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Abstract— This paper presents a tightly-coupled multi-sensor
fusion algorithm of LiDAR-inertial-camera (LIC) odometry,
which efficiently combines the IMU measurements and sparse
visual and LiDAR features. To endow the proposed LIC-Fusion
approach with the plug-and-play property, we also perform
online spatial and temporal sensor calibration between all three
sensors. The key idea of the proposed approach is to detect
and track sparse edge/surf feature points over LiDAR scans
and then to fuse their measurements along with the visual
feature observations in the efficient MSCKF framework. We
perform extensive experiments in both indoor and outdoor
environments and validate that the LIC-Fusion outperforms
the state-of-the-art visual-inertial odometry (VIO) and LiDAR
odometry methods, in terms of localization accuracy as well as
robustness to aggressive motions.

I. INTRODUCTION AND RELATED WORK

It is essential to be able to accurately track 3D motion for
autonomous vehicles and mobile perception systems. One
popular solution is the inertial navigation system (INS) aided
with a monocular camera, which has recently attracted signif-
icant attentions [1–6], in part because of their complimentary
sensing modalities of low cost and small size. However, for
obvious reasons, cameras are limited by lighting conditions.
In contrast, 3D LiDAR sensors can provide more robust and
accurate measurements, and are therefore also popular for
robot localization and mapping [7–10] but suffer from point
cloud sparsity. While they are still expensive as of today,
limiting their widespread adoptions, they are expected to
have dramatic cost reduction in coming years. In this work,
we focus on LiDAR-inertial-camera odometry to offer an
efficient and robust 3D motion tracking solution.

Fusing these multi-modal measurements, in particular,
from camera and LiDAR, is often addressed within a SLAM
framework [11]. For example, Zhang, Kaess, and Singh
[12] associated the depth information from LiDAR to the
visual features from the camera. As a result, the monocular
camera can be considered as RGB-D with the augmented
depth from LiDAR. Later, Zhang and Singh [13] developed
a general framework for combining visual odometry (VO)
and LiDAR odometry (LO), which uses a high-frequency
visual odometry to estimate the ego-motion and a lower-rate
LiDAR odometry which matches scans to the map in order to
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refine the VO estimates. Recently, Shin, Park, and Kim [14]
used the depth from LiDAR in a direct visual SLAM method,
where photometric errors are optimized in an iterative way.
Graeter, Wilczynski, and Lauer [11] developed the LIMO
algorithm, which also leverages the LiDAR for augmenting
depth to visual features by fitting local planes, and was shown
to perform well in autonomous driving scenarios.

Zhang and Singh [15] recently developed a laser visual-
inertal odometry and mapping system fusing measurements
from LiDAR, IMU and camera as we do in this paper.
Specifically, they employed a sequential multi-layer process-
ing pipeline, which is composed of three main components:
IMU prediction, visual-inertial odometry, and scan matching
refinement. IMU measurements are used for prediction;
visual-inertial subsystem is used for ego-motion estimation,
and a joint cost function of IMU error and visual feature
re-projection error is minimized in an iterative way; LiDAR
scan matching is performed via iterative closet point (ICP),
which further refines the prior pose estimates. Furthermore,
the visual-inertial odometry subsystem, and scan matching
refinement subsystem will provide feedback to correct veloc-
ity and bias of IMU. Clearly, both iterative optimization and
iterative closet point are performed in their work, sophisti-
cated pipelines such as parallel processing need to be resorted
for saving computational resources. Only the output pose
estimation results from former subsystem is fed into the latter
subsystem, thus the constraints in former subsystem can not
be fully leveraged in the latter subsystem. For example, the
feature reprojection errors in visual-inertial subsystem will
not be directly minimized in the latter LiDAR scan matching
subsystem, thus being loosely coupled.

In this paper, however, we develop a tightly-coupled,
single-thread, lidar-inertial-camera (LIC) odometry algo-
rithm with online spatial and temporal calibration between
any two sensors, in order to optimally fuse these multi-
modal measurements. In particular, in the proposed method,
no iterative closet point or iterative optimization step are
performed, rendering much computational savings. The main
contributions of this work are the following:
• We develop a tightly-coupled LIC odometry (termed

LIC-Fusion), which enables to efficiently estimate the
6DOF poses, meanwhile, to perform online spatial and
temporal calibration between different sensors.

