the state timestamp
with measurement interpolation. Similarly, VILENS (Wisth
et al. 2022) which fused IMU, leg odometry, camera, and
LiDAR resolved the asynchronicity issue by synchronizing
all the sensors to the camera time, interpolating IMU and

Table 1. Summary of the state-of-the-art multisensor navigation systems

Algorithms IMU Camera GNSS Wheel LiDAR Asynchronous Delayed Online
Sensors Measurements Calibration

Fi
lte

r

MINS (proposed) 1 N N 1 N ⃝ ⃝ ⃝
Kubelka et al. (2015) 1 1 × 1 1 × × ×
Simanek et al. (2015) 1 1 × 1 1 × × ×

Meng et al. (2017) 1 × 1 1 1 × × ×
Suhr et al. (2016) 1 1 1 1 × × × ×

MSF-EKF 1 1 N × × ⃝ ⃝ △
Hausman et al. (2016) 1 1 1 × × ⃝ ⃝ △
Tessier et al. (2006) 1 × 1 × 1 ⃝ ⃝ ×

MaRS 1 N N × × ⃝ ⃝ △
Pronto 1 2 × 1 1 ⃝ ⃝ ×

Shen et al. (2014) 1 2 1 × 1 ⃝ ⃝ ×
Wu et al. (2022) 1 2 1 1 1 ⃝ ⃝ ×
Lee et al. (2021) 1 2 1 1 1 ⃝ ⃝ ⃝

G
ra

ph

VINS-Fusion 1 2 N × × × ⃝ △
SVIn2 1 N × × × × ⃝ ×

Lvio-Fusion 1 2 1 × 1 × ⃝ ×
GR-Fusion 1 2 1 1 1 × ⃝ △

Chiu et al. (2014) 1 N 1 × 1 ⃝ ⃝ ×
VIRAL SLAM 1 2 × × N △ ⃝ ×
VIRAL-Fusion 1 N × × N ⃝ ⃝ ×

VILENS 1 2 × 1 1 ⃝ ⃝ ×
VIL-Fusion 1 2 1 × 1 ⃝ ⃝ ×

* N: arbitrary number of sensors supported, ⃝: fully supported, △: partially supported, ×: not supported.

leg measurements, and unwarping LiDAR point cloud to
the camera timestamp using the integrated IMU factor.
VIL-Fusion (Sun et al. 2022) which fused IMU, camera,
LiDAR, and GNSS also synchronized IMU, camera, and
LiDAR in the same fashion while linear interpolation
was used to handle GNSS. While these works look to
address the asynchronicity problem without increasing the
computational complexity, they introduce an additional
unmodeled source of error from the approximation.

2.2.2 Filter-based Systems
Compared to graph-based systems, filter-based methods
remain popular due to their efficiency, which is crucial to
computationally complex multi-sensor systems. However,
handling asynchronous and delayed sensor measurements
presents challenges as filters only keep the latest information
and maybe a short period of historical stochastic poses.
In many early filtering approaches, such as Kubelka et al.
(2015) and Simanek et al. (2015) which fused IMU,
omnidirectional camera, wheel, and LiDAR in EKF, Meng
et al. (2017) which fused IMU, GNSS, wheel, and LiDAR in
unscented Kalman filter (UKF), or Suhr et al. (2016) which
fused IMU, camera, GNSS, wheel, symbolic road map in
particle filter (PF), the sensor measurements are assumed to
be synchronized and time-ordered which injects unmodeled
error to the estimator in case the assumption does not hold.

MSF-EKF (Lynen et al. 2013) is among the first work
to fuse generic relative and absolute measurements from
IMU, camera, GNSS, and pressure sensor in EKF and also
handled asynchronous and delayed sensor measurements. In
their work, the current state is re-predicted forward in time
from the queried state when a delayed measurement comes

in, which requires all subsequent measurement updates to
be reapplied, and asynchronicity is handle by propagating
to the temporally closest queried state to the measurement
time Similarly spirited works that handle asynchronous and
delayed sensor measurements are by Hausman et al. (2016)
which fused IMU, camera, GNSS, and UWB in iterated
EKF, Tessier et al. (2006) which fused magnetometer, GNSS,
radar, and gyroscope in PF, MaRS (Brommer et al. 2020)
which fused IMU, stereo camera, GNSS, barometer in
EKF, and Pronto (Camurri et al. 2020) which fused IMU,
leg odometry, camera, and LiDAR in EKF keeping 10
seconds of worth measurements, prior & posterior states,
and the corresponding covariances. However, keeping the
previous states and the measurements, and re-processing
those measurements every time a delayed measurement is
received, incurs a higher than needed computational cost
which may result in losing real-time estimation performance.

One of the popular methods to improve efficiency by
avoiding this re-computation is using a buffer to hold
the measurements and processing them in a time-ordered
manner. Shen et al. (2014) fused IMU, camera, GNSS,
2D LiDAR, pressure altimeter, and magnetometer in UKF
buffering 0.1 seconds of the measurements to handle
asynchronous and delayed sensor measurements. A similar
approach can be found in the work of Wu et al. (2022) which
fused IMU, stereo camera, wheel, LiDAR, and AHRS via a
system which is composed of 3 subsystems (wheel+AHRS,
VINS, LiDAR odometry) where the sensor measurements
are abstracted into pose or velocity information and fused
in EKF formulation. The buffer logic is useful to sort
the unordered measurements, but the buffering window
cannot be too large because it delays every measurement

update, thereby introducing a large latency to the real-time
robotic system and is unacceptable in safety critical systems.
Additionally, fusing sensors with large delays may not be
feasible with a buffer approach (e.g. GNSS measurement
delay can be on the order of 0.85 seconds (Lee et al. 2020a)).

2.2.3 Continuous-time Estimation
An alternative paradigm that elegantly allows the incorpora-
tion of asynchronous and delayed sensor measurements is the
continuous-time estimation which represents the robot state
at an arbitrary time using temporal basis functions. A popular
temporal basis functions is the uniform B-spline (Furgale
et al. 2013; Zheng et al. 2015; Droeschel and Behnke
2018; Cioffi et al. 2022; Lv et al. 2022) while there are
other approaches, such as Gaussian process (Barfoot 2017;
Anderson et al. 2015), wavelets (Anderson et al. 2014), or
Taylor-series (Li and Mourikis 2014b). However, uniform B-
spline, in general, requires a fixed frequency between control
nodes and requires sufficiently high frequency to ensure
accurate trajectory fidelity in highly dynamic motions. Too
high of control node frequency may inefficiently increase
computational complexity due to the estimation of a larger
state vector, while a too low frequency may hurt the estima-
tion performance due to inaccurate trajectory representation
(see (Cioffi et al. 2022) for comparison to discrete-time
formulations). In part due to these reasons, many methods
that utilize B-spline for the continuous-time estimation are
offline (Rehder et al. 2016a; Furgale et al. 2012; Lang et al.
2022) or are applied to small systems (Mueggler et al. 2018;
Quenzel and Behnke 2021; Rodrigues et al. 2021).

Recently, MIMC-VINS (Eckenhoff et al. 2021) investi-
gated a trajectory formulation using high-order polynomials
over stochastic poses. The major benefits of this method are
that it can handle a non-uniform temporal pose distribution
and has a low computational cost to reconstruct different
orders of polynomials as the exact robot poses are the control
nodes. The 1-order linear interpolation variant of this has
been leveraged by many works to great success (Paul and
Roumeliotis 2018; Geneva et al. 2018a; Lee et al. 2020a;
Sun et al. 2022). Delayed measurements can be naturally
incorporated since the pose at any time instance within the
historical stochastic clone window can be found. However, in
the case of highly dynamic motions, the polynomial trajec-
tory representation still has a loss of fidelity, as do temporal
basis functions, as it is still limited by the clone rate and
can introduce unmodeled errors. We will directly investigate
the magnitude and impact of these unmodeled errors and
properly model their characteristics in the proposed MINS
to enable consistent estimation.

2.3 Online Sensor Calibration
Calibration methods can be classified into two method-
ologies: offline and online. Offline methods estimate the
calibration parameters in batch optimization fashion with
the aim to provide the most accurate results at the cost of
high computation and time. There are few works that jointly
calibrate 4 or more sensing modalities offline, such as a
general framework (Rehder et al. 2016b) for the calibration
of the spatiotemporal parameters, iCalib (Yang et al. 2021)
for IMU, camera, LiDAR, and wheel calibration, or ATOM
(Oliveira et al. 2022) for the camera, LiDAR, and RaDAR

calibration. One can find more offline calibration methods
in pair-wise systems, such as Kalibr (Rehder et al. 2016a),
COC (Heng et al. 2013), MSG-cal (Owens et al. 2015), or
MVIS (Yang et al. 2023). However, the offline calibration
results may still have some errors that may result in estimator
inconsistency if not properly modeled and are unable to cope
with only platform reconfigurations. To this end, instead of
blindly trusting them as true, many multi-sensor systems
append the calibration parameters in the state to improve
robustness by modeling their uncertainties and jointly esti-
mating them while performing navigation which is called
online calibration.

Among those 4 or more sensor fusion systems introduced
(Sec. 2.2), MSF-EKF (Lynen et al. 2013), MaRS (Brommer
et al. 2020), and the work of Hausman et al. (2016)
supports the spatial calibration of onboard sensors while
VINS-Fusion (Qin et al. 2019; Xu et al. 2022b) only
supports the spatiotemporal extrinsic calibration between
the camera and IMU. GR-Fusion (Wang et al. 2021a)
further calibrated the spatiotemporal extrinsic of the LiDAR,
intrinsic and spatial extrinsic of the wheel, and temporal
extrinsic of the camera. However, the camera intrinsic and
spatial extrinsic calibration was done offline and the temporal
offset of the wheel was not calibrated. Our previous work
(Lee et al. 2021) was the only work that showed full
spatiotemporal calibration of all onboard sensors (camera,
GNSS, wheel, and LiDAR), but it was limited to a single
sensor per modality besides cameras. There exist systems
that fully/partially calibrate the calibration parameters of
smaller sensing modalities online, such as LiDAR-camera-
IMU (Zuo et al. 2019a, 2020; Lee et al. 2021; Ye et al. 2021),
GNSS-camera-IMU (Girrbach et al. 2019; Lee et al. 2020a;
Han et al. 2022), wheel-camera-IMU (Liu et al. 2019; Jung
et al. 2020; Lee et al. 2020b).

2.4 Extension of Our Previous Publications
While this article evolved from our prior works (Lee
et al. 2020a,b, 2021; Geneva et al. 2020a; Eckenhoff et al.
2021), there are significant contributions differentiating this
work. To be more specific, MINS leverages the high-
order polynomial ideology of MIMC-VINS to enable high-
frequency fusion of asynchronous and delayed arbitrary
numbers of sensors within a unified continuous-time
architecture. On top of this, we provide a thorough
investigation of the error induced by the interpolation,
propose the incorporation of the error model that improves
system consistency, and further extend this idea to
dynamic cloning to enable significant computational saving
while maintaining localization accuracy. MINS enables
spatiotemporal calibration of all onboard sensors, which
differentiates MINS from OpenVINS (Geneva et al. 2020a)
which only focused on VIO intrinsics and spatiotemporal
and Lee et al. (2020a) which performed GNSS fusion with
linear interpolation alongside VIO. Compared to VIWO
(Lee et al. 2020b) which presented wheel encoder angular
velocity fusion with VINS, MINS is additionally capable of
fusing linear velocities of the wheel encoder and angular
& linear velocities of wheel odometry frame along with
planar motion constraint. Furthermore, this paper provides
a novel IMU-wheel-based system initialization technique
that is robust to very challenging scenarios. The LiDAR

State

Propagation

Update

IMU a

Wheel a Preintegration

Camera a Feature Tracking A GNSSInitialized?
GNSS Initialization &
State Transformation

N
Y

A LiDAR

Local LiDAR Map

Matching

: Info. flow
: Propagation
: Update

Figure 2. Overview of the proposed MINS showing each sensor component and their roles in state estimation.

fusion technique of MINS has been completely redesigned
as compared to Lee et al. (2021) to enable multi-LiDARs
fusion along with spatiotemporal calibration. MINS adapts
the direct method (Xu et al. 2022a) of alignment instead
of extracting LOAM features, improving the efficiency and
consistency of the update process, and adding a mapping
functionality. We additionally stress that the comprehensive
accuracy, consistency, computation, and ablation studies of
each part of the system in realistic simulations and in real-
world experiments are non-trivial for multi-sensor fusion
frameworks.

3 MINS State Estimation
Building upon the backbone INS, the proposed MINS
propagates the state with the IMU measurements and
updates in an efficient filtering framework with multi-modal
measurements of a number of exteroceptive sensors such
as cameras, LiDARs, GNSS receivers, and wheel encoders.
As shown in Fig. 1, we use {I} to denote the IMU frame,
{C} for the camera frame, {O} for the wheel odometry
frame, {L} for the LiDAR frame, {G} for the GNSS
frame, while {E} for the East-North-Up (ENU) frame
corresponding to the GNSS. Fig. 2 depicts the the proposed
MINS architecture.

Extended from the MSCKF-based VINS (Mourikis and
Roumeliotis 2007; Geneva et al. 2020a), the state vector of
the proposed MINS includes the IMU navigation state xIk

and a set of historical IMU poses xHk
(a.k.a. clones):

xk = (xIk , xHk
) (1)

xIk = (IkE R, EpIk ,
EvIk , bg, ba) (2)

xHk
= (Ik91

E R, EpIk91 , · · · ,
Ik9h
E R, EpIk9h) (3)

where B
AR is a rotation matrix from {A} to {B}, BpA and

BvA are the position and linear velocity of {A} in {B}, bg

and ba are the biases of the gyroscope and accelerometer. We
define x = x̂⊞ x̃, where x is the true state, x̂ is its estimate,
x̃ is the error state, and the operation ⊞ which maps the
error state to its corresponding manifold (Hertzberg et al.
2013). Note that we represent the state variables in {E} as
the “global” GNSS coordinate after the system is initialized
using the available GNSS measurements (see Sec. 5.2),
otherwise, the state is expressed in the local world frame
{W} (which is often the “global” frame in local navigation
systems (Qin et al. 2018; Xu et al. 2022a)).

In what follows, we present in detail each of the five
sensing modalities and the proposed fusion methods to
propagate and update the state with their measurements.

3.1 IMU
High-rate IMU measurements typically include the angular
velocity ωm and local linear acceleration am:

ωmk
= ωk + bg + ng (4)

amk
= ak + Ik

E REg + ba + na (5)

where ωk and ak are the true angular velocity and linear
acceleration at time tk; bg and ba are the biases of the
gyroscope and the accelerometer; Eg ≃ [0 0 9.81]⊤ is the
global gravity; ng and na are zero mean Gaussian noises.
These measurements are used to propagate the IMU state
xI from tk to tk+1 based on the following generic nonlinear
kinematic model (Trawny and Roumeliotis 2005):

x̂Ik+1
= f(x̂Ik ,amk

,ωmk
) (6)

In contrast, the historical pose state xHk
is static and does not

evolve over time. Thus, we only need to linearize Eq. (6) to
propagate the corresponding covariance matrix, PIk , of the
IMU state, as follows:

PIk+1
= ΦI(tk+1, tk)PIkΦI(tk+1, tk)

⊤ +GkQdG
⊤
k (7)

where [n⊤
g n⊤

a n⊤
ωg n⊤

ωa]
⊤ ∼ N (0,Qd); nωg and nωa are

the white Gaussian noises of gyroscope and accelerometer
bias random walk model; ΦI(tk+1, tk) and Gk are the
Jacobians of f(·) respect to the state and noise vector,
respectively, which can be found in (Hesch et al. 2012).

3.2 Camera
Consider a 3D feature is detected from an arbitrary
camera image at time tk, whose uv measurement (i.e. the
corresponding pixel coordinates) on the image plane is given
by (see Geneva et al. (2020a)):

zC = hC(xk) + nC (8)

= hd(hρ(ht(
EpF ,

Ck

E R, EpCk
)), xCI) + nC (9)

where nC is the zero mean white Gaussian noise; zn
is the normalized undistorted uv measurement; xCI is
the camera intrinsic parameters such as focal length and
distortion parameters; EpF is the feature position in global;
(Ck

E R, EpCk
) denotes the current camera pose in the global.

In the above expression, we decompose the measurement
function into multiple concatenated functions corresponding
to different operations, which map the states into the raw
uv measurement on the image plane. Each function (i.e.
hd, hρ, ht) is explained in the following:

3.2.1 Distortion Function hd To get the normalized
coordinates of the 3D feature on the image plane zn =
[xn yn]

⊤, we apply a distortion model which depends on
the camera lens type. To be more specific, MINS supports
radial-tangential and fisheye camera models (Kannala and
Brandt 2006) which map the normalized coordinates into the
raw pixel coordinates. As an example, we employ distortion
function hd with the radial-tangential model:[

u
v

]
:= zC = hd(zn, xCI) =

[
fxx+ cx
fyy + cy

]
(10)

where

x = xn(1 + k1r
2 + k2r

4) + 2p1xnyn + p2(r
2 + 2x2

n) (11)

y = yn(1 + k1r
2 + k2r

4) + p1(r
2 + 2y2n) + 2p2xnyn (12)

r2 = x2
n + y2n (13)

xCI = (fx, fy, cx, cy, k1, k2, p1, p2) (14)

See Kannala and Brandt (2006) for the camera intrinsic
parameter xCI definition.

