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Abstract— In this paper, we present a tightly-coupled monoc-
ular visual-inertial navigation system (VINS) using points and
lines with online spatial and temporal calibration. Based on line
segment measurements from images, we propose two sliding
window based 3D line triangulation algorithms and compare
their performance. Analysis of the proposed algorithm reveals
3 degenerate camera motions that cause triangulation failures.
Both geometrical interpretation and Monte-Carlo simulations
are provided to verify these degenerate motions. In addition,
commonly used line representations are compared through a
monocular visual SLAM Monte-Carlo simulation. Finally, real-
world experiments are conducted to validate the implemented
VINS system using a “closest point” line representation.

I. INTRODUCTION AND RELATED WORK

Over the past decade, visual-inertial navigation systems
(VINS) have seen a great increase in popularity due to
their ability to provide accurate localization solutions while
utilizing only low-cost inertial measurement units (IMUs)
and cameras. The affordability, size, and light-weight nature
of these sensors makes them ideal sensor deployments for a
wide-range of applications such as unmanned aerial vehicles
(UAVs) [1] and mobile devices [2].

When fusing camera and IMU data, a key question is how
to best to utilize the rich amount of information available
in the images. In particular, most VINS utilize indirect
image processing techniques. As compared to direct visual
methods which provide motion estimates by minimizing
costs involving the raw pixel intensities captured by the
camera [3, 4], indirect systems extract geometric features
from the pixels and track their motion across the image plane.
The most often used geometric features include points [5–8]
and/or lines [9–14].

Point features correspond to 3D positions in the space that
are detected as “corners” on the image plane. Lines, which
are most commonly seen in human-built environments, are
detected as straight edges in the image. Quite a few navi-
gation works have been devoted to utilizing both geometric
features to achieve robust and accurate estimation.

In particular, leveraging the multi-state constraint Kalman
filter (MSCKF) framework [5], Kottas et al. [9] proposed to
use a unit quaternion with a distance scalar to model a line
and incorporate line features into visual-inertial odometry
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(VIO). In addition, they provided an observability analysis
showing that VINS with a single line feature suffers from
5 unobservable directions. Later on, Kottas et al. [10] and
Guo et al. [15] proposed to utilize line constraints (e.g.,
parallel lines and vertical lines) in the estimator to improve
the estimation accuracy in structured environments such as
indoor or Manhattan world, where all lines lay along the 3
major directions. Yu et al. [12] designed a VINS system with
line features suitable for rolling-shutter cameras. Utilizing
the Plücker representation and orthonormal error states [16]
for lines, Heo et al. [13] implemented an invariant MSCKF
with point and line features using a Lie group representation
of the state. Zheng et al. [14] proposed to represent a line
with two 3D endpoints and designed a stereo visual-inertial
navigation system leveraging both points and lines. He et
al. [11] used IMU preintegration [17] to design a batch-
optimization based visual-inertial SLAM with point and
Plücker line features.

In many of these previous works, different representations
for line features were used but no explicit comparisons were
performed. Leveraging our previous work [18], which offered
a brief survey of line representations and proposed a “closest
point” representation, in this paper we conduct a performance
evaluation for commonly used parameterizations. In addi-
tion, few works have investigated degenerate motions for
line feature triangulation which cause poor line estimation
performance in practice. In this paper, we identify these
motion profiles for monocular VINS using line features. The
main contributions of this paper can be listed as follows:
• We design a tightly-coupled monocular visual-inertial

navigation system using point and line features with
online spatial and temporal calibration.

• We propose two sliding window based line feature tri-
angulation algorithms and compare their performances.
Based on the algorithms, we identify 3 degenerate
motions that cause line triangulation to fail.

• We investigate commonly used line representations
and numerically compare their performances in a line-
feature based monocular-visual-inertial SLAM scenario.

• Real world experiments are performed to validate the
designed system with “closest point” line representation.