• The proposed method fuses inertial measurements,
sparse visual features, and two different LiDAR features
within the efficient multi-state constraint Kalman filter
(MSCKF) framework, in which a noise model of the
LiDAR feature residual is proposed to better capture
the uncertainty of measurements.



• We perform extensive experimental validations of the
proposed approach on real-world experiments including
indoor and outdoor scenarios.

II. THE PROPOSED LIC-FUSION

In this section, we present in detail the proposed LIC-
Fusion odometry that tightly fuses LiDAR, inertial, and cam-
era measurements to track 6DOF pose of IMU-affixed frame
{I} with respect to a global reference frame {G} based
on the efficient MSCKF [1]. The data flow is illustrated in
Fig. 1a, showing that IMU measurements including angular
velocity and linear acceleration are used for sate propagation,
while features from images and LiDAR scans are used for
state update.

A. State Vector

The state vector of the proposed method includes the IMU
state xI at time k, the extrinsics between IMU and camera
xcalib C , the extrinsics between IMU and LiDAR xcalib L,
a sliding window of local IMU clones at the past m image
times xC , and a sliding window of local IMU clones at the
past n LiDAR scan times xL. Note that both the IMU clones
for image and LiDAR scan are the past local IMU states,
which won’t evolve over time and will be updated by the
visual feature measurement or LiDAR feature measurement.
The total state vector is:

x =
[
x>I x>calib C x>calib L x>C x>L

]>
(1)

where

xI =
[
Ik
G q̄
> b>g

Gv>Ik b>a
Gp>Ik

]>
(2)

xcalib C =
[
C
I q̄
> Cp>I tdC

]>
(3)

xcalib L =
[
L
I q̄
> Lp>I tdL

]>
(4)

xC =
[
Ia1

G q̄> Gp>Ia1
· · · Iam

G q̄> Gp>Iam

]>
(5)

xL =
[
Ib1
G q̄> Gp>Ib1

· · · IbnG q̄> Gp>Ibn

]>
(6)

where Ik
G q̄ is the JPL quaternion [16] relating to the rotation

matrix Ik
G R ∈ R3×3 from global reference frame {G} to

local frame {Ik} of IMU at time stamp tk, GvIk and GpIk
represent the IMU velocity and position in the global frame,
respectively. bg and ba are the gyroscope and accelerometer
biases. CI q̄ and CpI represent the rigid-body transformation
between the IMU frame {C} and the IMU frame {I},
analogously L

I q̄ and LpI are the transformation between
camera frame and LiDAR frame. Considering the coupled
system composed by these three sensors, timestamps are
typically obtained for each image, IMU sample, and LiDAR
scan, and the unknown time offsets between different sensors
generally exist due to different sensor’s latency, missed data,
clock skew, and data transmission dealy [17].

Fig. 1b shows one example of the time offset which
arises because of data transmission delay of camera images
or LiDAR scans. In the figure, the upper plot denotes the

physical sampling time instants. The lower plot represents
the labeled timestamp of measurement by computer. Once a
measurement is received by the computer, it will be labeled
with a timestamp. However the labeled timestamp of Cam-
era/LiDAR deviates from the true physical sampling time
instant by tdC or tdL. In order to utilize the heterogeneous
measurements obtained from three different sensors, the time
offsets must be known. Therefore, we estimate the unknown
time offset tdC between the camera and IMU, tdL between
the LiDAR and IMU. We use the IMU time as time reference,
and align the labeled timestamps of image and LiDAR scan,
tC , tL with the IMU timestamp, tI , by tI = tC + tdC =
tL + tdL. It should be noted the tdC or tdL here may have a
positive or negative value. For the case illustrated in Fig 1b,
it has a negative value.