3.2.2 Perspective Projection Function hρ The standard
pinhole camera model is used to project a 3D point CkpF =[
Ckx Cky Ckz

]⊤
into the normalized image plane (with

unit depth):

zn = hρ(
CkpF) =

[
Ckx/Ckz
Cky/Ckz

]
(15)

3.2.3 Euclidean Transformation ht We employ the 6DOF
rigid-body Euclidean transformation to transform the 3D
feature position in {E} to the current camera frame {Ck}
based on the current camera pose:

CkpF = ht(
EpF ,

Ck

E R, EpCk
) (16)

= Ck

E R(EpF − EpCk
) (17)

where we in turn represent the camera pose (Ck

E R,EpCk
)

using camera extrinsic xCE = (CI R, CpI) and IMU pose
(IkE R,EpIk):

Ck

E R = C
I R

Ik
E R (18)

EpCk
= EpIk + E

Ik
RIpC (19)

3.2.4 MSCKF Update To perform the MSCKF update
(Mourikis and Roumeliotis 2007), we linearize the measure-
ment function (see Eq. (8)) at current state estimate x̂k and
Ep̂F to get the following residual:

z̃C := zC − hC(x̂k,
Ep̂F) (20)

≈HC x̃k +HF
Ep̃F + nC (21)

where HCk
and HF are the Jacobian matrix of hC(·) in

respect to x̂k and Ep̂F . The detailed derivation of these
Jacobians can be found in Appendix A. After stacking the
Jacobians and residuals for all camera measurements, we
find the left nullspace of HF and project Eq. (21) onto
the nullspace to obtain a new measurement residual that is
independent of the feature position:

z̃′C = H′
C x̃k + n′

C (22)

Then we perform measurement compression (Golub and
Van Loan (2013), Algorithm 5.2.4) which leads to substantial
computational savings before the EKF update.

3.3 Wheel Encoder
2D wheel encoder measurements are commonplace on a
ground vehicle that is often driven by two differential wheels
(left and right) mounted on a common axis (baselink),
each equipped with an encoder providing local angular rate
readings (Siegwart et al. 2011):

ωmlk = ωlk + nωl
, ωmrk = ωrk + nωr

(23)

where ωlk and ωrk are the true angular velocities of each
wheel at time tk, and nωl

and nωr
are the corresponding

zero-mean white Gaussian noises. These encoder readings
can be combined to provide 2D linear and angular velocities
about odometer frame {O} at the center of the baselink:

Okω = (ωrkrr − ωlkrl)/b ,
Okv = (ωrkrr + ωlkrl)/2

(24)

where xOI := [rl rr b]⊤ are the left and right wheel radii
and the baselink length, respectively. Note that instead of
(23), different forms of wheel encoder’s measurements might
be used, for example, linear velocities of the left and right
wheels (i.e. wheel radii have been taken into account), or
linear and angular velocities directly of the baselink.

3.3.1 Wheel Odometry Integration As the wheel
encoders typically provide measurements of a high rate (e.g.
100-500 Hz), it would be too expensive to perform EKF
updates at their rate. On the other hand, as the state (see
Eq. (1)) has the historical poses, we naturally integrate the
wheel odometry measurements (see Eq. (24)) between the
two latest poses and then use this integrated 2D motion
measurement for the update.

Consider integrating wheel odometry measurements
between two IMU times tk91 and tk. The continuous-time
2D kinematic model for tτ ∈ [tk91, tk] is given by: Oτ

Ok91
θ̇

Ok91 ẋOτ
Ok91 ẏOτ

:=
 −Oτω
Oτ vcos(Ok91

Oτ
θ)

Oτ vsin(Ok91
Oτ

θ)

=
 −Oτω

Oτ vcos(Oτ

Ok91
θ)

−Oτ vsin(Oτ

Ok91
θ)

 (25)

where Oτ

Ok91
θ is the local yaw angle, Ok91xOτ

and Ok91yOτ

are the 2D position of {Oτ} in the starting integration
frame {Ok91}. Note that we use −Oτω and −Oτ vsin(Oτ

Ok91
θ)

because we follow global-to-local orientation representation.
We then integrate the model from tk91 to tk and obtain the
2D relative pose measurement as follows:

zO =:

[
Ok

Ok91
θ

Ok91dOk

]
=

 −
∫ tk
tk91

Otωdt∫ tk
tk91

Otv cos(Ot

Ok91
θ)dt

−
∫ tk
tk91

Otv sin(Ot

Ok91
θ)dt

 (26)

=: gO({ωl, ωr}k91:k,xOI) (27)

where {ωl, ωr}k91:k denote all the wheel angular velocities
integrated between tk91 and tk.

3.3.2 Measurement Update Note that the integrated
wheel measurement, Eq. (27), provides only the 2D relative
motion on the odometer’s plane, while the state (see Eq. (1))
contains the 3D poses. The measurement can be expressed
as a function of the relative pose of the odometer frame by

projection:

zO = hO(xk) :=

[
e⊤3 Log(Ok

E RE
Ok91

R)

ΛOk91
E R(EpOk

− EpOk91)

]
(28)

where Λ = [e1 e2]
⊤, ei is the i-th standard unit basis

vector, and Log(·) is the SO(3) matrix logarithm function
(Chirikjian 2011). The odometry pose (Ok

E R,EpOk
) can

be derived with IMU pose (IkE R,EpIk) and extrinsic
(OI R,OpI):

Ok

E R = O
I R

Ik
E R (29)

EpOk
= EpIk + E

Ik
RIpO (30)

At this point, we have obtained the integrated wheel
odometry measurements along with their corresponding
Jacobians which are readily used for the EKF update after
linearization:

z̃O := gO({ωml, ωmr}k91:k, x̂OI)− hO(x̂k) (31)
≈ HOx̃k + nO (32)

where HO is the Jacobian matrix of (hO(·)− gO(·)) in
respect to the state x̂k and nO is the zero-mean white
Gaussian noise. Detailed derivations of HO and nO can be
found in Appendix B.

3.4 LiDAR
LiDAR provides 3D point clouds of the surroundings. Given
a new measurement point cloud in LiDAR frame {L} at
time tk, for each point LkpF we transform it to a local
map frame {M} and find a number of neighboring points,
Mpni

= [xni
yni

zni
]⊤, i ∈ {1, · · · ,m}. We compute the

plane MΠ = [a b c]⊤ where the neighboring points are
residing as follows:xn1

yn1
zn1

...
...

...
xnm

ynm
znm

︸ ︷︷ ︸

Am×3

ab
c

 =

1...
1

︸︷︷︸
bm×1

(33)

Its linear least-square solution is given by MΠ =
(A⊤A)−1A⊤b. After finding the plane MΠ, we formulate
the following point-on-plane measurement for all the planar
points including LkpF and Mpni

:

zL :=

0
...
0
0

 = hL(xk) =

MΠ⊤Mpn1

− 1
...

MΠ⊤Mpnm − 1
MΠ⊤MpF − 1

 (34)

where MpF can be computed by transforming LkpF to
the map frame using the IMU-LiDAR extrinsic calibration
xL = (LI R, LpI), the IMU pose (IkE R,EpIk), and the map
pose (ME R,EpM):
MpF = M

E R(EpIk + E
Ik
R(IpL + I

LR
LkpF)− EpM) (35)

To perform EKF update, we linearize Eq. (34) and have
the following residual:

z̃L =

−MΠ̂⊤M p̂n1 + 1

...
−MΠ̂⊤M p̂nm

+ 1

−MΠ̂⊤M p̂F + 1

 (36)

≈ HLx̃k +HΠ
MΠ̃+ nL (37)

where HL and HΠ are the Jacobian matrix of hL(·) in
respect to the state xk and the plane MΠ; nL is zero-mean
Gaussian noise. The detailed derivations of the Jacobians and
the noise can be found in Appendix C.

In analogy to the visual feature marginalization in the
MSCKF, we now perform null space projection of Eq. (37)
onto the left nullspace of HΠ to reduce the computation and
bound the size of the state. Note that it is possible that not all
the points Mpni are actually on the plane. We therefore only
pass the plane to the next step after checking the condition
number of the matrix A and the point-to-plane distance
of each points Mpni

on MΠ. Also note that this process
is actually equivalent to initialize MΠ in the state with
infinite covariance, update with Eq. (37), and marginalize
(Yang et al. 2017), thus allowing us to properly handle the
uncertainty of the plane without explicitly computing it.
Then we have the following measurement model dependent
only on the state ready for the EKF update:

z̃′L = H′
Lx̃k + n′

L (38)

Note that we also perform measurement compression in the
same way as in MSCKF-based VINS for further efficiency.

3.4.1 Local Mapping As having a global map has major
drawbacks as the map grows: (i) the computational
complexity of tracking the uncertainty of the map points,
(ii) the computational complexity of finding the matches
between the map and a new point cloud, and (iii) the size
of the memory to store all the map points, many existing
approaches keep the map points sparse to slow down the
map growth to mitigate these issues. However, the sparse
map may break the measurement model assumptions. For
example, the planes extracted from a sparse map of a
forest would not accurately represent the plane where the
measurement point is on. We hence chose to have a dense
map to ensure accurate matching while keeping only a local
map to address the aforementioned issues.

Specifically, we employ the ikd-tree (Cai et al. 2021) to
manage the map points and keep them for a fixed temporal
window. We assume the map frame {M} as the LiDAR
pose anchored at one of our historical IMU poses {Ii} (see
Eq. (3)). and its pose in the global frame, (ME R,EpM), can
be represented using the extrinsic calibration xL:

M
E R =L

I R
Ii
ER (39)

EpM =EpIi +
E
IiR

IpL (40)

As the map frame can be represented with our historical
IMU pose and the LiDAR extrinsics, there is no need to add
the map pose in the state, which saves computation. Note
that the map frame should change over time as the MSCKF
marginalizes the old IMU poses. In this case, we change the
map frame anchored to the latest IMU frame (e.g. {Ij}) using
the following relative pose:

Mj

Mi
R = L

I R
Ij
ERE

IiR
I
LR (41)

MjpMi
= L

I R
Ij
ER(EpIj − EpIi + (EIjR−

E
IiR)IpL) (42)

After using a new point cloud to update the state, we register
the points LkpF in the map by transforming them to the map

Measurement time

ǫ

Interpolation error

True trajectory

Linear interpolation

High-order interpolation

State poses

Interpolated pose

Figure 3. Different interpolation methods.

frame (see Eq. (35)). By doing so, the MINS estimator can
maintain dense local maps, enabling consistent point-cloud
matching and reducing outliers.

3.5 GNSS
A GNSS receiver such as GPS provides latitude, longitude,
and altitude readings in a geodetic coordinate frame, which
are typically converted to a local ENU or NED frame
{E} for outdoor navigation, e.g. by simply setting the
first measurement location as the datum or using a base
station. A GNSS measurement zG at time tk is the receiver’s
global position EpGk

– we here do not consider deeply-
coupled fusion where pseudo-range and/or carrier phase
measurements are used – which can be modeled with the
IMU pose (IkE R,EpIk) and the extrinsic calibration IpG:

zG = hG(xk) =
EpGk

+ nG (43)

= EpIk + E
Ik
RIpG + nG (44)

where nG is a white Gaussian noise. Now we linearize this
measurement to perform the EKF update:

z̃G := zG − hG(x̂k) ≈ HGx̃k + nG (45)

where HG is the Jacobian matrix of hG(·) in respect to xk

(see Appendix D.1).
Note that the proposed MINS also supports general global

pose measurements, which may be provided by sensors
such as other estimators running independently or loop
closure constraints. Assuming that the measurement carries
information of a sensor X pose (XER,EpX), we model
the measurement using the IMU pose (IkE R,EpIk) and the
corresponding extrinsic calibration (XI R,XpI):

zX :=

[
Xk

E θ
EpXk

]
=hX(xk)=

[
Log(XI RIk

E R)
EpIk + E

Ik
RIpX

]
+ nX (46)

where nX is the zero-mean Gaussian noise. We again
linearize this global-pose measurement for the EKF update:

z̃X := zX − hX(x̂k) ≈ HX x̃k + nX (47)

where HX is the Jacobian matrix (see Appendix E).

4 Adaptive On-Manifold Interpolation
Different sensors sample at different rates, such as a
camera at 30 Hz and a LiDAR at 10 Hz, and their
measurements are in general asynchronous if without
(hardware) synchronization. This would incur difficulty to
establish their measurement models as the corresponding
states (of the IMU poses) are not available at the exact
measurement times (see Eq. (1)). A naive solution is to add

IMU poses into the state at every sampling time of each
sensor, which would increase the size of the state and incur
significant computational cost.

In contrast, we propose to represent the 6DOF poses with
on-manifold interpolation and do not require any additional
state augmentation. In our prior work (Lee et al. 2020b,
2021), we employed the 1st-order linear interpolation to
handle asynchronous and delayed measurements:

Ik
E R = Exp(λLog(IbERE

IaR))IaE R (48)
EpIk = (1− λ)EpIa + λEpIb (49)

λ = (tk + XtI − ta)/(tb − ta) (50)

where the pose (IkE R,EpIk) at measurement time tk
was represented by two bounding IMU poses (ta ≤ (tk +
XtI) ≤ tb), XtI is the sensor time offset, and Exp(·) is the
SO(3) matrix exponential function (Chirikjian 2011). The
Jacobians of the interpolated IMU pose with respect to each
bounding pose can be found in Appendix F.

However, this linear interpolation relies on the assumption
of constant linear and angular velocity, which may not
hold in the case of highly-dynamic motion or for some
sensitive sensors, causing inconsistency to the estimator due
to interpolation errors, as illustrated in Fig. 3. As such, the
proposed MINS adopts a high-order interpolation method to
capture more complex motion profiles in practice.

Specifically, we represent the IMU pose (IkE R,EpIk) at
time tk with a polynomial of degree n (Eckenhoff et al.
2021):

Ik
E R = Exp(

n∑
i=1

ai∆tik)
I0
ER (51)

EpIk = EpI0 +

n∑
i=1

bi∆tik (52)

where ∆tk = tk + XtI − t0, and ai and bi are the
polynomial coefficients. To compute the coefficients, we
fit the polynomial at a set of n+ 1 historical IMU poses
({Ij}, j ∈ {0, 1, · · · , n}) that are closest to the measurement
time tk. Specifically, we compute the coefficients as follows:

Ij
ER = Exp(

n∑
i=1

aiδt
i
j)

I0
ER, ∀j ∈ {0, 1, · · · , n} (53)

⇒

a1...
an

 =

δt1 . . . δtn1
...

. . .
...

δtnn . . . δtnn

91 Log(I1ERE

I0
R)

...
Log(InE RE

I0
R)

 (54)

EpIj = EpI0 +

n∑
i=1

biδt
i
j , ∀j ∈ {0, 1, · · · , n} (55)

⇒

b1

...
bn

 =

δt1 . . . δtn1
...

. . .
...

δtnn . . . δtnn

91

EpI1 − EpI0
...

EpIn − EpI0

 (56)

where δtj = tj − t0, The above equations show the relation
between the interpolated pose and the n+ 1 poses in
the state. Note that the interpolated pose is additionally
a function of the unknown time offset, and thus we can
further calibrate them in case needed. The Jacobians of the
interpolated pose in respect to the n+ 1 poses and the time
offset can be found in Appendix G.

Figure 4. Interpolated pose errors depend on angular/linear accelerations (binned with 0.7 rad/s2 and 7 m/s2 resolution,
respectively), interpolation order (1, 3, and 5), and temporal distance (10, 20, and 30 cloning Hz).

Figure 5. Sensor measurement model errors depend on interpolated pose errors (binned with 0.04 deg and 7 mm resolutions).

4.1 Numerical Analysis

The order of the interpolation polynomial is directly
related to the accuracy and complexity of the interpolated
pose (Cioffi et al. 2022). It is hard to analytically
determine an optimal order of interpolation, as there are
many factors affecting the interpolated pose, such as the
interpolation distance or motion of the sensor platform
(robot). To understand these factors, we numerically examine
the error characteristics of the interpolated pose using
realistic simulated motions and identify four key factors
of interpolation errors including angular acceleration, linear
acceleration, interpolation order, and temporal distance of
interpolation. Fig. 4 depicts the box plots of the interpolation
errors in different simulation setups. In particular, we found
that the temporal distance of interpolation impacts the most
on interpolation errors. The higher interpolation order has
smaller interpolation errors, especially large accuracy gain
between the first and third orders while having diminishing
returns with higher orders. Interestingly, the interpolation
error grows linearly with the increase of acceleration.

To understand the significance of the interpolation errors
on different sensor measurement models, we use the
interpolated poses, instead of the IMU poses, in the
camera (9), GNSS (44), and LiDAR (34) measurement
models in the numerical studies where the same sensor
parameters as in the ensuing simulations are used as shown
in Table 2. Note that the wheel measurement model is not
considered as interpolation is not needed for the wheel-
integrated measurements (see Section 3.3.1). Fig. 5 shows
the errors of the sensor measurement models (see Eq. (20),
Eq. (36), and Eq. (45)) with different levels of interpolation
errors, which are binned with 0.04 deg and 7mm resolution,
respectively. It is clear from these results that the camera
is sensitive to the interpolation error, as a small error can
easily cause more than 1 pixel error which is generally the
noise level of camera measurement (e.g. second column
of the left figure of Fig. 5). Similarly, the LiDAR error
easily exceeds 1 cm which is generally the noise level
of LiDAR measurement, showing its sensitivity to the
interpolation error. The interpolation errors do not impact
much on the GNSS measurement model as single-point GPS

measurement noise is around 1 m, which has orders of
magnitude larger while it may become sensitive when using
RTK-GPS with lower measurement noise. Sensor calibration
can also affect these errors, although reasonable values are
used in Table 2.