II. PROBLEM FORMULATION

In order to properly contextualize our line analysis, we
first formulate the standard visual-inertial navigation problem
when using both point and line features. We define the state
vector for visual-inertial navigation as:

x =
[
x>I x>calib td x>c

]>
(1)



where xI denotes the IMU state, xcalib denotes the rigid
transformation between the IMU and camera, td represents
the time-offset and xc represents the cloned IMU states. At
time step k, the state vector can be written as:

xIk =
[

Ik
Gq̄> Ik b>g Gv>Ik

Ik b>a Gp>Ik
]>

(2)

where Ik
Gq̄ denotes JPL quaternion [19], representing the

rotation from global frame {G} to IMU frame {I} at time
step k. GvIk and GpIk represents the IMU velocity and
position in the global frame at time step k, respectively. Ik bg
and Ik ba represents the gyroscope and accelerometer biases.
We define the error states of the IMU state as:

x̃Ik =
[
δ

Ik
Gθ
> Ik b̃>g Gṽ>Ik

Ik b̃>a Gp̃>Ik
]>

(3)

where the error, x̃, is defined as the difference between
the true state, x, and estimated state x̂, that is x̃ := x− x̂.
However, for the JPL quaternion, the error state is defined
as δθ , where we have:

q̄ = δ q̄⊗ ˆ̄q'
[

1
2 δθ

> 1
]>
⊗ ˆ̄q (4)

with ⊗ denotes the quaternion multiplication [19].
In addition to these IMU navigation states, we also es-

timate the spatial calibration, xcalib, between the IMU and
camera. In particular, our state vector contains the rotation
from the IMU frame to the camera frame, C

I q̄, as well as the
translation from camera to IMU CpI . Explicitly, we have:

xcalib =
[

C
I q̄> Cp>I

]>
(5)

Moreover, due to the nature of electronic hardware (e.g.,
asynchronous clocks, data transmission delays and electronic
triggering delays), the timestamps reported by each of the
sensors will differ from the “true” time that the measure-
ments were recorded. In this work, we treat the IMU clock
as the true time and estimate the offset of the aiding sensor
relative to this base clock [20, 21]. We model the time offset
td as a constant value:

td = tC− tI (6)

where tC is the time recorded on the sensor measurements,
and tI is the corresponding true IMU time.

If there are m cloned IMU poses at the time step k
(corresponding to the poses of the IMU at the true imaging
times), then xck can be written as:

xck =
[

Ik−1
G q̄> Gp>Ik−1

· · · Ik−m
G q̄> Gp>Ik−m

]>
(7)

A. System Dynamic Model

The local linear acceleration a and angular velocity mea-
surements ω can be read out by an IMU with noises and
biases as:

am = a+ I
GRGg+ba +na (8)

ωm = ω +bg +ng (9)

where ng and na are the continuous-time Gaussian noises
that contaminate the IMU readings. The dynamic model for
this system is given by [19]:

I
G ˙̄q(t) =

1
2

Ω

(
I
ω(t)

)
I
Gq̄(t), GṗI(t) = GvI(t), Gv̇I(t) = Ga(t)

ḃg(t) = nwg, ḃa(t) = nwa(t), ṫd = 0
ẋcalib(t) = 06×1, ẋc(t) = 06m×1 (10)

where nwg and nwa denote the zero-mean Gaussian noises
driving the IMU gyroscope and accelerometer biases, Gg
denotes the gravity, b·c represents the skew matrix, and
Ω(ω) ,

[
−bωc ω

−ω> 0

]
. After linearization, the error state dy-

namic equation can be written as:

˙̃x(t)'

[
FI(t) 015×(6m+7)

0(6m+7)×15 0(6m+7)

]
x̃(t)+

[
GI(t)

0(6m+7)×12

]
n(t)

= F(t)x̃(t)+G(t)n(t) (11)

where FI(t) and GI(t) are the continuous-time IMU er-
ror state and noise Jacobians matrices, respectively, and

n(t) =
[
n>g n>wg n>a n>wa

]>
represents the system noises

modeled as a zero-mean white Gaussian process with auto-
correlation E

[
n(t)n>(t)

]
= Qδ (t− τ).