B. IMU Propagation

The IMU measurements used for propagation in our
EKF estimator, which predicts the states at given time.
The continuous-time dynamics of the IMU state xI can be
described as [16]:

Ik
G

˙̄q(t) =
1

2
Ω
(
Ikω(t)

)
Ik
G q̄(t)

GṗIk(t) = GvIk(t)
Gv̇Ik(t) = Ik

G R(t)>Ika(t) + Gg

ḃg(t) = nwg, ḃa(t) = nwa(t) (7)

In the above expression, we define Ω(ω) =
[−bωc ω

−ωT 0

]
, b·c as

a conversion function to skew symmetric matrix, Ikω and Ika
represent the angular velocity and linear acceleration in local
IMU frame, and Gg denotes the gravitational acceleration in
global frame.

The gyroscope and accelerometer biases bg and ba are
modeled as random walk, which are driven by the white
Gaussian noises nwg and nwa, respectively. The states de-
scribed in preceding section are propagated over time by
the IMU measurements ωm and am. Actually, among all
the states, only the IMU states xI will evolve over this
propagation step. We linearize the propagation step at current
estimates, and then propagate the states and corresponding
covariance. Since the state covariance is correlated, and it
will evolve over this propagation [1].

C. State Augmentation

Every time the system receives a new image or LiDAR
scan, we will propagate the IMU state to this time, clone
this IMU state and append it as a new state to existing state
vector. In order to calibrate the time offsets between different
sensors, we will propagate up to IMU time t̂Ik, which is
supposed to be the physical IMU time when image or LiDAR
scan comes. Such as a new LiDAR scan is received with
timestamp tLk, we will propagate up to t̂Ik = tLk + t̂dL,
and argument the state vector to include this new cloned
state estimate,

x̂Lk(t̂Ik) =
[
Ik ˆ̄q(t̂Ik)> Gp̂Ik(t̂Ik)>

]
(8)
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(b)

Fig. 1: Data flow of LIC-fusion, measurements from three different sensors are utilized in the EKF based estimator (a).
Illustration of the time offset between camera/LiDAR and IMU (b).

As the covariance are correlated, the state covariance will
evolve over this augmentation:

P(t̂Ik)←

[
P(t̂Ik) P(t̂Ik)JIk(t̂Ik)>

JIk(t̂Ik)P(t̂Ik) JIk(t̂Ik)P(t̂Ik)JIk(t̂Ik)>

]
(9)

where JIk(t̂Ik) is the Jacobian of the new cloned state with
respect to the state already existing in the state vector Eq. 1:

JIk(t̂Ik) =
∂δxLk(t̂Ik)

∂δx
=
[
JI Jcalib C Jcalib L JC JL

]
(10)

In the above expression, JI denotes the Jacobian with respect
to the IMU state xI ,

JI =

[
I3×3 03×9 03×3
03×3 03×9 I3×3

]
(11)

Jcalib L is the Jacobian with respect to the extrinsics (includ-
ing time offset) between IMU and LiDAR,

Jcalib L =
[
06×6 JtdL

]
, JtdL =

[
Ikω̂> Gv̂>Ik

]>
(12)

where Ikω̂> denotes the local angular velocity of IMU at
time t̂Ik, and Gv̂>Ik is the global linear velocity of IMU at
time t̂Ik. Since t̂Ik is not exactly aligned with one IMU
measurement timestamp at most of time, we will interpolate
the IMU measurements for computing Ikω̂> and Gv̂>Ik.
Jcalib C , JC , JL are the Jacobian with respect to extrinsics
between IMU and camera, clones at camera time, clones
at LiDAR time, respectively. All of them should be zero
matrix. The dependence of the new cloned IMU state on tdL
is modeled via the Jacobian JtdL , and tdL will be updated
in the EKF update step by measurements. Likewise, the
time offset between IMU and camera can be modeled and
estimated when new image is coming. In this simple fashion,
we can explicitly perform online temporal calibration by
jointly estimating the time offsets and other states in the
state vector.

D. Measurement Models

1) LiDAR Feature Measurement: As there are lots of
points in an incoming LiDAR scan, we cannot use all points
in the cloud and remain computational efficiency. Therefore,
we only utilize some edge and surf features as in [7]. For

the LiDAR scans which are related to a cloned IMU state
in the sliding window, we will project their features into the
oldest scan in the sliding window to find the closest neighbor
features of the same class using a KD-tree for fast indexing
[18]. For an example, we project one feature point Ll+1pfi
in the second oldest LiDAR scan Ll+1 to the oldest LiDAR
scan Ll, the projected point is denoted as Llpfi.