As evident, small interpolation errors can cause large
errors for the measurement models and in turn may result in
estimation failure. Based on the above extensive numerical
studies, the proposed MINS by default chooses to employ
the 3rd-order polynomials and 20 Hz cloning to suppress the
interpolation error and balance the efficiency.

4.2 Incorporating Interpolation Error
While a higher-order setting (e.g. 3rd-order polynomials
and 20 Hz cloning) may approximate the IMU pose more
accurately, there always exists the interpolation error (see ϵ
in Fig. 3) that can hurt estimation performance. To address
this issue, we explicitly incorporate the interpolation error
into the interpolated pose in the measurement model:

zk = h(IkG R,GpIk) + nk (57)
= h(g(x) + ϵ) + nk (58)

where zk is the sensor measurement at tk, h(·) is the
corresponding measurement model with respect to the IMU
pose at tk, g(·) is the interpolation function, ϵ ∼ N (0,Rϵ) is
the interpolation error modeled as zero-mean Gaussian, and
nk is the measurement noise. The linearized model in turn
can be shown as:

rk := zk − h(g(x̂)) =
∂h

∂g

∂g

∂x
x̃ +

∂h

∂g
ϵ+ nk (59)

where the additional error term ∂h
∂g ϵ compensates for the

interpolation error. To model the variance of the interpolation
error, we leverage the preceding numerical findings. The
orientation/position interpolation error is shown to have a
linear relationship with angular/linear accelerations, while
their slope coefficients depend on the cloning frequency
and the interpolation order (see Fig. 4). We thus model the
variance of the error as follows:

Rϵ = diag((α× so(c̄, ō))
2I3, (a× sp(c̄, ō))

2I3) (60)

where α and a are the size of angular and linear
accelerations, so(·) and sp(·) are the slope coefficients of
orientation and position given cloning frequency c̄ and
interpolation order ō. In practice, the proposed MINS has
lookup tables ranging in cloning frequency between 4-30 Hz
and interpolation order between 1-9 for both orientation and
position to achieve the slopes directly.

4.3 Dynamic Cloning
As the interpolation error is shown to be proportional to
the accelerations, we propose dynamic cloning to adaptively
change the cloning frequency based on the robot’s motion
in order to achieve computational efficiency and maintain a
comparable level of accuracy to the high fixed-rate cloning
strategy. Specifically, we decrease the cloning frequency
while the robot is in slow motion which will also reduce
the total size of the state, and thus reduce the computation
of the EKF update. On the other hand, when the robot
undergoes dynamic motions, the low cloning frequency
would cause large interpolation errors, thus we increase
the cloning frequency to reduce them. To this end, we set
thresholds for the variance model of the interpolation errors
(see Eq. (60)) and find the lowest cloning frequency that
passes the threshold:

c̄ = min C̄ (61)
s.t. α× so(c̄, ō) < γo, a× sp(c̄, ō) < γp

where C̄ is the set of cloning frequencies, and γo and γp are
the thresholds for orientation and position part, respectively.
Note that the proposed MINS does not create a clone if there
is no measurement between the last clone and the current
desired clone time, i.e. clone up to 20 Hz if the maximum
sensing rate is 20 Hz to avoid having redundant clones.

4.4 Online Calibration
One of the prerequisites to successfully run a multisensor
fusion system is to have accurate sensor calibration as its
failure will directly lead to low estimation performance
or even divergence. Even if one precisely calibrates the
sensor parameters offline, their values may change over time
for environmental or mechanical reasons. Therefore, online
calibration is necessary to achieve robustness to the poor
calibration and improve localization performance.

To that end, we include the spatial extrinsics (see Eq. (16),
(28), (35), (44)) and intrinsics (see Eq. (10), (26)) of each
sensor when modeling its measurements. Also, the temporal
extrinsics (time offset, see Eq. (50)) is naturally modeled
while handling the asynchronicity of sensor measurement.
To perform online calibration, we augment our state (see
Eq. (1)) with these sensor calibration parameters and jointly
estimate them. To be more specific, for the system that carries
c-number of cameras, g-number of GNSS sensors, l-number
of LiDAR sensors, and a pair of wheel encoders, we add
sensor parameter state xS

*:

xk = (xIk , xHk
, xS) (62)

xS = (xC , xG, xO, xL) (63)
xC = (xC1 , · · ·xCc) (64)
xCτ = (xCEτ , xCIτ) ∀τ ∈ {1, · · · , c} (65)

xCEτ = (Cτ

I R, CτpI ,
Cτ tI) (66)

xCIτ = (τfx,
τfy,

τ cx,
τ cy,

τk1,
τk2,

τp1,
τp2) (67)

xG = (xG1 , · · ·xGg) (68)

xGτ
= (IpGτ

, Gτ tI) ∀τ ∈ {1, · · · , g} (69)
xL = (xL1

, · · · , xLl
) (70)

xLτ
= (Lτ

I R, LτpI ,
Lτ tI) ∀τ ∈ {1, · · · , l} (71)

xO = (xOE , xOI) (72)

xOE = (OI R, OpI ,
OtI) (73)

xOI = (rl, rr, b) (74)

where xCE and xCI are the camera extrinsics and intrinsics,
xG is the GNSS extrinsics, xL is the LiDAR extrinsics, and
xOE and xOI are the wheel extrinsics and intrinsics. Note
that not all of these variables have to be included in the
state, only those inaccurate ones are included and others can
be treated as true in order to save computations if possible.
Detailed derivations about the measurement Jacobians for
the calibration parameters can be found in Appendix A.1,
Appendix B.3, Appendix E, Appendix F, and Appendix G.

5 System Initialization
Initialization aims to compute state variables directly from
available measurements to start estimation. An aided-INS
estimator is typically required to initialize at least 11
DOF navigation states including roll, pitch, linear velocity,
and the biases of the gyroscope and accelerometer. If the
sensor platform (robot) starts from a stationary position,
the initialization becomes relatively easy and can be solved
by averaging the IMU measurements (Lin and Zhang
2022; Shan et al. 2021). However, in many scenarios,
the estimator is required to perform dynamic initialization
when the robot is in motion. This problem in VINS is
often addressed by aligning visual structure-from-motion
trajectory to the inertial preintegration measurements (Qin
and Shen 2017; Qin et al. 2018), while Dong-Si and Mourikis
(2011) formulated and solved a quadratic programming (QP)
problem with quadratic constraints. In order to successfully
initialize the estimator, these methods assume fully excited
3D motions which may not be possible for motion-
constrained systems. For example, the VINS estimator may
lose scale information when a ground vehicle moves straight
with constant acceleration (Wu et al. 2017). While LiDAR-
based methods are more robust to these problems as they
can directly recover 3D pose information through 3D point-
cloud matching (e.g. iterated closest points, or ICP (Yuan
et al. 2022, 2023)), their performance heavily relies on
the matching quality, which could be challenging when
the robot undergoes dynamic motions or there are not
many overlapping points between scans. On the other hand,
for ground vehicles, wheel encoders can be leveraged to
initialize the state, which appears to be straightforward but
has not been sufficiently investigated in the literature. As
the wheel-encoder can provide standalone odometry, most
of the existing methods integrate wheel-encoder readings to
achieve pose information and use it to initialize gyroscope

∗We reused some of the notations introduced before to describe an arbitrary
number set of the sensor calibration parameters.

NY

Have Wheel?
Start IMU-only

Static Initialization

IMU-Wheel
Dynamic Initialization

Local Estimation

GNSS Initialization

Enough GNSS?

N

Y

Global Estimation

Have GNSS?

N

Y

Figure 6. The proposed MINS initialization procedure.

bias (Liu et al. 2019; Gang et al. 2020), scale (Jiang
et al. 2021; Feng 2021), or linear velocity (Gang et al.
2020; Hou et al. 2022). As these methods solve the
initialization problem by setting relative-pose constraints
which require double integration of the IMU and single
integration of wheel-encoder readings, they may fail due to
high nonlinearity.

To address these issues and enable robust estimation,
the proposed MINS supports not only the IMU-only static
initialization (Geneva et al. 2020a) but the IMU-wheel
dynamic initialization which requires single IMU integration
and no wheel integration. After the initialization, we may
perform navigation in the local frame {W} until GNSS
measurements are available to initialize the system in the
global frame {E}. Fig. 6 shows the overall procedure of the
proposed MINS initialization.

5.1 IMU-Wheel Dynamic Initialization
To initialize, both IMU and wheel measurements are
collected for a short period of time (e.g. less than 0.2 secs)
and the angular and linear velocities of the wheel frame are
pre-computed (see Eq. (24)). Then, bg can be recovered as:

bg = Iωavg − I
OR

Oωavg (75)

where Oωavg and Iωavg are the average angular velocity of
the wheel and IMU frames. Next, we can compute the linear
velocity of the IMU frame I0vIk in the following two ways:

I0vIk = I0v +

k−1∑
i=0

(I0IiR
Iia− I0

Ii
Rba − I0g)∆ti (76)

= I0
Ik
RI

OR(Okv + ⌊Okω⌋OpI) (77)

where {I0} is the first IMU frame among collected
measurements and ∆ti := ti − ti−1 is the integration period.
Eq. (76) computes I0vIk by first-order IMU integration and
Eq. (77) computes the same property directly from the wheel
velocities. Based on the above relations, the linear system
Ax = b is created to recover the gravity in the first IMU
frame and the accelerometer bias:[
−
∑k−1

i=0
I0
Ii
R∆ti −

∑k−1
i=0 I3∆ti

]
︸ ︷︷ ︸

A

[
ba
I0g

]
︸ ︷︷ ︸

x

(78)

=
[
I0
Ok

R(Okv + ⌊Okω⌋OpI)− I0v −
∑k−1

i=0
I0
Ii
RIia∆ti

]
︸ ︷︷ ︸

b

In analogy to (Dong-Si and Mourikis 2011), we can solve
the above QP problem assuming the magnitude of the gravity
is known. Finally, the initial rotation I0

WR is computed with

the Gram-Schmidt process using I0g. At this point, we
have initialized the navigation state, including the orientation
(I0WR), the biases (bg , ba), the linear velocity I0v, and the
zero position in the local frame {W}.

5.2 Local-Global Frame Transformation
The GNSS measurement model (44) assumes the IMU
pose in the global frame {E}. However, before the GNSS
initialization, the system performs navigation in the gravity-
aligned local frame {W}. Thus, in order to process the
GNSS measurements, the 4 DOF frame transformation
(EWR,EpW) must be known (note that {E} is also aligned
with the gravity). To this end, we collect two sets of estimates
of the GNSS receiver positions in {E} and {W} and
formulate a non-linear optimization problem to align them.
Note that if inaccurate GNSS measurements (e.g. single-
point GPS) with large noise, this alignment based on a short
trajectory may result in a poor transformation. However, the
current sliding window of the MSCKF typically contains a
most recent short trajectory and causes trouble in finding
accurate local-global frame transformation. Therefore, we
augment our state by selectively keeping the cloned poses (or
keyframes) at the GNSS measurement times and performing
initialization once we reach the desired trajectory length.

Specifically, given a set of the GNSS position mea-
surements in the ENU frame {EpG1

, · · · ,EpGn
} within

the keyframe window and the corresponding interpolated
positions in the local frame {WpG1 , · · · ,WpGn}, we use
the following geometric constraints to determine the frame
transformation:

EpGi
= EpW + E

WRWpGi
,∀i = 1· · ·n (79)

⇒ EpGj−EpG1 = E
WR(WpGj−WpG1),∀j = 2· · ·n (80)

Note that if we have more than one GNSS receivers, we also
stack their measurements in Eq. (79) with the corresponding
extrinsics to allow more robust initialization. Note also that
due to the 4 DOF, instead of 6 DOF, transformation, we can
use the rotation about the global yaw θ:

E
WR =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 (81)

With this, Eq. (80) becomes:

Aj

[
cos θ
sin θ

]
:= Ajw = bj ,∀j = 2 · · ·n (82)

Stacking all these constraints yields the following linear
least-squares with quadratic constraints:

min
w
||Aw − b||2, s.t. ||w||2 = 1 (83)

We substitute the solution of Eq. (83) into Eq. (79) and solve
for Ep̂W :

Ep̂W =
1

n

n∑
i=1

[
EpGi − E

W R̂WpGi

]
(84)

This initial guess (EW R̂,Ep̂W) is further refined with delayed
initialization (Li 2014; DuToit et al. 2017). Specifically, by

augmenting the state vector with the transformation along
with an infinite covariance prior to these new variables, we
perform the EKF update with all the GNSS measurements:

zG = EpW + E
WR(WpIk + W

Ik
RIpG) + nG (85)

After initialization, we marginalize all the keyframes to
reduce the state to the original state size.

5.3 Global Navigation
As shown in our prior work (Lee et al. 2020a), the GNSS-
aided INS in a local frame {W} using the global-to-local
transformation (EWR,EpW) to fuse GNSS measurements is
not fully observable, although it gains global information.

Lemma 5.1. If estimating states in the local frame,
even with global GNSS measurements, the system remains
unobservable and has four unobservable directions.

Proof. See Appendix D.2.

While this result is somewhat counter-intuitive, the root
cause of this unobservability is the gauge freedom of the
4DOF frame transformation between {W} to {E}, which
is inherited from INS (i.e. 4 unobservable directions (Hesch
et al. 2012)). Even though we use the global measurements,
the system has a non-trivial nullspace. As unobservable
linearized systems may have erroneous nullspace due
to improper linearization points, and the corresponding
linearized estimator thus may gain information in spurious
directions, causing inconsistency (Hesch et al. 2012; Huang
et al. 2008; Chen et al. 2022a). To address this issue,
we perform state estimation directly in the global frame
once initialized, which is shown to make the system fully
observable.

Lemma 5.2. If estimating states in the global frame, the
system is fully observable.

Proof. See Appendix D.3.

After initialization, we hence transform the state from
{W} to {E} as well as propagate the corresponding
covariance. Specifically, we transform the state in local Wxk

to global Exk as:

Exk = g(Wxk,
E
WR,EpW) (86)

where

Ik
E R = Ik

WRW
E R (87)

EpIk = EpW + E
WRWpIk (88)

EvIk = E
WRWvIk (89)

Note that the above equations are used to warp all historical
poses xHk

. Now we linearize Eq. (86) at the current estimate
to get the Jacobian Ψ and propagate the covariance as
follows:

Ex̃k = ΨW x̃k , EPk = ΨWPkΨ
⊤ (90)

where the detailed derivations of Ψ can be found in
Appendix D.4. After transformation, we marginalize (EWR,
EpW) from the state as they are no longer needed.

Table 2. Simulation setup parameters.

Parameter Value Parameter Value

Clone Freq. (Hz) 20 Wheel Mode Wheel3DAng
Window Size. (s) 1 Wheel Ang. Noise (rad/s) 1e-2

Intr. Order 3 LiDAR Freq. (Hz) 10
Dyn. Ori. Thresh (rad) 7e-3 # of LiDAR 2
Dyn. Pos. Thresh (m) 3e-3 LiDAR Noise (m) 1e-2

IMU Freq. (Hz) 200 C1
I θ (rad) 1.57, 0.00, 0.00

IMU Acc. Noise 2e-2 C1pI (m) -0.01, 0.01, 0.01
IMU Acc. Bias 3e-2 C2

I θ (rad) 1.57, 0.00, 0.00
IMU Gyr. Noise 2e-3 C2pI (m) 0.01, 0.01, 0.01
IMU Gyr. Bias 2e-4 IpG1

(m) 1.00, 1.00, 1.00
Cam Freq. (Hz) 30 IpG2

(m) -1.00, -1.00, -1.00
of Cam 2 O

I θ (rad) 0.00, 0.00, 0.00
Cam Noise (pix) 1 OpI (m) 0.00, 0.00, 0.00
GNSS Freq. (Hz) 1 L1

I θ (rad) 0.26, 0.00, 0.00
of GNSS 2 L1pI (m) 0.30, 0.30, 0.50

GNSS Noise (m) 0.1 L2
I θ (rad) 0.00, 1.57, 0.00

Wheel Freq. (Hz) 100 L2pI (m) -0.01, -0.01, -0.01

* All sensor time offsets are set to 0.00 s.

Table 3. Orientation/position RMSE and NEES results of MINS
with/without incorporating interpolation error model. The
inconsistent results (NEES > 4) are highlighted in red.

Hz RMSE (deg / m) NEES

w
M

od
el

04 0.550 ± 0.084 / 0.061 ± 0.022 3.0 ± 1.1 / 2.1 ± 1.5
06 0.459 ± 0.262 / 0.064 ± 0.014 3.9 ± 1.4 / 2.2 ± 1.0
10 0.224 ± 0.032 / 0.036 ± 0.011 3.8 ± 0.8 / 1.4 ± 0.8
20 0.172 ± 0.060 / 0.023 ± 0.012 3.9 ± 1.2 / 1.0 ± 0.9
30 0.178 ± 0.110 / 0.019 ± 0.011 3.2 ± 1.3 / 0.8 ± 1.0

w
/o

M
od

el

04 1.242 ± 1.084 / 1.479 ± 1.113 2e1 ± 2e1 / 3e3 ± 2e3
06 1.982 ± 0.815 / 0.631 ± 0.632 3e1 ± 2e1 / 2e3 ± 2e3
10 0.301 ± 0.106 / 0.033 ± 0.028 5.1 ± 4.0 / 2.0 ± 2.0
20 0.200 ± 0.127 / 0.024 ± 0.018 4.5 ± 1.2 / 1.1 ± 1.0
30 0.178 ± 0.110 / 0.019 ± 0.011 3.2 ± 1.3 / 0.8 ± 0.6

6 Simulation Results

We perform extensive Monte-Carlo simulation tests to
validate the proposed MINS estimator. Built on top of
the OpenVINS simulator (Geneva et al. 2019, 2018b), our
MINS simulator generates synthetic measurements of IMU,
camera, GNSS, wheel encoder and LiDAR based on the
realistic trajectories as shown in Fig. 7. Table 2 summarizes
the setup parameters used in the ensuing simulations.