To propagate the covariance Pk|k at time step k, the
state transition matrix Φ(k+1,k) from time tk to tk+1 can be
computed by solving Φ̇(t,k) = F(t)Φ(t,k) with identity initial
conditions. Thus, the discrete-time noise covariance and the
propagated covariance can be written as:

Qk =
∫ tk+1

tk
Φ(k,τ)G(τ)QG>(τ)Φ>(k,τ)dτ (12)

Pk+1|k = Φ(k+1,k)Pk|kΦ
>
(k+1,k)+Qk (13)

B. Point Measurement Model

As the camera moves through an environment, point
feature measurements can be extracted and tracked between
images. These camera measurements are described by:

zp = Π

(
Cxp

)
+n f , Π

(
[x y z]>

)
=
[

x
z

y
z

]>
(14)

where Cxp represents the 3D position of the point feature
as expressed in the camera frame. According to our time
offset definition (6), the feature Cxp in the sensor frame with
reported time stamp t corresponds to the time t− td in the
IMU base clock. Hence, we have:

Cxp =
C
I RI

GR(t− td)
(

Gxp−GpI(t− td)
)
+CpI (15)

where I
GR(t− td) and GpI(t− td) represent the IMU pose at

time t−td , which will be denoted as time step k for simplicity
in the ensuing derivations.

C. Line Measurement Model

Similar to [16], we adopt a simple projective line mea-
surement model which describes the distance of two line



endpoints, xs =
[
us vs 1

]>
and xe =

[
ue ve 1

]>
, to the

projected line segment in the image:

zl =

[
x>s l√
l2
1+l2

2

x>e l√
l2
1+l2

2

]>
(16)

where (u,v) are the coordinates of the point on the image

plane, while l=
[
l1 l2 l3

]>
is the 2D image line projected

from the 3D line Cxl expressed in the camera frame.

D. MSCKF

Each feature measurement, whether it be a point (14) or
line measurement (16), can be written generically as:

z = h
(

x,Gxfeat

)
+nz (17)

where Gxfeat represents the feature (either a point, Gxp, or
line, Gxl). If Gxfeat is kept in the state vector, the problem size
(and thus the computational burden) will grow unbounded,
quickly preventing real-time estimation. One way to avoid
this is to use a null space operation [22] to marginalize these
features.

To perform this, MSCKF maintains a sliding window
of stochastically cloned historical IMU poses corresponding
to past imaging times in the state vector, and accumulates
the corresponding feature measurements collected over this
window. In our implementation, we clone these poses at the
“true” imaging times in order to estimate the time offset as
in [20]. By stacking the measurements corresponding to one
feature and using the current estimates of the IMU clones in
the sliding window, we can triangulate this feature to form
its estimate, Gx̂feat. From this, the feature measurement (17)
can be linearized as:

z̃'Hxx̃+H f
Gx̃feat +nz (18)

where Hx and H f represent the Jacobians w.r.t. the state x
and the feature, respectively. Decomposing H f with its QR
factorization, we have:

H f =
[
Qe Qn

][R∆

0

]
= QeR∆ (19)

Note that Q>n is the left null space of H f , i.e., Q>n H f = 0.
Multiplying (18) to the left by Q>n 0 therefore yields a new
measurement model independent of the feature error:

z̃′ 'H′xx̃+n′z (20)

As this new measurement relates only to quantities already
contained in the state vector, the standard EKF update can
be performed. Utilizing this null space operation for every
feature tracked over the window ensures that no new states
are added, thereby keeping the problem size (and thus the
computational cost) bounded.

III. LINE REPRESENTATION AND MEASUREMENT
JACOBIANS

A. Line Representation

In order to incorporate line measurements into the estima-
tor, we need to find an appropriate representation for these
features. In our previous work [18], we summarized several
line error representations while we here briefly go over the
following ones: orthonormal, quaternion, and closest point
(see Tab. I and Fig. 1a).

