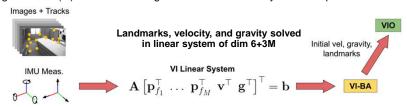


Fast Monocular Visual-Inertial Initialization **Leveraging Learned Single-View Depth**

Nathaniel Merrill, Patrick Geneva, Saimouli Katragadda, Chuchu Chen, and Guoquan Huang Robot Perception and Navigation Group (RPNG), University of Delaware, USA

Introduction

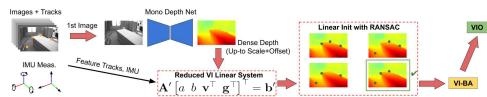

- □ Visual-Inertial Odometry (VIO) requires 3D landmarks, velocity, and gravity to initialize
- ☐ To decrease user's wait time, it is ideal to initialize as fast as possible
- ☐ State-of-the-art systems require 2 seconds, large parallax and many features to initialize

□ Contributions

- Propose a new initialization method for monocular VIO leveraging learned monocular depth
- Shown to be faster, more accurate, and more robust, initializing with low parallax and only 15 features

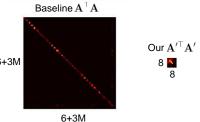
Baseline Monocular Visual-Inertial Initialization

- ☐ State-of-the-art monocular initialization methods [1] use image tracks and IMU measurements in a VI-SfM to solve for initial conditions
- ☐ Large number (M) features and large baseline between keyframes required to initialize



Proposed Initialization Method

- ☐ Key idea: Leverage learned monocular depth to reduce the linear system
 - Propose new model of 3D landmarks w.r.t. learned affine-invariant depth d_i


$$\mathbf{p}_{f_i} = z_i \; oldsymbol{ heta}_{f_i} \ = (ad_i + b) \; oldsymbol{ heta}_{f_i}$$
 Only estimate a,b to represent all landmarks

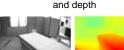
- ☐ Because of the reduced system. RANSAC is practical
- State size reduced from 6+3M for M landmarks to just 8
- 3 views and 2 features is proved to be the minimal problem, but 4 features used to increase robustness

☐ Linear System Structure

- Our linear system is considerably smaller than the baseline one
- System size is 8 regardless of the number of features
- Right: The structure of the normal equations is shown

EuRoC Results

☐ Tested on EuRoC Vicon room datasets with 5 KFs over a 0.5sec window (avg over hundreds of initializations) using MiDaS [2] v2.1 small network


□ Comparisons

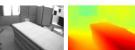

- DS 3D: Baseline initialization [1] estimating 3D landmarks separately
- DS + DP: Our reimplementation of [3] (mono depth priors in VI-BA only, linear system the same)

Table: Scale error (%)		
Algorithm	Avg.	
DS 3D	57.6	
DS + DP	58.8	
Ours w/o RANSAC	17.3	
Ours	5.8	

Algorithm	Average
DS 3D	1.592 / 0.028
DS + DP	1.523 / 0.027
Zhou [3]	- / 0.024
Ours w/o RANSAC	1.467 / 0.026
Ours	1.419 / 0.022

Table: ATF (deg / m)

Example input

TUM-VI Results

- ☐ On the TUM-VI dataset, we tested initialization with 5 KFs and only a 300ms window
- ☐ Found reasonable performance of MiDaS on fisheye images despite being trained on rectified

Table: Init window ATE and scale error (deg / m (%))

Algorithm	Average		
DS 3D	1.243 / 0.018 (9.20)		
DS + DP	1.276 / 0.020 (8.73)		
Ours	1.274 / 0.011 (6.47)		

Table: VIO ATE using init conditions (deg / m)

Algorithm	Average
DS 3D	1.381 / 0.133
DS + DP	1.384 / 0.122
Ours	1.214 / 0.059

Example input and depth

Robustness Experiments (TUM-VI)

- ☐ Right: We added large random noise to the measurements for different outlier percentages, showing our method's robustness to outliers
- ☐ Below: We simulated tracking failure by reducing the number of features available, showing our method is robust to tracking failure

Table: % of successful initializations

Algorithm	60 feats	45 feats	30 feats	15 feat
DS 3D	81.25	17.50	33.75	2.50
DS 3D + DP	78.75	16.25	32.50	2.50
Ours w/o RANSAC	100.00	98.75	97.50	55.00
Ours	100.00	95.00	96.25	47.50

Table: Init window ATE (deg / m) with varying artificial outliers

Outliers	Algorithm	Average
5%	DS 3D	1.257 / 0.017
	Ours w/o RANSAC	1.242 / 0.014
	Ours	1.047 / 0.014
10%	DS 3D	1.280 / 0.016
	Ours w/o RANSAC	1.474 / 0.012
	Ours	0.957 / 0.011
25%	DS 3D	1.995 / 0.021
	Ours w/o RANSAC	2.413 / 0.025
	Ours	1.409 / 0.014
45%	DS 3D	2.929 / 0.035
	Ours w/o RANSAC	4.035 / 0.039
	Ours	2.663 / 0.030

[1] T.-C. Dong-Si and A. I. Mourikis, "Estimator initialization in vision-aided inertial navigation with unknown camera-imu calibration," in IROS 2012 [2] R. Ranftl et. al, "Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer," in TPAMI 2022.