6.1 Effects of Interpolation Errors
To verify our proposed interpolation error model, we tested
the proposed MINS with and without incorporating the error
model at different cloning frequencies (4, 6, 10, 20, and 30
Hz) on the simulated EuRoC Vicon Room2 02 (Fig. 7a). We
simulated a stereo camera and IMU for this test as the camera
processes multiple measurements tracked over time which
requires the interpolation of all over the MSCKF window.
Table 3 shows the orientation and position root mean
squared error (RMSE) and normalized estimation error-
squared (NEES) results of each cloning frequency averaged
over 10 Monte-Carlo runs. Note that the 30 Hz cloning
frequency results of both with and without the error model
are the same because no interpolation was performed in both
cases as the clone frequency and camera measurement rate
are the same.

(a) EuRoc Vicon Room2 02 (b) UD Small (c) UD Warehouse

Figure 7. Simulated trajectories for Monte-Carlo simulations. (a): EuRoc Vicon Room2 02 (115s, Burri et al. (2016)) with fully
excited 3D motion; (b) & (c): UD Small (60s) & UD Warehouse (52s) with nonholonomic constrained 3D motion along with
simulated walls, floor, and ceiling (floor and ceiling are not shown for better visibility). The red and yellow diamonds denote the
beginning and end of these trajectories, respectively.

Clearly, the MINS estimators without the error model are
shown to be inconsistent and overconfident for all the cases
except 30 Hz as their NEESs are above 4. Note that ideal
NEES of orientation and position should be around 3 if
the estimator is consistent as their dimensions are 3. The
estimators tend to show higher NEES and larger RMSE with
lower cloning frequencies which indicates the unmodelled
interpolation error has a larger impact on the lower setup.
On the other hand, all the estimators with the error model
were shown to be consistent with NEES below 4. The RMSE
results are also lower than those without the error model
showing that improved estimator consistency can benefit the
localization performance.

6.2 Dynamic Cloning
Using the same setup, we now investigate how the proposed
dynamic cloning balances localization performance and
computational burden. We control the thresholds of dynamic
cloning by multiplying different coefficients (0.01 - 100) to
the default values (see Table 2). Fig. 8 shows the pose RMSE
and total computation time results of dynamic cloning (red
circles) which are averaged over 10 runs. The results of the
estimator without dynamic cloning are also plotted with blue
dots (fixed-rate cloning).

It is clear from these results that if we set the threshold
very low (e.g. 0.01 in the figure) the performance of dynamic
cloning is almost the same as the highest fixed-rate cloning
frequency (30 Hz). This is because the dynamic cloning will
enforce the MINS to maintain the interpolation error small
which will end up setting the cloning frequency the highest
most of the time. On the other hand, in the case we set the
threshold very high (e.g. 100 in the figure), the performance
of dynamic cloning is close to the lowest fixed-rate cloning
frequency (4 Hz). The impact of dynamic cloning on how
it balances accuracy and efficiency is more clear within the
range of 0.1 - 10. In the case of 0.1 and 1, the accuracies
of dynamic cloning were comparable to the 30 Hz fixed-
rate cloning, while the computation times were only 75.9%
and 61.9%, respectively. Also, in the case of 10, dynamic
cloning was able to show computation time comparable
to 4 Hz fixed-rate cloning, while the accuracy was better
than 6 Hz fixed-rate cloning. Table 4 summarizes the pose
RMSE and computation times of dynamic cloning with each
threshold coefficient compared to 30 Hz fixed-rate cloning.

Figure 8. Left : Pose RMSE-total run time comparison between
fixed-rate cloning and dynamic cloning. The fixed-rate clonings
are plotted with blue dots along with frequencies, and dynamic
clonings are shown with red circles with threshold coefficients.
Right : Accelerations and cloning frequencies chosen by
dynamic cloning with coefficient 1.

Table 4. Pose RMSE (deg/m) and total computation time (s) of
fixed-rate and dynamic cloning with different coefficients.

Fixed Dynamic cloning threshold coefficients
30 Hz 0.01 0.1 1 10 100

Ori. 0.178 0.178 0.175 0.218 0.380 0.550
Pos. 0.019 0.021 0.023 0.028 0.048 0.062

Time 80.5 80.4 61.1 49.8 45.1 44.9
(100%) (99.9%) (75.9%) (61.9%) (56.1%) (55.9%)

The right column of Fig. 8 shows an exemplary case of
how the MINS changed its cloning frequency with given
angular/linear accelerations and coefficient 1.

6.3 Fusing Different Sensors
Based on the interpolation strategy, we validate the proposed
MINS with different combinations of available sensors. We
test it on the UD Small trajectory with non-holonomic
constraints (see Fig. 7b), as two differential wheeled vehicles
cannot perform the holonomic motion. Note that the GNSS
measurement noise level is set to 0.1 m (see Table 2),
differential GPS quality to get comparable results with other
sensor suits. Table 5 shows the orientation and position

Figure 9. The performance of each algorithm under sensor
failure scenarios. Pose estimation errors over time are displayed
in the top two figures, and the times each sensor measurement
was available are shown in the bottom figure (I: IMU, C: camera,
G: GNSS, W: Wheel, L: LiDAR).

Table 5. Orientation/position RMSE and NEES, and run time
results of MINS with different combinations of sensors. The best
RMSE results are highlighted in bold text.

I C G W L RMSE (deg / m) NEES Time (s)

0.505 ± 0.226 / 0.139 ± 0.054 3.2 ± 1.4 / 2.4 ± 1.4 23.6 ± 0.3

1.244 ± 0.250 / 0.191 ± 0.015 3.2 ± 1.3 / 3.6 ± 0.7 0.5 ± 0.0

3.053 ± 1.603 / 0.636 ± 0.159 2.4 ± 1.0 / 0.9 ± 0.3 1.0 ± 0.0

0.474 ± 0.106 / 0.098 ± 0.019 1.9 ± 0.6 / 1.1 ± 0.3 22.3 ± 0.6

0.318 ± 0.042 / 0.057 ± 0.008 3.8 ± 1.4 / 3.6 ± 1.2 23.6 ± 0.2

0.505 ± 0.231 / 0.102 ± 0.029 3.2 ± 1.4 / 2.2 ± 0.8 24.0 ± 0.3

0.414 ± 0.174 / 0.084 ± 0.038 2.6 ± 1.2 / 2.3 ± 1.4 49.6 ± 0.4

0.261 ± 0.054 / 0.050 ± 0.005 3.0 ± 1.3 / 3.9 ± 1.1 49.9 ± 0.2
* I: IMU, C: Camera, G: GNSS, W: Wheel, L: LiDAR

RMSE and NEES, and the run time results of each sensor
combination averaging 10 runs. All results are collected with
an Intel i7 CPU single-threaded. Overall, the proposed MINS
with all sensor combinations show consistent performance
with NEES under 4. The IMU-camera and IMU-LiDAR
pairs show comparable accuracies to each other and both
ran 2.6 times faster than real time, while IMU-GNSS and
IMU-wheel have lower accuracies with extremely small
computation. The accuracies are shown to be improved with
more sensors used in this case and the best accuracy was
achieved when fusing all the sensors, confirming the benefits
of multi-sensor fusion.

6.4 Robust to Sensor Failure
To show the robustness of the proposed MINS to sensor
failures, we simulate the scenarios that measurements of
each sensor are dropped for 5 seconds at different times.
We use UD Warehouse (Fig. 7c) for this test, to be more
realistic and ensure the LiDAR is not necessarily getting
the map matching after the sensor failure (no loop-closure
to the map built before sensor drop). The pose errors of

different combinations of sensors and the period of time
when the sensor measurements are available are shown in
Fig. 9. Clearly, two sensor-paired systems are shown to have
large error increases during sensor failure and maintained the
error even after the sensors are recovered (except IG which
has GNSS). On the other hand, those systems combining
more than 2 sensors were able to bound the error growth by
leveraging the auxiliary sensors, showing the robustness to
the sensor failure and providing more accurate estimation.

6.5 Robust to Poor Calibration
To evaluate the online calibration of the proposed MINS,
we test each calibration giving 4 different initial errors. Fig.
10 shows the calibration errors of spatiotemporal extrinsic
and intrinsic of each sensor over time. It is clear that each
error converges quickly to near zero after the system is
initialized and remains bounded by 3σ envelopes showing
the consistency of the online calibration. Note we showed
1-dimensional errors by summing the error of each axis
of the calibration parameter, e.g. the position error is the
summation of x, y, z errors, for concise visualization while
the results of the individual axis also shows the same
consistent results.

We further validate the necessity of online calibration for
accurate and consistent localization by enabling/disabling
the calibration at different levels of initial calibration errors.
To be more specific, we investigated how robust the system
is to the initial perturbations and whether the use of online
sensor calibration enables improvements in accuracy and
consistency. As shown in Fig. 11 and Fig. 12, for each
of the different calibration parameters we perturb it with
different levels of noise (note that we also change the
initial covariance of the variable corresponds to the noise
level used for perturbation). We can see that the proposed
estimator is relatively invariant to the initial inaccuracies of
the parameters and is able to output a near-constant trajectory
error and consistency. An estimator, which does not perform
this online estimation, has its trajectory estimation error and
NEES values quickly increase to non-usable levels which
validate the use of online calibration.

7 Experimental Results
We further evaluated the proposed MINS on both the
public KAIST Urban Dataset (Jeong et al. 2019) and our
own collected UD Husky Dataset, whose details are the
following:

• KAIST Urban Dataset: collected on ground vehicles
in challenging scenarios – highways (18-25, 35-37)
and cities (26-34, 38-39) – and have a 100 Hz Xsens
MTi-300 IMU, a 10 Hz Pointgrey Flea3 stereo camera,
two 10 Hz Velodyne 16 channel LiDARs, a 10Hz u-
blox EVK-7P GNSS, and a 100 Hz RLS LM13 wheel
encoders.

• UD Husky Dataset: collected on a Clearpath
Husky robot in structured environments (indoors and
outdoors) and unstructured environments (trails). The
dataset contains a T265 stereo camera (two 30 Hz
cameras and a 200 Hz IMU), a 1 Hz Garmin GPS 18x,
a 5 Hz Emlid reach m+ GPS (RTK), a 10 Hz Ouster

Figure 10. Calibration error of 4 runs with different initial guesses (different colors). The errors and their 3σ envelopes are shown
with solid lines and dotted lines, respectively.

Figure 11. Position ATE under different levels of sensor calibration parameter perturbations. Results of with online calibration and
without calibration are shown with red and blue lines.

Figure 12. Position NEES under different levels of sensor calibration parameter perturbations. Results of with online calibration
and without calibration are shown with red and blue lines.

64 channel LiDAR, and a 10 Hz wheel encoders.
We considered the OptiTrack information (indoor) or
RTK-GPS measurements (outdoor, trail) as ground
truth for evaluation (see Fig. 15).

We compared our MINS to the following state-of-the-art
(SOTA) methods as benchmarks:

• VINS-Fusion (Qin et al. 2019): Camera and IMU
are fused based on the sliding window (VIO) and
loop closure or GNSS information can be loosely
coupled within pose graphs. The system supports
dynamic initialization. We evaluated the VIO part
VINS-Fusion(V), with loop closure VINS-Fusion(L),
and with GPS VINS-Fusion(G). Note the algorithm
assumes the GNSS and VIO are synchronized which
is not the case in the dataset. We, therefore, allowed
a maximum of 50 ms mismatch between VIO and
GNSS.

• ORB-SLAM3 (Campos et al. 2021): Camera and IMU
are fused within a factor graph performing multimap-
based local BA and loop closure. The system supports
dynamic initialization.

• FAST-LIO2 (Xu et al. 2022a): LiDAR and IMU
are fused based on iterated Kalman filter. The
system models LiDAR measurement as point-on-plane
constraints building a global map using ikd-tree (Cai
et al. 2021). The system supports static initialization.

• LIW-OAM (Yuan et al. 2023): LiDAR, IMU, and
wheel are fused in local BA fashion using point-
on-plane constraints as LiDAR measurement model.
The system builds a global voxel map and supports
dynamic initialization using LiDAR and IMU.

• Lvio-Fusion (Jia et al. 2021): Camera, LiDAR, and
IMU are tightly coupled within the factor graph while
GNSS is coupled loosely within the pose graph. The

Figure 13. Trajectories of each algorithm on the KAIST Urban 38 dataset. Left : Camera-based algorithms; Middle: LiDAR-based
algorithms; Right : GNSS-based algorithms.

Table 6. Average (5 runs) position ATE (m) of each algorithm per 1 km on the KAIST Urban dataset (sequence 18 - 39). Above 30
m errors are not reported. Shaded sequences are highway scenarios and the others are city scenarios. The best results among the
same sensor group are highlighted with bold text.

Algorithms 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
4km 3km 3km 4km 3km 3km 4km 3km 4km 5km 11km 4km 6km 11km 7km 8km 8km 3km 9km 12km 11km 11km

C
am

er
a

VINS-Fusion(V) - - - - - - - - 8.05 10.34 1.54 10.03 24.83 - - 11.81 - - - - 2.23 2.11
VINS-Fusion(L) - - - - - - - - 7.82 11.97 2.54 10.03 25.21 - - 11.81 - - - - 2.86 1.68
ORB-SLAM3 10.93 - 12.35 - - 10.00 - - 5.65 15.60 2.34 6.81 2.58 2.03 3.14 6.67 - - - 29.70 10.34 15.32

MINS(I,C) - - - - - - - - 2.04 2.86 1.45 3.44 3.50 5.39 4.69 1.97 1.47 - - - 1.13 1.17
MINS(I,C,W) 7.13 8.74 8.25 8.48 9.16 7.10 8.17 10.74 1.57 3.85 1.09 3.16 2.03 29.80 4.15 2.46 2.44 8.15 16.48 18.50 0.94 1.23

L
iD

A
R

FAST-LIO2 - - - - - - - - 9.75 7.59 - 3.01 4.88 - 11.14 9.90 - - - - 4.74 1.64
LIW-OAM - 13.47 24.60 - - - - - 3.59 - 6.42 5.84 20.49 15.60 - 20.39 - - 18.70 - 6.86 25.99
MINS(I,L) - - - - - - - - 2.69 2.97 2.53 3.97 6.21 5.11 5.68 9.17 5.30 - - - 3.50 2.17

MINS(I,L,W) 6.96 8.11 4.21 2.99 6.91 4.25 6.85 3.76 2.24 4.15 2.71 4.40 5.47 5.01 4.72 7.92 7.86 6.13 12.01 7.96 3.24 2.50

G
N

SS

GNSS 2.16 4.13 1.53 0.64 0.53 2.61 2.61 4.10 1.74 1.90 0.87 3.07 2.59 0.70 0.69 1.21 0.47 2.46 2.98 0.67 0.68 0.67
VINS-Fusion(G) - - - - - - - - 4.02 - 1.60 4.77 9.35 8.02 - 5.80 - - - - 1.07 2.26

Lvio-Fusion - - 27.43 20.77 - 24.93 - - 2.70 5.20 1.32 13.27 6.64 - 2.55 2.37 - - - - 5.57 5.70
MINS(I,C,L,W,G) 1.52 3.46 0.85 0.79 1.50 1.38 1.86 3.44 1.06 1.72 0.79 2.58 1.83 0.70 0.77 1.16 0.94 5.47 2.38 0.60 0.64 0.56

Figure 14. Representative images from the datasets. The Left
shows the beginning of sequence 18 which is on the highway
and the right shows the city driving scene of sequence 38 where
the cars stopped at the traffic light which will become dynamic
objects of the camera and LiDAR when the light turns green.

initialization is conducted using the camera and IMU
supporting dynamic initialization.

Note that all the above LiDAR-based methods can fuse
only one LiDAR sensor which showed poor performance
on the KAIST dataset due to its limited overlapping points
between the LiDAR scans. To make fair comparisons, we
modified the KAIST dataset by transforming all the second
LiDAR pointcloud to the first LiDAR’s frame and created
one synthetic 20 Hz LiDAR measurement while MINS used
the original data.

7.1 Localization Accuracy
7.1.1 KAIST Urban Dataset Table 6 shows the average
position ATE of 5 runs of each algorithm on each sequence
(above 30 m error not reported) and Fig. 13 shows exemplary
trajectories of all algorithms tested on the KAIST urban 38.
Note that we show the ATE values per 1 km to match the
scale of different trajectory lengths. The shaded sequences
represent the datasets collected on highways while the

vehicle was running at high speed and the other sequences
are collected within the cities.

For the camera-based methods, the subsets of MINS
using IMU and camera MINS(I,C) and IMU, camera, and
wheel MINS(I,C,W) are evaluated along with SOTA. It is
clear that all the methods that leverage only the camera
and IMU performed poorly on highway datasets due to
initialization failure (see Fig. 14 left). As the datasets start
with high speed and mostly straight-line motion, none of
those methods was successfully initialized except ORB-
SLAM3 on a few sequences with sill large errors. On the
other hand, MINS(I,C,W) leveraged wheel measurements
to successfully initialize and perform accurate localization
without failure. For the city sequences, all VINS methods
initialized successfully, but their performances were largely
affected by the dynamic objects (see an exemplary case in
Fig. 14 right). MINS handled the issue by performing all
camera update with the MSCKF technique (see Eq. (22))
which minimizes the effect of the dynamic objects due to
shorter tracking period. To this end, the camera-based MINS
modules are shown to outperform the other methods and are
able to robustly handle hard scenarios.