TABLE I: Line representation and corresponding error states

Model # Line Error states
1: Orthonormal nl , vl δθ l , δφl

2: Quaternion dl , q̄l with
R(q̄l) = [ne,ve,bnecve]

δθ l , d̃l

3: Closest Point pl = dl q̄l pl = p̂l + p̃l

Note that q̄l is a unit quaternion and q̄l =
[
q>l ql

]>
.

Given the 3D positions of two points pf1 and pf2 (expressed
in the same frame) corresponding to the same line xl , we can
obtain its Plücker coordinate (Model 1 of lines in Table I)
as [16, 23]: [

nl
vl

]
=

[
bpf1cpf2
pf2−pf1

]
(21)

where nl represents the normal direction of the plane con-
structed by the two points and the origin while vl represents
the line direction. The distance from the origin to the line can
be computed as dl =

‖nl‖
‖vl‖

. A minimal orthonormal error state
(δθ l and δφl) is introduced by [16] for line feature-based
structure from motion (SfM). Based on Model 1, we can
conclude the basic geometric elements of a line, including a
unit normal direction ne =

nl
‖nl‖

, a unit line direction ve =
vl
‖vl‖

,
and the distance scalar dl (see Fig. 1a). With these geometric
elements, Kottas et al. [9] proposed to use a unit quaternion
q̄l and a distance scalar dl to represent a line (Model 2),
where the quaternion describes the line direction:

R(q̄l) =
[
ne ve bnecve

]
, q̄l '

[
1
2 δθ l

1

]
⊗ ˆ̄ql (22)

where δθ l represents the error state of the line quaternion,
while R(q̄l) refers to the rotation matrix associated with q̄l .
The 4D minimal error states of the line include the quater-

nion error angle and the distance scalar error:
[
δθ
>
l d̃l

]>
.

More importantly, if we multiply the unit quaternion q̄l
with the distance scalar dl , we obtain a 4D vector, which
can be considered as the “closest point” for a line in the 4D
vector space (i.e., Model 3):

pl = dl q̄l = dl

[
q>l ql

]>
= p̂l + p̃l (23)

where p̃l is the 4D error state for the closest point of a line.
In this paper, we will compare the performance of these

line representations within a SfM framework.



(a) (b) (c)

Fig. 1: Basic geometric elements for a 3D line (a). Sliding window-based line feature triangulation (b). Degenerate motion
analysis for line feature triangulation (c).

B. Line Measurement Jacobians

We use the CP representation to explain show how to com-
pute the measurement Jacobians for line measurements (16).
For the line projection in CP form, we have the following
equalities:

l = [K 03]
CL, CL =

[
Cdl

Cn>e Cv>e
]>

(24)

CL =

[
C
I R bCpIcCI R
03

C
I R

][
I
GR(t− td) −I

GR(t− td)bGpI(t− td)c
03

I
GR(t− td)

]
GL

(25)

Therefore, the measurement Jacobians can be written as:

∂ z̃
∂ Gp̃I

=
∂ z̃
∂ l̃

∂ l̃
∂CL̃

∂CL̃
∂ IL̃

∂ IL̃
∂ Gp̃I

(26)

∂ z̃
∂δθ I

=
∂ z̃
∂ l̃

∂ l̃
∂CL̃

∂CL̃
∂ IL̃

∂ IL̃
∂δθ I

(27)

∂ z̃
∂ x̃calib

=
∂ z̃
∂ l̃

∂ l̃
∂CL̃

∂CL̃
∂ x̃calib

(28)

∂ z̃
∂ Gp̃l

=
∂ z̃
∂ l̃

∂ l̃
∂CL̃

∂CL̃
∂ IL̃

∂ IL̃

∂

[
δθ
>
l d̃l

]> ∂

[
δθ
>
l d̃l

]>
∂ Gp̃l

(29)

Please refer to Appendix I for detailed derivations.