Llpfi = Ll

Ll+1
RLl+1pfi + LlpLl+1

(13)

where Ll

Ll+1
R, LlpLl+1

, are the relative rotation and transla-
tion between two LiDAR frames, which can be computed
from the states in the state vector:

Ll

Ll+1
R = L

I RIl
GR

(
L
I R

Il+1

G R
)>

LlpLl+1
= L
I RIl

GR
(
GpIl+1

− GpIl +
Il+1

G R>IpL

)
+ LpI

IpL = −LI R>LpI (14)

For the projected edge features Llpfi, we will find its two
corresponding edge features in the oldest scan, Llpfj ,

Llpfk,
which are supposed to be sampled from the same physical
edge as Llpfi. Llpfj is the closet edge feature in the oldest
LiDAR scan which is composed with many rings, here we
assume that Llpfj is on rth ring, then we will find the other
closet edge feature Llpfk on neighboring ring r−1 or r+1.
The measurement residual of edge feature Ll+1pfi is the
distance between its projected feature point Llpfi and the
straight line represented by two points Llpfj ,

Llpfk [7]:

r(Ll+1pfi) =

∥∥∥(Llpfi − Llpfj
)
×
(
Llpfi − Llpfk

)∥∥∥
2∥∥Llpfj − Llpfk

∥∥
2

(15)

where ‖·‖2 represents the 2-norm of a matrix, and × denotes
the cross product of two vector. We linearize the above
distance measurement at current estimate by:

r(Ll+1pfi) = h(x) + nr

= h(x̂) + Hx

∣∣
x=x̂

δx + nr (16)

where Hx is the Jacobian of the distance with respect to the
states in the state vector. nr is modeled as white Gaussian
with covariance of Cr. The non-zero elements in Hx are only
the items related to the cloned poses IlG q̄,

GpIl ,
Il+1

G q̄,GpIl+1



and the rigid transformation between IMU and LiDAR
L
I q̄,

LpI . Thus we have:

Hx =
∂δr(Ll+1pfi)

∂Llδpfi

∂Llδpfi
∂δx

(17)

the non-zero elements in ∂Llδpfi

∂δx are:

∂Llδpfi

∂IlGδθ
= L
I RbIlGR

Il+1

G R>LI RLl+1pfic

+ L
I RbIlGR

(
GpIl+1

− GpIl +
Il+1

G R>IpL

)
c

∂Llδpfi
∂GδpIl

= −LI RIl
GR

∂Llδpfi

∂
Il+1

G δθ
= −LI RIl

GR
Il+1

G R>bLI R>Ll+1pfi + IpLc

∂Llδpfi
∂GδpIl+1

= L
I RIl

GR

∂Llδpfi
∂LI δθ

= bLl

Ll+1
R
(
Ll+1pfi − LpI

)
c

− Ll

Ll+1
RbLl+1pfi − LpIc

∂Llδpfi
∂LδpI

= −Ll

Ll+1
R + I3×3 (18)

In order to perform EKF update, we need to know the
explicit covariance Cr of the distance measurement. As
this measurement is not directly obtained from sensors, we
propagate the covariance of raw measurements (point) in
LiDAR scan to Cr at the current estimate state. Assuming the
covariance of point Ll+1pfi,

Llpfj ,
Llpfk are Ci,Cj ,Ck

respectively, Cr can be computed as:

Cr =
∑

x=i,j,k

JxCxJ
>
x , Ji =

∂δr(Ll+1pfi)

∂Llδpfi

Ll

Ll+1
R

Jj =
∂δr(Ll+1pfi)

∂Llδpfj
, Jk =

∂δr(Ll+1pfi)

∂Llδpfk
(19)

Due to limit space, the Jacobian of r(Ll+1pfi) with respect
to edge features ∂δr(Ll+1pfi)

∂Llδpfi
,
∂δr(Ll+1pfi)

∂Llδpfj
,
∂δr(Ll+1pfi)

∂Llδpfk
are

omitted here.
With the covariances of states and measurements, we

compute the Mahalanobis distance as:

rm = r(Ll+1pfi)
>
(
HxP(t̂Ik)H>x + Cr

)−1
r(Ll+1pfi)

where rm should subject to χ2 distribution. If rm is smaller
than a threshold, measurement r(Ll+1pfi) will be used for
EKF update.