For the LiDAR-based methods, the subsets of MINS using
IMU and LiDAR MINS(I,L) and IMU, LiDAR, and wheel
MINS(I,L,W) are evaluated along with SOTA. Similar to
the camera-based methods, the initialization was the biggest
issue on the highway sequences. FAST-LIO2, MINS(I,L),
and LIW-OAM mostly failed in initialization and quickly
diverged while MINS(I,L,W) was able to initialize with
wheel measurements and perform estimation consistently.
On city sequences, relatively large orientation drifts of both
FAST-LIO2 and LIW-OAM (see Fig. 13) are observed when

Figure 15. Husky robot and exemplary scenes of UD Husky
Dataset. Top-Left : Husky robot with multiple sensors mounted.
Top-Right : Indoor dataset. Bottom-Left : Outdoor dataset.
Bottom-Right : Trail dataset.

the vehicle is making turns. The map density (0.3, 0.3,
and 1.5 unit voxel size for FAST-LIO2, MINS, and LIW-
OAM, respectively) and the lack of overlapping point clouds
between the map and the new scan which creates an ill-
constrained ICP problem are presumed to be the key reasons,
while MINS was more robust to the scenarios even though all
methods adopt the same point-on-plane measurement model.

For the GNSS-based methods, MINS using all the sensors
MINS(I,C,L,W,G) is evaluated along with SOTA. Note that
we recorded the estimated poses of SOTA in real-time, not
the final optimized trajectory at the end of the run. We
also showed the raw GNSS measurements for reference.
Overall, VINS-Fusion(G) and Lvio-Fusion were not able
to show consistent estimation on both highway and city
datasets even with GNSS global information due to their
loosely coupling manner. This is because their sub-systems,
VIO of VINS-Fusion and LIO of Lvio-Fusion suffered from
initialization and dynamic objects that they kept injecting
inconsistent odometry information to the pose graph making
global estimation highly inconsistent and resulting in even
worse estimation performance than just GNSS record. On
the other hand, MINS tightly coupled GNSS information
with other sensors so that the state estimation was able to
properly constrain its drift showing globally accurate and
locally precise estimation performance.

7.1.2 UD Husky Dataset Table 7 shows the average
position ATE of 5 runs of the same set of algorithms on each
UD Husky Dataset (above 5 m error not reported). Note that
all the sequences of the dataset start with the robot standing
still enabling all the methods to successfully initialize.

For the camera-based methods, overall the algorithms that
leverage only the camera and IMU reported poor localization
performance showing large trajectory scale error (see Fig.
16). This is because the ground robot mainly undergoes the
degenerate motion (Wu et al. 2017) which makes the scale
of VINS unobservable. On the other hand, MINS(I,C,W)
was able to constrain the scale from wheel information and
showed higher accuracy.

Figure 16. Trajectories of each algorithm on UD Husky
Dataset. left : Outdoor 1; right : Trail 3.

Table 7. Average (5 runs) position ATE (m) of each algorithm
on the UD Husky dataset. Above 5 m errors are not reported
(except GNSS for reference).

Algorithms Structured Env. Unstructured Env.
I1 I2 O1 O2 T1 T2 T3 T4

C
am

er
a

VINS-Fusion(V) 0.63 0.71 - 4.39 4.82 4.92 1.60 -
VINS-Fusion(L) 0.55 0.49 - 4.07 3.36 4.31 0.92 3.11
ORB-SLAM3 0.50 0.48 4.51 - 2.50 - 1.69 2.74

MINS(I,C) 0.33 0.73 2.93 3.92 3.16 3.19 2.64 4.66
MINS(I,C,W) 0.22 0.67 1.39 2.57 2.40 1.95 2.16 3.83

L
iD

A
R

FAST-LIO2 0.18 0.16 2.34 2.74 0.95 2.82 1.37 2.02
LIW-OAM 0.12 0.16 1.01 2.92 2.36 3.61 2.37 3.04
MINS(I,L) 0.07 0.11 1.73 2.05 1.64 1.28 1.93 2.13

MINS(I,L,W) 0.08 0.16 1.35 1.99 1.35 1.05 1.25 1.62

G
N

SS

GNSS 3.17 2.17 15.71 10.34 5.93 7.02
VINS-Fusion(G) - 3.25 - - - -

Lvio-Fusion 3.14 2.63 - - - 4.02
MINS(I,C,L,W,G) 0.96 1.07 3.03 2.89 1.33 1.30

* I: Indoor dataset, O: Outdoor dataset, T: Trail dataset

The LiDAR-based methods were able to show smaller
ATE under the same motion profiles as they directly gained
the scale information from the 3D pointcloud, and MINS was
able to outperform the others in most of the sequences. An
observation is that the wheel information did not improve
the performance in the indoor dataset. The dataset contains
many sharp-turning motions of the robot which our wheel
model (see Eq. (27)) may not be able to accurately represent
the actual robot motion, thus wheel information may harm
the estimation performance especially when it is centimeter-
level accuracy.

Compared to the GPS of the KAIST dataset, our GPS
measurements were more intermittent and noisy as shown
in the table which imposes a larger challenge in fusing the
information. The loosely-coupled methods, VINS-Fusion(G)
and Lvio-Fusion, failed most of the sequences, due to
their VIO drift or large GPS noise. On the other hand,
MINS was able to show consistent estimation by tightly
fusing all sensor information. However, it is also shown
that fusing all the sensors did not necessarily return the
best localization performance. For example, in Trail 1 - 3
sequences, MINS(I,C,L,W,G) performed worse than both
MINS(I,L,W) and MINS(I,C,W) which indicates a proper
choice of sensors can lead to a better performance in certain
scenarios.

7.2 Computation Efficiency

Table 8 shows the timing breakdown (frontend, backend, and
total) of each algorithm collected on ThinkPad P17 which
has an Intel i7 CPU and 32 GB RAM. The timings are
reported as the average time taken per the function call on
the KAIST Urban 38 dataset.

The frontend includes all the processes required before
optimization or EKF update, such as IMU preintegration,
image processing, or LiDAR pointcloud matching. The
camera is reported to be the one that took the most
time to process. Two subsets of MINS, MINS(I,C) and
MINS(I,C,L,W,G), reported different camera timing because
we lowered the number of features extracted from images
to balance the computation with LiDAR. Other frontend
timings including IMU, GNSS, wheel, and LiDAR are shown
to be very low for all the algorithms.

The backend includes the map management and the
optimization (or EKF update) which shows large differences
among the algorithms. Those algorithms using cameras
mostly use the map to find loop closures while those using
LiDARs build the map to perform scan matching. VINS-
Fusion and ORB-SLAM3 perform the loop closure detection
taking 70 ms and 10 ms on average, while MINS does not
maintain a map of the camera for computational efficiency.
Both FAST-LIO2 and subsets of MINS utilized ikd-tree
(Cai et al. 2021) to efficiently manage the LiDAR map
points, but MINS took more time because it keeps more
pointclouds and transforms all the map points to a new
anchor frame occasionally (see Sec. 3.4.1). Other LiDAR
methods recorded similar or larger map-management time.

The optimization (or EKF update) time also shows large
variations among the algorithms. MINS and FAST-LIO2,
which are the filters, showed the shortest time due to their
small state size and the number of iterations. Especially,
MINS recorded 1 ms for the EKF update regardless of
the number of sensors being used, due to the measurement
compression and the dynamic cloning which reduced the
state size and the computation. Other graph-based methods
report one or two orders of magnitude larger optimization
time due to their large state size (number of nodes). Note
we reported the summation of the optimization time if
an algorithm runs multiple threads that do optimization,
e.g. VINS-Fusion(G) optimization time is computed by
summing VINS-Fusion(V) optimization time and global
graph optimization time.

Lastly, Table 8 also shows the total time which can
represent the amount of time expected if all processes run in
serial. Clearly, MINS and FAST-LIO2 reported the smallest
computation time due to the small optimization time. While
FAST-LIO2 was the fastest, MINS recorded the second
fastest results and showed almost invariant computation time
to the number of sensors being used. Other graph-based
methods show larger time records mostly determined by
the optimization time. Note that a large total time does not
mean the algorithm cannot run in real-time (actually all the
algorithms ran in real-time on the laptop) as the processes
can be multi-threaded. However, their performance can be
largely affected on embedded systems as their computation
power is relatively limited.

Table 8. Timing records on the KAIST Urban 38 (ms).

Algorithms Frontend Backend TotalI C G W L Map Opt.

C
am

er
a

VINS-Fusion(V) 0 27 - - - - 68 95
VINS-Fusion(L) 0 27 - - - 70 125 222
ORB-SLAM3 0 28 - - - 10 290 328

MINS(I,C) 0 53 - - - - 1 54
MINS(I,C,W) 0 55 - 0 - - 1 56

L
iD

A
R

FAST-LIO2 0 - - - 1 5 14 20
LIW-OAM 0 - - 0 7 40 48 95
MINS(I,L) 0 - - - 6 22 1 28

MINS(I,L,W) 0 - - 0 7 23 1 31

G
N

SS

VINS-Fusion(G) 0 27 - - - - 457 484
Lvio-Fusion 0 18 0 - 2 20 106 146

MINS(I,C,L,W,G) 0 34 0 0 2 10 1 47

8 Conclusions and Future Work
In this paper, we have developed a robust Multi-sensor-aided
Inertial Navigation System (MINS) that integrates an IMU,
a pair of wheel encoders, and arbitrary numbers of cameras,
LiDARs, and GNSS for robust and accurate state estimation.
The proposed MINS addresses some of the key challenges
of multisensor fusion by introducing consistent high-
order on manifold state interpolation, dynamic cloning for
managing state size and computation, online calibration of
sensor parameters, and IMU-wheel combined initialization.
The proposed approach has been validated through
extensive evaluations conducted in realistic simulations and
challenging real-world datasets, showing superior accuracy
and consistency while maintaining lower computational
complexity compared to the SOTA methods. Our future
work will explore the optimal weighting of multi-modal
measurements, which plays a crucial role in multisensor
fusion and even can harm the estimator performance if not
set properly as shown in our experimental results.

Acknowledgements

This work was partially supported by the University of Delaware
(UD) College of Engineering, the NSF (IIS-1924897), and the ARL
(W911NF-19-2-0226).

References

Anderson S, Barfoot TD, Tong CH and Särkkä S (2015) Batch
nonlinear continuous-time trajectory estimation as exactly
sparse gaussian process regression. Autonomous Robots 39(3):
221–238.

Anderson S, Dellaert F and Barfoot TD (2014) A hierarchical
wavelet decomposition for continuous-time slam. In: 2014
IEEE International Conference on Robotics and Automation
(ICRA). IEEE, pp. 373–380.

Barfoot TD (2017) State estimation for robotics. Cambridge
University Press.

Brommer C, Jung R, Steinbrener J and Weiss S (2020) Mars: A
modular and robust sensor-fusion framework. IEEE Robotics
and Automation Letters 6(2): 359–366.

Burri M, Nikolic J, Gohl P, Schneider T, Rehder J, Omari
S, Achtelik MW and Siegwart R (2016) The euroc
micro aerial vehicle datasets. The International Jour-
nal of Robotics Research DOI:10.1177/0278364915620033.

URL http://ijr.sagepub.com/content/early/

2016/01/21/0278364915620033.abstract.
Cai Y, Xu W and Zhang F (2021) ikd-tree: An incremental kd tree

for robotic applications. arXiv preprint arXiv:2102.10808 .
Campos C, Elvira R, Rodrı́guez JJG, Montiel JM and Tardós JD

(2021) Orb-slam3: An accurate open-source library for visual,
visual–inertial, and multimap slam. IEEE Transactions on
Robotics 37(6): 1874–1890.

Camurri M, Ramezani M, Nobili S and Fallon M (2020) Pronto:
A multi-sensor state estimator for legged robots in real-world
scenarios. Frontiers in Robotics and AI 7: 68.

Cao S, Lu X and Shen S (2022) Gvins: Tightly coupled
gnss–visual–inertial fusion for smooth and consistent state
estimation. IEEE Transactions on Robotics .

Chambers A, Scherer S, Yoder L, Jain S, Nuske S and Singh
S (2014) Robust multi-sensor fusion for micro aerial vehicle
navigation in gps-degraded/denied environments. In: 2014
American Control Conference. IEEE, pp. 1892–1899.

Chen C, Yang Y, Geneva P and Huang G (2022a) FEJ2: A consistent
visual-inertial state estimator design. In: International
Conference on Robotics and Automation (ICRA). Philadelphia,
USA.

Chen W, Zhou C, Shang G, Wang X, Li Z, Xu C and Hu K (2022b)
Slam overview: From single sensor to heterogeneous fusion.
Remote Sensing 14(23): 6033.

Chirikjian G (2011) Stochastic Models, Information Theory,
and Lie Groups, Volume 2: Analytic Methods and Modern
Applications, volume 2. Springer Science & Business Media.

Chiu HP, Zhou XS, Carlone L, Dellaert F, Samarasekera S and
Kumar R (2014) Constrained optimal selection for multi-sensor
robot navigation using plug-and-play factor graphs. In: 2014
IEEE International Conference on Robotics and Automation
(ICRA). IEEE, pp. 663–670.

Cioffi G, Cieslewski T and Scaramuzza D (2022) Continuous-
time vs. discrete-time vision-based slam: A comparative study.
IEEE Robotics and Automation Letters 7(2): 2399–2406.

Cioffi G and Scaramuzza D (2020) Tightly-coupled fusion of global
positional measurements in optimization-based visual-inertial
odometry. In: 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, pp. 5089–5095.

Dang Z, Wang T and Pang F (2018) Tightly-coupled data fusion of
vins and odometer based on wheel slip estimation. In: 2018
IEEE International Conference on Robotics and Biomimetics
(ROBIO). IEEE, pp. 1613–1619.

Dong B and Zhang K (2022) A tightly coupled visual-inertial gnss
state estimator based on point-line feature. Sensors 22(9):
3391.

Dong-Si TC and Mourikis AI (2011) Closed-form solutions for
vision-aided inertial navigation. Technical report, Tech. rep.
Dept. of Electrical Engineering, University of California

Droeschel D and Behnke S (2018) Efficient continuous-time slam
for 3d lidar-based online mapping. In: 2018 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, pp.
5000–5007.

DuToit RC, Hesch JA, Nerurkar ED and Roumeliotis SI (2017)
Consistent map-based 3d localization on mobile devices.
In: 2017 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, pp. 6253–6260.

Eckenhoff K, Geneva P and Huang G (2021) MIMC-VINS: A
versatile and resilient multi-imu multi-camera visual-inertial
navigation system. IEEE Transactions on Robotics 37(5):
1360–1380. DOI:10.1109/TRO.2021.3049445.

Eidson JC, Fischer M and White J (2002) Ieee-1588™ standard
for a precision clock synchronization protocol for networked
measurement and control systems. In: Proceedings of the
34th Annual Precise Time and Time Interval Systems and
Applications Meeting. pp. 243–254.

Feng L (2021) Initialization improvement and map reuse based on
orbslam3. In: 2021 2nd International Conference on Artificial
Intelligence and Information Systems. pp. 1–7.

Furgale P, Barfoot TD and Sibley G (2012) Continuous-time batch
estimation using temporal basis functions. In: 2012 IEEE
International Conference on Robotics and Automation. IEEE,
pp. 2088–2095.

Furgale P, Rehder J and Siegwart R (2013) Unified temporal and
spatial calibration for multi-sensor systems. In: 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems.
IEEE, pp. 1280–1286.

Gang P, Zezao L, Bocheng C, Shanliang C and Dingxin H
(2020) Robust tightly coupled pose estimation based on
monocular vision, inertia, and wheel speed. arXiv preprint
arXiv:2003.01496 .

Geneva P, Eckenhoff K and Huang G (2018a) Asynchronous multi-
sensor fusion for 3d mapping and localization. In: Proc. of the
IEEE International Conference on Robotics and Automation.
Brisbane, Australia, pp. 5994–5999.

Geneva P, Eckenhoff K and Huang G (2019) A linear-complexity
EKF for visual-inertial navigation with loop closures. In:
Proc. International Conference on Robotics and Automation.
Montreal, Canada, pp. 3535–3541.

Geneva P, Eckenhoff K, Lee W, Yang Y and Huang G (2020a)
OpenVINS: a research platform for visual-inertial estimation.
In: Proc. of the IEEE International Conference on Robotics
and Automation. Paris, France, pp. 4666–4672. URL https:

//github.com/rpng/open_vins.
Geneva P, Eckenhoff K, Yang Y and Huang G (2018b) LIPS:

Lidar-inertial 3d plane slam. In: Proc. IEEE/RSJ International
Conference on Intelligent Robots and Systems. Madrid, Spain.

Geneva P, Merrill N, Yang Y, Chen C, Lee W and Huang
G (2020b) Versatile 3d multi-sensor fusion for lightweight
2d localization. In: Proc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems. Las Vegas, NV.

Girrbach F, Zandbergen R, Kok M, Hageman T, Bellusci G and
Diehl M (2019) Towards in-field and online calibration of
inertial navigation systems using moving horizon estimation.
In: 2019 18th European Control Conference (ECC). IEEE, pp.
4338–4343.

Golub GH and Van Loan CF (2013) Matrix computations. JHU
press.

Hackett JK and Shah M (1990) Multi-sensor fusion: a perspective.
In: Proceedings., IEEE International Conference on Robotics
and Automation. IEEE, pp. 1324–1330.