IV. LINE TRIANGULATION

In order to utilize line features in the MSCKF, we need
first to estimate the 3D line parameters to perform the
linearization of the measurement model (17). From the above
section, in order to get the 3D line parameters, we need
the basic geometric elements (e.g., ve, ve and dl) which can
uniquely define a line feature.

Since the Line Segment Detector (LSD) [24] is used for
line detection, each measurement of the line will give two
endpoints of the line segment in the image. Consider line
feature, xl , which is detected and tracked over the sliding
window, yielding a collection of line segment endpoint
pairs over this window. We propose two algorithms for the
line feature triangulation based on these stacked endpoint
measurements.

A. Algorithm A

Denoting the endpoints for a line in the ith image in the
sliding window as xsi and xei, see Figure 1b, we obtain the
normal direction of the plane πi formed by the line xl and
the i-th camera center:

Cinei =
bxsicxei∥∥bxsicxei

∥∥ (30)

Since line xl resides on every plane πi, we have the following
constraint: 

...
C2n>e2

C1
C2

R>
...


︸ ︷︷ ︸

N

C1ve1 = 0 (31)

Therefore, C1ve1 can be found as the unit vector minimizing
the error on this constraint, which is given by the eigenvector
corresponding to the smallest eigenvalue of N>N.

The transformation of a line expressed in frame Ci to a
representation in frame C1 is given by:[

C1dl
C1ne1

C1ve1

]
=

[
C1
Ci

R bC1pCic
C1
Ci

R
03

C1
Ci

R

][
Cidl

Cinei
Civei

]
(32)

⇒ C1dl
C1ne1−Cidl

C1
Ci

RCinei = bC1pCic
C1
Ci

RCivei (33)

⇒ C1dlb>i
C1ne1 = b>i bC1pCic

C1
Ci

RCivei (34)

where bi = bC1ve1cC1
Ci

RCinei is a unit vector perpendicular to
C1
Ci

RCinei. Given all the measurements from i = 2 . . .m, we
build a linear system as:

C1dl


...

b>i C1ne1
...

=


...

b>i bC1pCic
C1
Ci

RCivei
...

 (35)

By solving the above system, we obtain C1dl . After this
step, we have recovered each of the required line parameters:
C1ne1(31), C1ve1(32) and C1dl(35). Note that in our algorithm,
we have made no assumptions on the correspondences of the
endpoints.



B. Algorithm B

One of the classical methods to triangulate line features is
based on the two intersecting planes (e.g., π1 and πi). The
dual Plücker matrix L∗ can be computed as:

L∗ = π1π
>
i −πiπ

>
1 =

[
bC1v(i)e1c C1d(i)

l
C1n(i)

e1

−C1d(i)
l (C1n(i)

e1 )
> 0

]
(36)

where π1 =
[

C1n>e1 0
]>

and πi =
[

C1n>ei
C1n>ei

C1pCi

]>
.

Cid(i)
l , C1n(i)

e1 and C1v(i)e1 represent the line geometric elements
computed based on π1 and πi. In this work, we offer
a generalization of this method for m measurements. In
particular, we solve for the line parameters using:

C1 ne1 =
m

∑
i=2

C1n(i)
e1/

∥∥∥∥∥ m

∑
i=2

C1n(i)
e1

∥∥∥∥∥ (37)

C1ve1 =
m

∑
i=2

C1v(i)e1/

∥∥∥∥∥ m

∑
i=2

C1v(i)e1

∥∥∥∥∥ (38)

C1dl =
∑

m
i=2

C1d(i)
l

m−1
(39)

After linear triangulation, we perform nonlinear least
squares to refine the line estimates utilizing the collected
endpoint measurements.

C. Degenerate Motion Analysis for Triangulation

When using a monocular camera, the ability to perform
line feature triangulation is heavily dependent on the motion
of the sensor. In particular, we identify degenerate motions
that cause the line feature parameters to become unobserv-
able, thereby causing triangulation to fail (see Fig. 1c and
Tab. II). Letting C denote the center of the camera frame and
L is the line feature and formulate a plane π as shown in
Fig. 1c.
• If the monocular camera moves along the direction ve

of L or toward L with direction bvecne, the camera
will stay in the same plane, π . As a result, each of the
Cinei will be parallel to each other, causing matrix N
in (32) to become rank 1, thereby causing ambiguity in
the solution for C1ve1. In addition, without C1ve1, C1dl
becomes unsolvable.