Similarly, for the projected surf features Llpfi,
we will find its corresponding three surf features,
Llpfj ,

Llpfk,
Llpfl, which are supposed to be sampled

on the same physical plane as Llpfi. The measurement
residual of surf feature Ll+1pfi will be the distance between
its projected feature point Llpfi and the plane represented
by Llpfj ,

Llpfk,
Llpfl. The covariance propagation to

the distance measurement, linearization operation and
Mahalanobis distance test are akin to the edge feature
elaborated here.

2) Visual Feature Measurement: Once a new image is
received, we will augment the state with a cloned IMU state,
and extract FAST feature from the image which will then
be tracked them across sequential images by KLT optical
flow. Once visual feature measurements lost or reach the
size of the sliding window, we will use these measurements
and the related cloned poses to initialize the visual feature
in 3D space by triangulation [1]. The residual of visual
feature measurement is the reprojection error. For visual
measurements zi of a 3D visual feature Gpfi the linearized
residual will be:

r(zi) = h(x,Gpfi) + nr

= h(x̂,Gp̂fi) + Hx

∣∣∣
x=x̂

δx

+ Hf |Gpfi=Gp̂fi

Gδpfi + nr (20)

where Hf is the Jacobian of visual feature measurement with
respect to the 3D feature Gpfi. Since our measurements are
a function of Gp̂fi, see Eq. 20, we leverage the null space
operation [1] to remove its dependency. After the null space
operation, we have:

ro(zi) = Hxoδx + nro (21)

It should be noted that the Jacobian with respect to the
rigid transformation between IMU and camera C

I q̄,
CpI is

non-zero, which means the transformation between IMU and
camera can be calibrated online.

E. EKF update

After linearizing the LiDAR feature and visual feature
measurements at current estimate, we can perform MSCKF
update. By stacking all measurement residuals (which can
origin from LiDAR feature or visual feature) in one residual
vector, we have:

r = Hxδx + n (22)

where r and n are vectors with block elements of residual
and noise in Eq. 16 or Eq. 21. We treat all the measurements
as statistically independent, thus the noise vector n are
uncorrelated. Since number of measurements are much larger
than the states, we employ Givens rotation [19] to perform
the measurement compression for computational efficiency,
which can also be conducted by the QR decomposition. After
the measurement compression, we obtain:

rc = THδx + nc (23)

The rows of compressed Jacobain TH should equals to the
dimension of the related state vector x.

There are some degenerate scenarios for visual features
such as texture-less environment, which we hope to lever-
age the LiDAR’s ability during these outages. However, in
the cases where the states are not well-constrained by the
obtained measurements, we compute the sum of the row
elements in TH , such as for the ith row: si = sum(TH [i, :])
If si is smaller than a given threshold, which means this
direction (dimension) of the state vector is degenerate, we



Fig. 2: The self-assembled LiDAR-inertial camera rig with
camera, IMU, and sixteen beam LiDAR.

will remove the ith row elements from TH for robustness
and accuracy of the coupled system. After removing the
ith row elements in TH , the corresponding direction of the
state vector will not be updated. This cut-off operation in
filter is similar with the solution remapping operation in
the optimization-based method [20]. The solution remapping
operation determines and separates degenerate directions in
the state space, and only partially update the state in well-
conditioned directions. By the cut-off operation described,
the coupled system should not be corrupted by noise in the
degenerate scenarios for LiDAR measurements or camera
measurements.

III. EXPERIMENTAL RESULTS

To test the performance of the proposed algorithms,
several experiments were performed both in outdoors and
indoors environments. In this section, the localization perfor-
mance and computation time test are presented. Our system
is composed of IMU, camera, and sixteen channel LiDAR.
The sensor rig is shown in Fig. 2, which uses an Xsens
MTi-300 AHRS IMU, Velodyne VLP-16 LiDAR, and the
global-shutter pointgrey camera. The extrinsic of the system
are manually measured and are refined online, with initial
guesses of the time offsets between the sensors set to zero.