Han S, Deng F, Li T and Pei H (2022) Tightly coupled optimization-
based gps-visual-inertial odometry with online calibration and
initialization. arXiv preprint arXiv:2203.02677 .

Hausman K, Weiss S, Brockers R, Matthies L and Sukhatme GS
(2016) Self-calibrating multi-sensor fusion with probabilistic
measurement validation for seamless sensor switching on a

http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.abstract
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.abstract
https://github.com/rpng/open_vins
https://github.com/rpng/open_vins

uav. In: 2016 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, pp. 4289–4296.

Heng L, Li B and Pollefeys M (2013) Camodocal: Automatic
intrinsic and extrinsic calibration of a rig with multiple generic
cameras and odometry. In: 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems. pp. 1793–1800.
DOI:10.1109/IROS.2013.6696592.

Hertzberg C, Wagner R, Frese U and Schröder L (2013)
Integrating generic sensor fusion algorithms with sound
state representations through encapsulation of manifolds.
Information Fusion 14(1): 57–77.

Hesch JA, Kottas DG, Bowman SL and Roumeliotis SI (2012)
Observability-constrained vision-aided inertial navigation.
University of Minnesota, Dept. of Comp. Sci. & Eng., MARS
Lab, Tech. Rep 1: 6.

Hou JJ, Wu X, Shan J, Li D and Wang H (2022) Robust
optimization-based fusion of gnss and visual-inertial-wheel
odometry. In: 2022 IEEE International Conference on Robotics
and Biomimetics (ROBIO). IEEE, pp. 1–6.

Huang G (2019) Visual-inertial navigation: A concise review. In:
Proc. International Conference on Robotics and Automation.
Montreal, Canada, pp. 9572–9582.

Huang G, Mourikis AI and Roumeliotis SI (2008) A first-estimates
Jacobian EKF for improving SLAM consistency. In: Proc. of
the 11th International Symposium on Experimental Robotics.
Athens, Greece, pp. 373–382.

Jeong J, Cho Y, Shin YS, Roh H and Kim A (2019) Complex urban
dataset with multi-level sensors from highly diverse urban
environments. The International Journal of Robotics Research
38(6): 642–657.

Jia Y, Luo H, Zhao F, Jiang G, Li Y, Yan J, Jiang Z and Wang Z
(2021) Lvio-fusion: A self-adaptive multi-sensor fusion slam
framework using actor-critic method. In: 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS). IEEE, pp. 286–293.

Jiang F, Chen J and Ji S (2021) Panoramic visual-inertial slam
tightly coupled with a wheel encoder. ISPRS Journal of
Photogrammetry and Remote Sensing 182: 96–111.

Jung JH, Cha J, Chung JY, Kim TI, Seo MH, Park SY, Yeo JY
and Park CG (2020) Monocular visual-inertial-wheel odometry
using low-grade imu in urban areas. IEEE Transactions on
Intelligent Transportation Systems .

Kang R, Xiong L, Xu M, Zhao J and Zhang P (2019) Vins-vehicle:
A tightly-coupled vehicle dynamics extension to visual-inertial
state estimator. In: 2019 IEEE Intelligent Transportation
Systems Conference (ITSC). IEEE, pp. 3593–3600.

Kannala J and Brandt SS (2006) A generic camera model and
calibration method for conventional, wide-angle, and fish-eye
lenses. IEEE transactions on pattern analysis and machine
intelligence 28(8): 1335–1340.

Kelly J and Sukhatme GS (2011) Visual-inertial sensor fusion:
Localization, mapping and sensor-to-sensor self-calibration.
The International Journal of Robotics Research 30(1): 56–79.

Khattak S, Nguyen H, Mascarich F, Dang T and Alexis K
(2020) Complementary multi–modal sensor fusion for resilient
robot pose estimation in subterranean environments. In:
2020 International Conference on Unmanned Aircraft Systems
(ICUAS). IEEE, pp. 1024–1029.

Kubelka V, Oswald L, Pomerleau F, Colas F, Svoboda T and
Reinstein M (2015) Robust data fusion of multimodal sensory

information for mobile robots. Journal of Field Robotics 32(4):
447–473.

Lang X, Lv J, Huang J, Ma Y, Liu Y and Zuo X (2022) Ctrl-vio:
Continuous-time visual-inertial odometry for rolling shutter
cameras. IEEE Robotics and Automation Letters 7(4): 11537–
11544.

Lee W, Eckenhoff K, Geneva P and Huang G (2019) Gps-aided
visual-inertial navigation in large-scale environments. Techni-
cal report, Robot Perception and Navigation Group (RPNG),
University of Delaware. URL https://copland.udel.

edu/˜ghuang/papers/tr_gps-vio.pdf.
Lee W, Eckenhoff K, Geneva P and Huang G (2020a) Intermittent

gps-aided vio: Online initialization and calibration. In:
Proc. of the IEEE International Conference on Robotics and
Automation. Paris, France, pp. 5724–5731.

Lee W, Eckenhoff K, Yang Y, Geneva P and Huang G (2020b)
Visual-inertial-wheel odometry with online calibration. In:
Proc. of the IEEE/RSJ International Conference on Intelligent
Robots and Systems. Las Vegas, NV, pp. 4559–4566.

Lee W, Geneva P, Yang Y and Huang G (2022) Tightly-coupled
gnss-aided visual-inertial localization. In: International
Conference on Robotics and Automation (ICRA). Philadelphia,
USA, pp. 9484–9491.

Lee W and Huang G (2020) Visual inertial wheel odometry:
Online calibration technical report. Technical report,
Robot Perception and Navigation Group (RPNG), University
of Delaware. URL https://copland.udel.edu/

˜ghuang/papers/tr_wheel-vio.pdf.
Lee W, Yang Y and Huang G (2021) Efficient multi-sensor aided

inertial navigation with online calibration. In: Proc. of the IEEE
International Conference on Robotics and Automation. Xi’an,
China, pp. 5706–5712.

Lee Y, Yoon J, Yang H, Kim C and Lee D (2016) Camera-gps-
imu sensor fusion for autonomous flying. In: 2016 Eighth
International Conference on Ubiquitous and Future Networks
(ICUFN). IEEE, pp. 85–88.

Li M (2014) Visual-inertial odometry on resource-constrained
systems. University of California, Riverside.

Li M and Mourikis AI (2014a) Online temporal calibration
for camera–imu systems: Theory and algorithms. The
International Journal of Robotics Research 33(7): 947–964.

Li M and Mourikis AI (2014b) Vision-aided inertial navigation with
rolling-shutter cameras. The International Journal of Robotics
Research 33(11): 1490–1507.

Lin J and Zhang F (2022) R3live: A robust, real-time, rgb-
colored, lidar-inertial-visual tightly-coupled state estimation
and mapping package. In: 2022 International Conference on
Robotics and Automation (ICRA). IEEE, pp. 10672–10678.

Lin J, Zheng C, Xu W and Zhang F (2021) R2live: A robust, real-
time, lidar-inertial-visual tightly-coupled state estimator and
mapping. IEEE Robotics and Automation Letters 6(4): 7469–
7476.

Liu J, Gao W and Hu Z (2019) Visual-inertial odometry tightly
coupled with wheel encoder adopting robust initialization and
online extrinsic calibration. In: 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE,
pp. 5391–5397.

Liu J, Gao W and Hu Z (2021a) Bidirectional trajectory
computation for odometer-aided visual-inertial slam. IEEE
Robotics and Automation Letters 6(2): 1670–1677.

https://copland.udel.edu/~ghuang/papers/tr_gps-vio.pdf
https://copland.udel.edu/~ghuang/papers/tr_gps-vio.pdf
https://copland.udel.edu/~ghuang/papers/tr_wheel-vio.pdf
https://copland.udel.edu/~ghuang/papers/tr_wheel-vio.pdf

Liu J, Gao W and Hu Z (2021b) Optimization-based visual-inertial
slam tightly coupled with raw gnss measurements. In: 2021
IEEE International Conference on Robotics and Automation
(ICRA). IEEE, pp. 11612–11618.

Lv J, Lang X, Xu J, Wang M, Liu Y and Zuo X (2023)
Continuous-time fixed-lag smoothing for lidar-inertial-camera
slam. IEEE/ASME Transactions on Mechatronics .

Lv J, Zuo X, Hu K, Xu J, Huang G and Liu Y (2022) Observability-
aware intrinsic and extrinsic calibration of lidar-imu systems.
IEEE Transactions on Robotics .

Lynen S, Achtelik MW, Weiss S, Chli M and Siegwart R (2013)
A robust and modular multi-sensor fusion approach applied to
mav navigation. In: 2013 IEEE/RSJ international conference
on intelligent robots and systems. IEEE, pp. 3923–3929.

Ma F, Shi J, Wu L, Dai K and Zhong S (2020) Consistent
monocular ackermann visual–inertial odometry for intelligent
and connected vehicle localization. Sensors 20(20): 5757.

Ma F, Shi J, Yang Y, Li J and Dai K (2019) Ack-msckf: Tightly-
coupled ackermann multi-state constraint kalman filter for
autonomous vehicle localization. Sensors 19(21): 4816.

Mascaro R, Teixeira L, Hinzmann T, Siegwart R and Chli M
(2018) Gomsf: Graph-optimization based multi-sensor fusion
for robust uav pose estimation. In: 2018 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, pp.
1421–1428.

Meng X, Wang H and Liu B (2017) A robust vehicle localization
approach based on gnss/imu/dmi/lidar sensor fusion for
autonomous vehicles. Sensors 17(9): 2140.

Merfels C and Stachniss C (2016) Pose fusion with chain pose
graphs for automated driving. In: 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE,
pp. 3116–3123.

Merfels C and Stachniss C (2017) Sensor fusion for self-localisation
of automated vehicles. PFG–Journal of Photogrammetry,
Remote Sensing and Geoinformation Science 85(2): 113–126.

Mourikis AI and Roumeliotis SI (2007) A multi-state constraint
Kalman filter for vision-aided inertial navigation. In:
Proceedings of the IEEE International Conference on Robotics
and Automation. Rome, Italy, pp. 3565–3572.

Mueggler E, Gallego G, Rebecq H and Scaramuzza D (2018)
Continuous-time visual-inertial odometry for event cameras.
IEEE Transactions on Robotics 34(6): 1425–1440.

Nguyen TM, Cao M, Yuan S, Lyu Y, Nguyen TH and Xie
L (2021a) Viral-fusion: A visual-inertial-ranging-lidar sensor
fusion approach. IEEE Transactions on Robotics 38(2): 958–
977.

Nguyen TM, Yuan S, Cao M, Nguyen TH and Xie L (2021b)
Viral slam: Tightly coupled camera-imu-uwb-lidar slam. arXiv
preprint arXiv:2105.03296 .

Oliveira M, Pedrosa E, de Aguiar AP, Rato DFPD, dos Santos
FN, Dias P and Santos V (2022) Atom: A general calibration
framework for multi-modal, multi-sensor systems. Expert
Systems with Applications 207: 118000.

Owens JL, Osteen PR and Daniilidis K (2015) Msg-cal:
Multi-sensor graph-based calibration. In: 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS). IEEE, pp. 3660–3667.

Paul MK and Roumeliotis SI (2018) Alternating-stereo vins:
Observability analysis and performance evaluation. In:
Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition. pp. 4729–4737.
Qin T, Cao S, Pan J and Shen S (2019) A general optimization-

based framework for global pose estimation with multiple
sensors. arXiv preprint arXiv:1901.03642 .

Qin T, Li P and Shen S (2018) Vins-mono: A robust and versatile
monocular visual-inertial state estimator. IEEE Transactions
on Robotics 34(4): 1004–1020.

Qin T and Shen S (2017) Robust initialization of monocular
visual-inertial estimation on aerial robots. In: 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS). IEEE, pp. 4225–4232.

Quan M, Piao S, Tan M and Huang SS (2019) Tightly-coupled
monocular visual-odometric slam using wheels and a mems
gyroscope. IEEE Access 7: 97374–97389.

Quenzel J and Behnke S (2021) Real-time multi-adaptive-
resolution-surfel 6d lidar odometry using continuous-time
trajectory optimization. In: 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE,
pp. 5499–5506.

Rahman S, Quattrini Li A and Rekleitis I (2022) Svin2: A multi-
sensor fusion-based underwater slam system. The International
Journal of Robotics Research : 02783649221110259.

Ramanandan A, Chari M and Joshi A (2019) Systems and methods
for using a global positioning system velocity in visual-inertial
odometry. US Patent 10,371,530.

Rehder J, Gupta K, Nuske S and Singh S (2012) Global pose
estimation with limited gps and long range visual odometry.
In: 2012 IEEE International Conference on Robotics and
Automation. IEEE, pp. 627–633.

Rehder J, Nikolic J, Schneider T, Hinzmann T and Siegwart R
(2016a) Extending kalibr: Calibrating the extrinsics of multiple
imus and of individual axes. In: 2016 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, pp.
4304–4311.

Rehder J, Siegwart R and Furgale P (2016b) A general approach
to spatiotemporal calibration in multisensor systems. IEEE
Transactions on Robotics 32(2): 383–398.

Rodrigues RT, Tsiogkas N, Pascoal A and Aguiar AP (2021) Online
range-based slam using b-spline surfaces. IEEE Robotics and
Automation Letters 6(2): 1958–1965.

Serov A, Clemens J and Schill K (2021) Visual-multi-sensor
odometry with application in autonomous driving. In:
2021 IEEE 93rd Vehicular Technology Conference (VTC2021-
Spring). IEEE, pp. 1–7.

Shan T, Englot B, Ratti C and Rus D (2021) Lvi-sam: Tightly-
coupled lidar-visual-inertial odometry via smoothing and
mapping. In: 2021 IEEE international conference on robotics
and automation (ICRA). IEEE, pp. 5692–5698.

Shao W, Vijayarangan S, Li C and Kantor G (2019) Stereo visual
inertial lidar simultaneous localization and mapping. In: 2019
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, pp. 370–377.

Shen S, Mulgaonkar Y, Michael N and Kumar V (2014) Multi-
sensor fusion for robust autonomous flight in indoor and
outdoor environments with a rotorcraft mav. In: 2014 IEEE
International Conference on Robotics and Automation (ICRA).
IEEE, pp. 4974–4981.

Siegwart R, Nourbakhsh IR and Scaramuzza D (2011) Introduction
to autonomous mobile robots. MIT press.

Simanek J, Kubelka V and Reinstein M (2015) Improving multi-
modal data fusion by anomaly detection. Autonomous Robots
39(2): 139–154.

Su Y, Wang T, Shao S, Yao C and Wang Z (2021) Gr-loam: Lidar-
based sensor fusion slam for ground robots on complex terrain.
Robotics and Autonomous Systems 140: 103759.

Suhr JK, Jang J, Min D and Jung HG (2016) Sensor fusion-
based low-cost vehicle localization system for complex urban
environments. IEEE Transactions on Intelligent Transportation
Systems 18(5): 1078–1086.

Sun H, Jin Y, Fu M, He J, Liu H and Zhang WA (2022)
A multisensor-based tightly coupled integrated navigation
system. In: 2022 5th International Symposium on Autonomous
Systems (ISAS). IEEE, pp. 1–6.

Tessier C, Cariou C, Debain C, Chausse F, Chapuis R and Rousset
C (2006) A real-time, multi-sensor architecture for fusion
of delayed observations: application to vehicle localization.
In: 2006 IEEE Intelligent Transportation Systems Conference.
IEEE, pp. 1316–1321.

Trawny N and Roumeliotis SI (2005) Indirect Kalman filter for 3D
attitude estimation. Technical report, University of Minnesota,
Dept. of Comp. Sci. & Eng.

Wang T, Su Y, Shao S, Yao C and Wang Z (2021a) Gr-fusion: Multi-
sensor fusion slam for ground robots with high robustness and
low drift. In: 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, pp. 5440–5447.

Wang Z, Li M, Zhou D and Zheng Z (2021b) Direct sparse stereo
visual-inertial global odometry. In: 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, pp.
14403–14409.

Wang Z, Zhang J, Chen S, Yuan C, Zhang J and Zhang J (2019)
Robust high accuracy visual-inertial-laser slam system. In:
2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, pp. 6636–6641.

Wisth D, Camurri M and Fallon M (2022) Vilens: Visual, inertial,
lidar, and leg odometry for all-terrain legged robots. IEEE
Transactions on Robotics .

Wu D, Zhong X, Peng X, Hu H and Liu Q (2022) Multi-modal
information fusion for high-robustness and low-drift state
estimation of ugvs in diverse scenes. IEEE Transactions on
Instrumentation and Measurement .

Wu KJ, Guo CX, Georgiou G and Roumeliotis SI (2017) Vins on
wheels. In: 2017 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, pp. 5155–5162.

Xu W, Cai Y, He D, Lin J and Zhang F (2022a) Fast-lio2: Fast direct
lidar-inertial odometry. IEEE Transactions on Robotics .

Xu X, Zhang L, Yang J, Cao C, Wang W, Ran Y, Tan Z and Luo M
(2022b) A review of multi-sensor fusion slam systems based
on 3d lidar. Remote Sensing 14(12): 2835.

Yang Y, Geneva P, Eckenhoff K and Huang G (2019a) Degenerate
motion analysis for aided INS with online spatial and temporal
calibration. IEEE Robotics and Automation Letters (RA-L)
4(2): 2070–2077.

Yang Y, Geneva P, Eckenhoff K and Huang G (2019b) Visual-
inertial navigation with point and line features. In: Proc.
International Conference on Intelligent Robots and Systems
(IROS). Macau, China, p. 3.

Yang Y, Geneva P and Huang G (2023) Multi-visual-inertial
system: Analysis, calibration and estimation. arXiv preprint
arXiv:2308.05303 .

Yang Y, Lee W, Osteen P, Geneva P, Zuo X and Huang G (2021)
iCalib: Inertial aided multi-sensor calibration. In: Workshop on
Visual-Inertial Navigation Systems.

Yang Y, Maley J and Huang G (2017) Null-space-based
marginalization: Analysis and algorithm. In: Proc. IEEE/RSJ
International Conference on Intelligent Robots and Systems.
Vancouver, Canada, pp. 6749–6755.

Ye C, Pan H and Gao H (2021) Keypoint-based lidar-camera online
calibration with robust geometric network. IEEE Transactions
on Instrumentation and Measurement 71: 1–11.

Yuan Z, Lang F, Xu T and Yang X (2023) Liw-oam: Lidar-
inertial-wheel odometry and mapping. arXiv preprint
arXiv:2302.14298 .

Yuan Z, Lang F and Yang X (2022) Sr-lio: Lidar-inertial odometry
with sweep reconstruction. arXiv preprint arXiv:2210.10424 .

Zhang J and Singh S (2018) Laser–visual–inertial odometry and
mapping with high robustness and low drift. Journal of field
robotics 35(8): 1242–1264.

Zhang M, Zuo X, Chen Y, Liu Y and Li M (2021) Pose estimation
for ground robots: On manifold representation, integration,
reparameterization, and optimization. IEEE Transactions on
Robotics 37(4): 1081–1099.

Zhao S, Zhang H, Wang P, Nogueira L and Scherer S (2021)
Super odometry: Imu-centric lidar-visual-inertial estimator for
challenging environments. In: 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE,
pp. 8729–8736.

Zheng C, Zhu Q, Xu W, Liu X, Guo Q and Zhang F (2022) Fast-
livo: Fast and tightly-coupled sparse-direct lidar-inertial-visual
odometry. arXiv preprint arXiv:2203.00893 .

Zheng F and Liu YH (2019) Visual-odometric localization and
mapping for ground vehicles using se (2)-xyz constraints. In:
2019 International Conference on Robotics and Automation
(ICRA). IEEE, pp. 3556–3562.

Zheng X, Li M and Mourikis AI (2015) Decoupled representation
of the error and trajectory estimates for ef cient pose
estimation. In: Robotics: Science and Systems.

Zuo X, Geneva P, Lee W, Liu Y and Huang G (2019a) LIC-
Fusion: Lidar-inertial-camera odometry. In: Proc. IEEE/RSJ
International Conference on Intelligent Robots and Systems.
Macau, China, pp. 5848–5854.

Zuo X, Yang Y, Geneva P, Lv J, Liu Y, Huang G and Pollefeys
M (2020) Lic-fusion 2.0: Lidar-inertial-camera odometry with
sliding-window plane-feature tracking. In: Proc. of the
IEEE/RSJ International Conference on Intelligent Robots and
Systems. Las Vegas, NV, pp. 5112–5119.

Zuo X, Zhang M, Chen Y, liu Y, Huang G and Li M (2019b) Visual-
inertial localization for skid-steering robots with kinematic
constraints. In: Proc. of the International Symposium on
Robotics Research (ISRR). Hanoi, Vietnam, pp. 741–756.

A Jacobians of Camera Measurements
Given the nested functions (see, Eq. (9)), we can leverage
the chain rule to find the full Jacobian matrix of the camera
measurement model in respect to the state:

HC :=
∂zC
∂xk

=
∂hd

∂zn︸︷︷︸
Hd1

∂hρ

∂CkpF︸ ︷︷ ︸
Hρ

∂ht

∂xk︸︷︷︸
Ht

+
∂hd

∂xCI︸ ︷︷ ︸
Hd2

Note the second term of the above equation actually should
be ∂hd

∂xCI

∂xCI

∂xk
which the additional term ∂xCI

∂xk
maps ∂hd

∂xCI

into a proper position in the full Jacobian. However, we will
omit the trivial mapping terms for brevity.

A.1 Distortion
The Jacobian with respect to the normalized coordinates can
be obtained as:

Hd1 =

[
hd11 hd12

hd21 hd22

]
hd11 =fx((1 + k1r

2 + k2r
4) + (2k1x

2
n + 4k2x

2
n(x

2
n + y2n))

+ 2p1yn + (2p2xn + 4p2xn))

hd12 =fx(2k1xnyn + 4k2xnyn(x
2
n + y2n) + 2p1xn + 2p2yn)

hd21 =fy(2k1xnyn + 4k2xnyn(x
2
n + y2n) + 2p1xn + 2p2yn)

hd22 =fy((1 + k1r
2 + k2r

4) + (2k1y
2
n + 4k2y

2
n(x

2
n + y2n))

+ (2p1yn + 4p1yn) + 2p2xn)

and the Jacobian in respect to the intrinsic parameters:

Hd2 =

[
x 0 1 0 fxxnr

2 fxxnr
4 2fxxnyn) fx(r

2 + 2x2
n)

0 y 0 1 fyynr
2 fyynr

4 fy(r
2 + 2y2n) 2fyxnyn

]
where definition of each variable x, y, xn, yn, fx, fy , cx, cy ,
k1, k2, p1, p2, and r can be found in Sec. 3.2.1.

A.2 Perspective Projection
The Jacobian matrix is defined as follows:

Hρ =

[
1

Ckz
0 −Ckx

(Ckz)2

0 1
Ckz

−Cky
(Ckz)2

]

where CkpF = [Ckx Cky Ckz]⊤.

A.3 Euclidean Transformation
The Jacobian matrix of Euclidean transformation can be
represented using the chain rule to the camera pose
(interpolated) and the camera feature:

Ht =
[

∂ht

∂
Ck
E θ

∂ht

∂EpCk

]
HA

C,k +
∂ht

∂EpF
:= HeH

A
C,k +HF

∂ht

∂Ck

E θ
= ⌊CkpF ⌋,

∂ht

∂EpCk

= −Ck

E R,
∂ht

∂EpF
= Ck

E R

where the definition of remaining chain HA
C,k, the

camera pose to the interpolating IMU poses, and the
spatiotemporal extrinsic calibration parameters, can be found
in Appendix F (linear interpolation) or Appendix G (high-
order interpolation). The final form of the camera Jacobian
matrix is:

HC = Hd1HρHeH
A
C,k +Hd1HρHF +Hd2

B Wheel Odometry Measurements
Here, we introduce the essential derivations of how the wheel
measurement model (and its linearization) is formulated. For
the full derivations, please refer to our previous tech report
(Lee and Huang 2020). The overall process is outlined in
Algorithm 1.

Algorithm 1 Wheel Odometry Measurement Update

1: procedure WHEEL UPDATE(xk+1, {ωml, ωmr}k:k+1)
2: // Preintegrate measurement, Jacobian, and noise
3: gO = 03×1, GO = 03, RO = 03

4: for ωml,τ , ωmr,τ ∈ {ωml, ωmr}k:k+1 do
5: gO ←− gO +∆g
6: RO ←− Φtr,τROΦ

⊤
tr,τ +Φn,τQτΦ

⊤
n,τ

7: GO ←− Φtr,τGO +ΦOI,τ

8: end for
9: // Compute residual and Jacobian

10: z̃O = gO(x̂OI)− hO(x̂k)
11: HO = ∂hO

∂x̃k
−GO

∂x̃OI

∂x̃k

12: // Perform χ2 test & update
13: if χ2(z̃,HO,RO) == Pass then
14: EKF Update(x̂k+1, z̃O,HO,RO)
15: end if
16: end procedure

B.1 Wheel Odometry Preintegration
Assume we are in the process of wheel odometry
preintegration (see Eq. (26)) and it is the turn to integrate
measurements at tτ . Based on the kinematic model (see
Eq. (25)) we perform following integration of measurements:

Oτ+1

Ok
θ ≈ Oτ

Ok
θ 9 Oτω∆t (91)

OkxOτ+1 ≈ OkxOτ 9 Oτ v(sin(Oτ+1

Ok
θ) 9 sin(Oτ

Ok
θ))/Oτω (92)

OkyOτ+1
≈ OkyOτ

9 Oτ v(cos(Oτ+1

Ok
θ) 9 cos(Oτ

Ok
θ))/Oτω (93)

where ∆t = tτ+1 − tτ . Note that we assume constant Oτω
and Oτ v (discrete sensor model) but considered the change
of heading angle between tτ and tτ+1 so that we have a more
accurate model than assuming it constant. Repeating the
process until tk+1 finishes wheel odometry preintegration.

B.2 Jacobian of Wheel-Encoder Intrinsics
As evident from Eq. (27), the wheel odometry integration
entangles the intrinsic xOI , therefore the linearization would
yield the following form:

zO ≃ gO({ωml, ωmr}k:k+1, x̂OI) +
∂gO

∂x̃OI︸ ︷︷ ︸
GO

x̃OI +
∂gO

∂nw
nw

where nω is the stacked noise vector whose τ -th block is
corresponding to the encoder measurement noise at tτ ∈
[tk, tk+1] (i.e., [nωl,τ

nωr,τ
]⊤, see (23)).

Clearly, performing EKF update with this measurement
requires the Jacobians with respect to both the intrinsics and
the noise. It is important to note that as the preintegration
of gO(·) is computed incrementally using the encoders’
measurements in the interval [tk, tk+1], we accordingly
calculate the measurement Jacobians incrementally one step
at a time. Note also that since the noise Jacobian and nω

are often of high dimensions and may be computationally
expensive when computing the stacked noise covariance
during the update, we instead compute the noise covariance
RO by performing small matrix operations at each step.

Now we get the Jacobian of tτ step integration from
Eq. (91), (92), and (93) (again, the full derivations, which this
margin is too narrow to contain, can be found in our previous
tech report (Lee and Huang 2020), thus here we only show

the structure of them):

Oτ+1

Ok
θ̃ = Oτ

Ok
θ̃ +Φ1x̃OI +Φ2nω,τ

Ok x̃Oτ+1 = Ok x̃Oτ +Φ3
Oτ

Ok
θ̃ +Φ4x̃OI +Φ5nω,τ

Ok ỹOτ+1
= Ok ỹOτ

+Φ6
Oτ

Ok
θ̃ +Φ7x̃OI +Φ8nω,τ

It can be found that the error of τ + 1 step preintegration
is the linear combination of τ step preintegration and
measurement errors. With the above equations, we can
recursively compute the noise covariance RO and the
Jacobian GO as follows:

Φtr,τ =

 1 0 0
Φ3 1 0
Φ6 0 1

 , ΦOI,τ =

Φ1

Φ4

Φ7

 , Φn,τ =

Φ2

Φ5

Φ8

RO ←− Φtr,τROΦ

⊤
tr,τ +Φn,τQτΦ

⊤
n,τ

GO ←− Φtr,τGO +ΦOI,τ

where Qτ is the noise covariance of wheel encoder
measurement at tτ . We can recursively compute the
measurement noise covariance RO and the Jacobian matrix
∂gO

∂x̃OI
at the end of preintegration tk+1, based on the zero

initial condition (i.e., RO = GO = 03). The final structure
of GO can be shown as:

GO =

Γθ1 Γθ2 Γθ3

Γx1 Γx2 Γx3

Γy1 Γy2 Γy3

Assuming n number of measurements are integrated, the
structure of the element can be shown as:

Γθ1 =

n∑
i=1

−∆ti
ωl,i

b

Γθ2 =

n∑
i=1

∆ti
ωr,i

b

Γθ3 =

n∑
i=1

−∆ti
Oiω

b

Γx1 =

n∑
i=1

{
ωl,i

(
hxv,i

2
− hxω,i

b

)
− hxθ,i

i−1∑
j=1

∆tj
ωl,j

b

}

Γx2 =

n∑
i=1

{
ωr,i

(
hxv,i

2
+

hxω,i

b

)
+ hxθ,i

i−1∑
j=1

∆tj
ωr,j

b

}

Γx3 =

n∑
i=1

{
− hxω,i

Oiω

b
− hxθ,i

i−1∑
j=1

∆tj
Ojω

b

}

Γy1 =

n∑
i=1

{
ωl,i

(
hyv,i

2
− hyω,i

b

)
− hyθ,i

i−1∑
j=1

∆tj
ωl,j

b

}

Γy2 =

n∑
i=1

{
ωr,i

(
hyv,i

2
+

hyω,i

b

)
+ hyθ,i

i−1∑
j=1

∆tj
ωr,j

b

}

Γy3 =

n∑
i=1

{
− hyω,i

Oiω

b
− hyθ,i

i−1∑
j=1

∆tj
Ojω

b

}
Note this derivation cannot be applied in computing
covariance matrix RO, because the noise nω,τ has different
values for every iteration unlike xOI .

B.3 Full Jacobian of Wheel Odometry
First, we show the Jacobian of wheel measurement model
(see Eq. (28)) in respect to the state:

∂hO

∂x̃k
= (HO1H

S
O,k +HO2H

S
O,k91)x̃k

HO1 =

[
e⊤3 01×3

02×3 ΛOk91
E R

]
,HO2 =

[
9e⊤3

Ok

Ok91
R 01×3

Λ⌊Ok91pOk
⌋ 9ΛOk91

E R

]
where HO1 and HO2 are the Jacobian matrices of h(·) in
respect to {Ok} and {Ok91}; HS

O,k is the Jacobian matrix of
{Ok} in respect to the {Ik} and the wheel spatiotemporal
extrinsic calibration parameters (see Appendix E for the
definition).

Finally, we construct the full Jacobian matrix of wheel:

HO =
∂hO

∂x̃k
9

∂gO

∂x̃OI
= HO1H

S
O,k +HO2H

S
O,k91 9GO

∂x̃OI

∂x̃k

Note that GO has the minus sign in front of it because gO is
on the left hand side of the equation while hO is on the right.

C Jacobians of LiDAR Measurements
Here we drive the Jacobian matrix of the LiDAR
measurement model (see Eq. (34)). First, we linearize the
model in respect to each map point Mpn, the new point MpF

(transformed from {Lk} to {M}), and the plane MΠ:

z̃L ≈

01×3

...
01×3
MΠ⊤

M p̃F +

Mp⊤

n1

...
Mp⊤

nm
Mp⊤

F

MΠ̃+

MΠ⊤nn1

...
MΠ⊤nnm

0

where nn is zero mean Gaussian noise model of the map
points. To complete the chain of the Jacobian matrix, we
compute the Jacobian of Eq. (35) (here we show the case
where the map {M} is anchored at {Ik91}, thus, {M} =
{Lk91} and MpF = Lk91pF):

M p̃F =
[
⌊Lk−1pF ⌋ −

Lk−1

E R
]

︸ ︷︷ ︸
HL1

[
Lk91
E θ̃

Ep̃Lk91

]

+
[
Lk91
Lk

R⌊LkpF ⌋ −Lk

E R
]

︸ ︷︷ ︸
HL2

[
Lk

E θ̃
Ep̃Lk

]
+ Lk91

Lk
RnF

= (HL1H
A
L,k91 +HL2H

A
L,k)x̃k + Lk91

Lk
RnF

where nF is the zero mean Gaussian noise of the
measurement. Note HA

L,k91 and HA
L,k are the Jacobians of

LiDAR poses at tk−1 (actually the map) and tk in respect
to the state x̃k where the definitions can be found in
Appendix F (linear interpolation) or Appendix G (high-order
interpolation).

Finally, we get the following linear system formulation
that is a function of the state, the plane, and the noises:

z̃L =

01×3

...
01×3

MΠ⊤(HL1H
A
L,k91 +HL2H

A
L,k)

︸ ︷︷ ︸

HL

x̃k

+

Mp⊤

n1

...
Mp⊤

nk
Mp⊤

F

︸ ︷︷ ︸

HΠ

MΠ̃+

MΠ⊤nn1

...
MΠ⊤nnk

MΠ⊤Lk−1

Lk
RnF

︸ ︷︷ ︸

nL

Though the above linear system can be directly used
to update the state, we additionally perform Cholesky
decomposition of the last noise term (in the covariance
matrix form RL = LL⊤) and multiply the inverse of
lower triangular matrix (L−1) to the above equation (a.k.a
whitening) to make the following null space projection
(see Eq. (38)) simple and construct the noise covariance
matrix efficiently without tracking the map and measurement
noises. To be more specific, we get the following after the
operation (corresponds to the Eq. (37)):

z̃′L = H′
Lx̃k +H′

Π
MΠ̃+ n′

L

Note the noise n′
L is the standard Gaussian (N (0, I)).

D GNSS Measurements

D.1 Jacobians
The Jacobian matrix of GNSS measurement model (see
Eq. (44)) can be simply represented with two matrices (after
initialization):

HG :=
∂zG
∂xk

= [03 I3]H
A
G,k = HgH

A
G,k (94)

where Hg is the derivative of the measurement with respect
to the GNSS sensor pose, and the definition of remaining
chain HA

G,k, the GNSS sensor pose to the interpolating
IMU poses and the spatiotemporal extrinsic calibration
parameters, can be found in Appendix F (linear interpolation)
or Appendix G (high-order interpolation).

D.2 Observability Analysis: State in {W}
For concise presentation, here we consider a simplified case
where the state in the local world Wxk only contains one
IMU pose, linear velocity, and {W} to {E} transformation
with perfectly synchronized and calibrated sensors (identity
transformation from IMU to GNSS), while the results can be
extended to general cases:

Wxk = (IkWR, WpIk ,
WvIk ,

E
WR, EpW) (95)

The corresponding error state transition matrix can be shown
as (∆t = tk − t0):

ΦW (tk, t0) =
Ik
WRW

I0
R 0 0 0

−⌊WpIk −WpI0 −WvI0∆t+ 1
2g∆t2⌋WI0 R I3 ∆tI3 0

−⌊WvIk −WvI0 + g∆t⌋WI0 R 0 I3 0
0 0 0 I6

The measurement model and the corresponding Jacobian
matrix in respect to the local state (see Eq. (95)) are:

zG = EpW + E
WRWpIk + nG

HW
G =

[
03

E
WR 03 03 ⌊EWRWpIk⌋ I3

]
Now we can construct the observability matrix OW :

OW =

HW
G0

HW
G1

ΦW (t1, t0)
...