A. Outdoor Tests

We evaluated the system on a collected dataset from a
custom built mobile robot platform. The robot was equipped
with a RTK GPS which is used as the groundtruth for
comparison of the different odometry methods. We compare
against and implementation of the standard MSCKF [1], and
LOAM LiDAR odometry [7]. We note that we compare
against the global output of the LOAM algorithm that
leverages indirect loop-closure information through cloud
registrations to its constructed global map.

Fig. 3 shows outdoor test results of LIC, MSCKF and
LOAM. The length of the trajectory is around 800 meters and
recorded for 4 minutes. Around 170 seconds into the dataset

TABLE I: Outdoor Experimental RMSE Averages

Datasets LIC MSCKF LOAM

Outdoor
Average
Error(m) 4.06 10.75 23.08

1 sigma(m) 3.42 3.56 2.63
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x-axis (m)

-150

-100

-50
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50

y
-a

x
is

 (
m

)

LIC

MSCKF

LOAM

Groundtruth

Fig. 3: Top view trajectories of real dataset showing the
LIC (blue), MSCKF (red), LOAM (pink) and RTK GPS
groundtruth (black)

LOAM starts diverging while both LIC and MSCKF showed
stable localization. Each algorithm was run six different
times to account for randomness in their different RANSAC
methods and provide a representative evaluation of expected
typical performance. The average absolute trajectory error
(ATE) of each method is presented in Fig.4, in which the
trajectories where aligned to the RTK groundtruth using the
“best fit” transform that minimized the overall trajectory
error. The proposed LIC showed a 2.5 decrease in the
averagee error as compared to the standard MSCKF, and
5 decreased when compared to LOAM. We also saw that
the drift of LIC grows much slower over time as compared
to the other two methods and maintains the smallest error
for most of the trajectory. The average error and 1 sigma of
the test results are in Table I. These results show that the
proposed system is able to localize with high accuracy and
the fusion of different sensing modalities (that being camera,
inertial, and LiDAR) allows for an increase of robustness to
when single sensor odometry algorithms fail.

B. Indoor Tests

The system was then tested on a series of indoor datasets
in various lighting conditions and motion profiles. Since
groundtruth was not avalible indoors, we returned the sensor

0 50 100 150 200
0

50

100

E
rr

o
r 

(m
)

LIC

MSCKF

LOAM

Fig. 4: RMS errors of the LIC (blue), MSCKF (red) and
LOAM (pink) over the duration of the trajectory.
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Fig. 5: Isometric views of the indoor datasets, sub-captions correspond to the respective dataset (a), (b), (c), and (d).

TABLE II: Indoor Experimental RMSE Averages

MSCKF LIC-fusion LOAM [7]
Indoor-A (39m) 0.99 0.9776 0.66
Indoor-B (86m) 1.55 1.0369 0.46
Indoor-C (55m) 49.94 1.5454 2.44

Indoor-D (189m) 46.03 3.6782 5.99

platform to the inital location and evaluate the start-end error.
Table II, summarizes the results, and shows that the proposed
LIC is able to localize with high accuracy. The indoor C
dataset is interesting since it has high angular velocities and
linear accelerations with high levels of motion blur. Our
system is able to localize in this, while the other methods
have large amounts of errors.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a tightly coupled multi-
sensor fusion algorithm for LiDAR-inertial-camera odoemtry
(i.e., LIC-Fusion) along with online spatial and temporal
calibration of the three sensors. The proposed approach
detects and tracks sparse edge/surfl feature points over
LiDAR scans and then fuses these measurements along
with the visual features extracted from monocular images
in the efficient MSCKF framework. As a result, by taking
advantages of different sensing modalities, the proposed LIC-
Fusion odometry is able to provide accurate and robust 6DOF
motion tracking in 3D in different environments and under
different motions. In the future, we will investigate how to
efficiently integrate loop closure constraints obtained from
both LiDAR and camera into the LIC-Fusion in order to
bound navigation errors.
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