HW
G ΦW (tk, t0)

...

The (k + 1)th row matrix of OW can be shown as:

OW
k+1 = HW

G ΦW (tk, t0) =
[
Γ1 Γ2 Γ3 Γ4 I3

]
Γ1 = −E

WR⌊WpIk −WpI0 −WvI0∆t+
1

2
g∆t2⌋WI0 R

Γ2 = E
WR

Γ3 = E
WR∆t

Γ4 = ⌊EWRWpIk⌋

It is easily can be shown that the matrix shown below is the
null space of OW

k+1 by calculating OW
k+1 ×NW = 0.

NW =

03 −I0

WRg
I3 ⌊WpI0⌋g
03 ⌊WvI0⌋g
03 −E

WRg
−E

WR 03×1

As NW is the null space of any row matrices ofOW , NW is
the null space of the local state (see Eq. (95)). By inspection,
the first column of NW corresponds to the translation of
{W} to {E} and the second column to the rotation of {W}
with respect to {E} along the axis of gravity.

D.3 Observability Analysis: State in {E}
In analogy to Appendix D.2, here we also investigate the
minimal state that has the frame of reference in {E} as:

Exk = (IkE R, EpIk ,
EvIk ,

E
WR, EpW) (96)

The corresponding error state transition matrix is:

ΦE(tk, t0) =
Ik
E RE

I0
R 0 0 0

−⌊EpIk − EpI0 − EvI0∆t+ 1
2g∆t2⌋EI0R I3 ∆tI3 0

−⌊EvIk − EvI0 + g∆t⌋EI0R 0 I3 0
0 0 0 I6

The measurement model and the corresponding Jacobian
matrix in respect to the local state (see Eq. (96)) are:

zG = EpIk + nG

HE
G =

[
03 I3 03×9

]
Clearly, the multiplication of OE

k+1 := HE
GΦ

E(tk, t0) with
NW does not yield a zero matrix which means the 4
unobservable directions of INS (Kelly and Sukhatme 2011)
are now observable.

D.4 State Transformation from {W} to {E}
As the IMU biases and the calibration parameters remain the
same (their frame of the references are fixed to, such as, IMU
and sensor frame), thus have identity matrix in this Jacobian
matrix of transformation, here we show the minimal relevant
state case:

Wxk = (IkWR,WpIk ,
WvIk ,

E
WR,EpW)

We linearize the state transform function (see Eq. (86))
at current estimate to achieve the Jacobian matrix Ψ and
propagate the error state with it as:

Ex̃k ←− ΨW x̃k

where

Ψ =

I3 03 03

Ik
WRE

WR⊤ 03

03
E
WR 03 ⌊EWRWpIk⌋ I3

03 03
E
WR ⌊EWRWvIk⌋ 03

03 03 03 I3 03

03 03 03 03 I3

Please refer to our previous tech report (Lee et al. 2019) for
the full derivations.

E Jacobians of Synchronous Sensors
In general, there is no reason a sensor measurement is
synchronous to other sensors or to the state. However,
in some cases, we can chose the sampling time of the
measurements to get the synchronized sensor measurements.
The preintegrated wheel measurement (see Eq. (27)),
for example, is one of the case where we decide the
measurement integration period and get the synchronized
pose measurement. Therefore, here we introduce how
the Jacobian matrices of the pose measurement of the
synchronous sensors is formulated.

Assume we have a global pose measurement of sensor
{X} at time tk. The measurement can be modeled with a
IMU pose {Ik} and spatial extrinsic calibration parameters
(XI R,XpI) between the IMU and the sensor as:

zXk
:=

[
Xk

E θ
EpXk

]
=

[
Log(XI RIk

E R)
EpIk + E

Ik
RIpX

]
+ nXk

(97)

We first drive the derivative of the measurement model in
respect to the involved parameters:

∂Xk

E θ

∂Ik
E θ

= X
I R

∂Xk

E θ

∂X
I θ

= I3 (98)

∂EpXk

∂Ik
E θ

= −E
Ik
R⌊IpX⌋

∂EpXk

∂EpIk

= I3 (99)

∂EpXk

∂X
I θ

= E
Xk

R⌊XpI⌋
∂EpXk

∂XpI
= −E

Xk
R (100)

To account for the difference between sensor clocks
and measurement delay, we model an unknown constant
time offset between the IMU clock and the sensor clock:
Itk = Xtk + XtI , where Itk and Xtk are the times when
measurement zSk

was collected in the IMU and the sensor’s
clocks, and XtI is the time offset between the two time

references. To get the synchronized pose measurement at
IMU times Itk, we use the current best estimate of the time
offset X t̂I and get the measurement at Xtk = Itk − X t̂I ,
whose corresponding time in the IMU clock is:

I t̄k := Itk − X t̂I +
XtI = Itk + X t̃I

Note that the above equation revels the error of the time
offset X t̃I within the chosen measurement time I t̄k. We
employ the following first-order approximation to account
for this small time-offset error (Li and Mourikis 2014a):

I(I t̄k)
E R =

I(Itk+
X t̃I)

E R ≈ (I− ⌊IkωX t̃I⌋)IkE R
EpI(I t̄k) =

EpI(Itk+X t̃I)
≈ EpIk + EvIk

X t̃I

By replacing the above approximation to Eq. (97), we get the
following additional Jacobians which are related to the time
offset:

∂Xk

E θ

∂XtI
=

∂Xk

E θ

∂Ik
E θ

∂Ik
E θ

∂XtI
= X

I RIkω

∂EpXk

∂XtI
=

∂EpXk

∂EpIk

∂EpIk

∂XtI
+

∂EpXk

∂Ik
E θ

∂Ik
E θ

∂XtI

= EvIk − E
Ik
R⌊IpX⌋Ikω

Finally, we get the following full Jacobian matrix of the
synchronized measurement:

HS
X,k =

∂zXk

∂xk

=

[
HS

00 0 0 · · · HS
07 0 HS

09 0 · · ·

︸ ︷︷ ︸
{Ik}

HS
10 HS

11 0 · · · ︸︷︷︸
X
I R

HS
17 ︸︷︷︸

XpI

HS
18 ︸︷︷︸

XtI

HS
19 0 · · ·

]

HS
00 =

∂Xk

E θ

∂Ik
E θ

= X
I R

HS
07 =

∂Xk

E θ

∂X
I θ

= I3

HS
09 =

∂Xk

E θ

∂XtI
= X

I RIkω

HS
10 =

∂EpXk

∂Ik
E θ

= −E
Ik
R⌊IpX⌋

HS
11 =

∂EpXk

∂EpIk

= I3

HS
17 =

∂EpXk

∂X
I θ

= E
Xk

R⌊XpI⌋

HS
18 =

∂EpXk

∂IpX
= −E

Xk
R

HS
19 =

∂EpXk

∂XtI
= EvIk − E

Ik
R⌊IpX⌋Ikω

F Jacobians of Asynchronous Sensors:
Linear Interpolation

Here we assume an asynchronous global pose measurement
(see Eq. (46)) of a sensor {X} is given at time t′k
(tk91 ≤ t′k + XtI ≤ tk) and drive the full Jacobian of the
measurement model in respect to the two bounding IMU

poses ({Ik91} and {Ik}) and the spatiotemporal extrinsic
calibration parameters (XI R, XpI , and XtI) using the linear
interpolation. The measurement model and the interpolation
can be written as:

zXk
=

[
Xk′
E θ

EpXk′

]
=

[
Log(XI R

Ik′
E R)

EpIk′ +
E
Ik′R

IpX

]
+ nXk

Ik′
E R = Exp(λLog(IkE RE

Ik91
R))Ik91

E R
EpIk′ = (1− λ)EpIk91 + λEpIk

λ = (t′k + XtI − tk91)/(tk − tk91)

The derivative of the measurement model in respect to
the involved parameters are the same as synchronized
measurement (see Eq. (98), (99), and (100)). Then the
derivative of the interpolated IMU pose in respect to the
bounding IMU poses and the temporal extrinsic calibration
parameter are derived as:

∂
Ik′
E θ

∂Ik91
E θ

= Υ1 = Jr(λ
Ik91
Ik

θ)(J91
l (λIk91

Ik
θ)− λJ91

l (Ik91
Ik

θ))

∂
Ik′
E θ

∂Ik
E θ

= Υ2 = λJr(λ
Ik91
Ik

θ)J91
r (Ik91

Ik
θ)

∂EpIk′

∂EpIk91

= (1− λ)I3
∂EpIk′

∂EpIk

= λI3

∂
Ik′
E θ

∂XtI
=

Ik91
Ik

θ

tk − tk91

∂EpIk′

∂XtI
=

EpIk − EpIk91

tk − tk91

where Jl and Jr are the left and right Jacobian matrices of
SO(3) (Chirikjian 2011). Finally, we apply the chain rule to
get the full Jacobian matrix HA

X,k:

HA
X,k =

∂zXk

∂xk

=

[
HA

1 0 0 HA
2 0 0 · · · HA

3 0 HA
4 · · ·︸ ︷︷ ︸

{Ik}

HA
5 HA

6 0 ︸ ︷︷ ︸
{Ik91}

HA
7 HA

8 0 · · · ︸︷︷︸
X
I R

HA
9 ︸︷︷︸

XpI

HA
10 ︸︷︷︸

XtI

HA
11 · · ·

]

HA
1 =

∂
Xk′
E θ

∂
Ik′
E θ

∂
Ik′
E θ

∂Ik
E θ

= X
I RΥ2

HA
2 =

∂
Xk′
E θ

∂
Ik′
E θ

∂
Ik′
E θ

∂Ik91
E θ

= X
I RΥ1

HA
3 =

∂
Xk′
E θ

∂X
I θ

= I3

HA
4 =

∂
Xk′
E θ

∂
Ik′
E θ

∂
Ik′
E θ

∂AtI
= X

I R
1

tk − tk91

Ik91
Ik

θ

HA
5 =

∂EpXk′

∂
Ik′
E θ

∂
Ik′
E θ

∂Ik
E θ

= −E
Ik′R⌊

IpX⌋Υ2

HA
6 =

∂EpXk′

∂EpIk′

∂EpIk′

∂EpIk

= λI3

HA
7 =

∂EpXk′

∂
Ik′
E θ

∂
Ik′
E θ

∂Ik91
E θ

= −E
Ik′R⌊

IpX⌋Υ1

HA
8 =

∂EpXk′

∂EpIk′

∂EpIk′

∂EpIk91

= (1− λ)I3

HA
9 =

∂EpXk′

∂X
I θ

= E
Xk′R⌊

XpI⌋

HA
10 =

∂EpXk′

∂XpI
= −E

Xk′R

HA
11 =

∂EpXk′

∂
Ik′
E θ

∂
Ik′
E θ

∂AtI
+

∂EpXk′

∂EpIk′

∂EpIk′

∂AtI

=
EpIk − EpIk91 − E

Ik′R⌊IpX⌋Ik91
Ik

θ

tk − tk91

G Jacobians of Asynchronous Sensors:
High-order Interpolation

Here we assume an asynchronous global pose measurement
(see Eq. (46)) of a sensor {X} is given at time tk and drive
the full Jacobian of the measurement model in respect to
the IMU poses (say {I0}, . . . , {In}) used in n+ 1 order
interpolation and the spatiotemporal extrinsic calibration
parameters (XI R, XpI , and XtI). The measurement model
and the interpolation can be written as (Eckenhoff et al.
2021):

zXk
=

[
Xk

E θ
EpXk

]
=

[
Log(XI RIk

E R)
EpIk + E

Ik
RIpX

]
+ nXk

Ik
E R = Exp(

n∑
i=1

ai∆tik)
I0
ER

EpIk = EpI0 +

n∑
i=1

bi∆tik

where ∆tk = tk + XtI − t0, Finally, we apply the chain rule
to get the full Jacobian matrix HA

X,k:

HA
X,k =

∂zXk

∂xk

=

[
· · · HA

1 0 · · · HA
2 0 · · · HA

3 0 HA
4 · · ·

· · · ︸ ︷︷ ︸
{Ii}

HA
5 HA

6 · · · ︸ ︷︷ ︸
{I0}

HA
7 HA

8 · · · ︸︷︷︸
X
I R

HA
9 ︸︷︷︸

XpI

HA
10 ︸︷︷︸

XtI

HA
11 · · ·

]

HA
1 =

∂Xk

E θ

∂Ik
E θ

∂Ik
E θ

∂Ii
Eθ

= −X
I RJl(Mta)MtV

−1JA,0

HA
2 =

∂Xk

E θ

∂Ik
E θ

∂Ik
E θ

∂I0
E θ

= −X
I R(Jl(Mta)MtV

−1JA,i + Exp(Mta))

HA
3 =

∂Xk

E θ

∂X
I θ

= I3

HA
4 =

∂Xk

E θ

∂Ik
E θ

∂Ik
E θ

∂AtI
= −X

I RJl(Mta)Mdta

HA
5 =

∂EpXk

∂Ik
E θ

∂Ik
E θ

∂Ik
E θ

= E
Ik
R⌊IpX⌋Jl(Mta)MtV

−1JA,0

HA
6 =

∂EpXk

∂EpIk

∂EpIk

∂EpIk

= I3 +MtV
−1JB,0

HA
7 =

∂EpXk

∂Ik
E θ

∂Ik
E θ

∂Ik91
E θ

= E
Ik
R⌊IpX⌋(Jl(Mta)MtV

−1JA,i + Exp(Mta))

HA
8 =

∂EpXk

∂EpIk

∂EpIk

∂EpIk91

= MtV
−1JB,i

HA
9 =

∂EpXk

∂X
I θ

= E
Xk

R⌊XpI⌋

HA
10 =

∂EpXk

∂XpI
= −E

Xk
R

HA
11 =

∂EpXk

∂Ik
E θ

∂Ik
E θ

∂AtI
+

∂EpXk

∂EpIk

∂EpIk

∂AtI

= E
Ik
R⌊IpX⌋Jl(Mta)Mdta+Mdtb

where

Mt =
[
∆tkI3 ∆t2kI3 · · · ∆tnkI3

]
Mdt =

[
I3 2∆tkI3 · · · n∆tn−1

k I3
]

V =

∆t1 · · · ∆tn1
...

. . .
...

∆tn · · · ∆tnn

a =

[
a⊤1 a⊤2 · · · a⊤n

]⊤
b =

[
b⊤
1 b⊤

2 · · · b⊤
n

]⊤
JA,0 =

−J
91
l (Log(I1ERE

I0
R))

...
−J91

l (Log(InE RE
I0
R))

JA,i =

03

...
J91
l (Log(IiERE

I0
R))IiERE

I0
R

...
03

JB,0 =

[
−I3 · · · −I3

]⊤
JB,i =

[
03 · · · I3 · · · 03

]⊤

	1 Introduction
	2 Related Work
	2.1 Estimation with Three Sensing Modalities
	2.1.1 LiDAR-VINS
	2.1.2 GNSS-VINS
	2.1.3 Wheel-VINS

	2.2 Estimation with Four or More Sensing Modalities
	2.2.1 Graph-based Systems
	2.2.2 Filter-based Systems
	2.2.3 Continuous-time Estimation

	2.3 Online Sensor Calibration
	2.4 Extension of Our Previous Publications

	3 MINS State Estimation
	3.1 IMU
	3.2 Camera
	3.2.1 Distortion Function
	3.2.2 Perspective Projection Function
	3.2.3 Euclidean Transformation
	3.2.4 MSCKF Update

	3.3 Wheel Encoder
	3.3.1 Wheel Odometry Integration
	3.3.2 Measurement Update

	3.4 LiDAR
	3.4.1 Local Mapping

	3.5 GNSS

	4 Adaptive On-Manifold Interpolation
	4.1 Numerical Analysis
	4.2 Incorporating Interpolation Error
	4.3 Dynamic Cloning
	4.4 Online Calibration

	5 System Initialization
	5.1 IMU-Wheel Dynamic Initialization
	5.2 Local-Global Frame Transformation
	5.3 Global Navigation

	6 Simulation Results
	6.1 Effects of Interpolation Errors
	6.2 Dynamic Cloning
	6.3 Fusing Different Sensors
	6.4 Robust to Sensor Failure
	6.5 Robust to Poor Calibration

	7 Experimental Results
	7.1 Localization Accuracy
	7.1.1 KAIST Urban Dataset
	7.1.2 UD Husky Dataset

	7.2 Computation Efficiency

	8 Conclusions and Future Work
	A Jacobians of Camera Measurements
	A.1 Distortion
	A.2 Perspective Projection
	A.3 Euclidean Transformation

	B Wheel Odometry Measurements
	B.1 Wheel Odometry Preintegration
	B.2 Jacobian of Wheel-Encoder Intrinsics
	B.3 Full Jacobian of Wheel Odometry

	C Jacobians of LiDAR Measurements
	D GNSS Measurements
	D.1 Jacobians
	D.2 Observability Analysis: The State in Local
	D.3 Observability Analysis: The State in Global
	D.4 State Transformation from Local to Global

	E Jacobians of Synchronous Sensors
	F Jacobians of Asynchronous Sensors: Linear Interpolation
	G Jacobians of Asynchronous Sensors: High-order Interpolation