• If the monocular camera undergoes pure rotation (no
translation), the camera will also stay in the plane π ,
causing degeneracy as in the previous case.

• The effective motion for line triangulation is the motion
ne perpendicular to the plane π as the shown in Fig 1c.

Note that for a monocular camera, any combination of the
listed 3 degenerate motions will also cause triangulation
failure.

Interestingly, we see that for stereo cameras, if both
cameras remain in the plane during the motion (such as when
the platform translation and camera to camera offset remain
in the plane), we will still have degenerate motion. This
is because triangulation requires that we measure L from
different views along ne. In such a case, even stereo vision
cannot guarantee proper line triangulation.

TABLE II: Summary of degenerate motion for line feature
triangulation with monocular camera

Motion Solvable Unsolvable
Along line direction ve ne ve and d
Toward line bvecne ne ve and d
Pure rotation ne ve and d
Perpendicular to plane ne ne,ve and d -
Random motion ne,ve and d -

V. SIMULATIONS

We performed two Monte-Carlo simulations to verify the
proposed line feature triangulation algorithms and different
line representations.

A. Line Triangulation Simulation

We first used Monte-Carlo simulations to verify both
the proposed sliding-window based line feature triangulation
algorithms and our degenerate motion analysis. 8 lines were
generated (see Fig. 2) that were observed by a monocular
camera from 20 poses in space, with the poses lines being
placed about 2m in front of the poses. Similar to the real-
world line segment detector (LSD), our simulated monocular
camera collected the two endpoint measurements of lines in
its view, with each endpoint bearing measurement corrupted
by 2 pixel Gaussian random noise, while we assume no
correspondences between these endpoints. 3 different camera
motions (including straight line motion, planar motion and
3D sinusoidal motion) were simulated to verify the degen-
erate motions. During triangulation, we disturbed the true
camera poses (both the orientation and position) with random
noises as:

q̄m =

[
1
2 nθ

1

]
⊗ q̄, pCm = pC +np (40)

where nθ and np represents the white Gaussian noises added
to the camera pose estimates, while q̄m and pm represent the
disturbed camera orientation and position estimates which
were used by the triangulation algorithms. When evaluating
the triangulated line errors, we transferred the estimated
line parameters into CP form and computed the errors in
Euclidean space.

For each motion profile we generated 30 sets of data and
computed the root mean square error (RMSE) [25] for the
line accuracy evaluation, with results shown in Fig. 2. From
these results, we see that for all the tested motion patterns,
the proposed Algorithm A outperformed Algorithm B. Since
lines 1, 5 and 8 are horizontal lines, when the camera
performs straight line motion along this direction (shown
in Fig. 2 left), these line features can not be accurately
triangulated. For the planar trajectory, the camera moved in
the same plane formulated by the camera center and line 5,
therefore, line 5’s triangulation still failed. For lines 1 and 8,
their accuracy was slightly improved over the 1D motion case
because this planar motion is not strictly degenerate for them.
Finally, in the 3D motion case, all lines were successfully
triangulated with relatively low error due to the fact that all
degenerate cases were avoided.



Fig. 2: Simulation setup for linear line triangulation. 8 lines are simulated with IDs in the left figure. 3 motion patterns are
simulated, including (left) straight line motion, (middle-left) 2D planar motion and (middle-right) 3D motion. Note that 2D
planar motion is in the plane formed by the initial camera position and line 5. On the far right, line triangulation RMSE
(computed in CP form) across the Monte-Carlo simulations for the three tested motion profiles.

B. Line Representation Simulation

When fusing line information into any estimator, it is
vital to be able to determine which of the possible line
representations yields the best performance. In order to test
the effect of line representation choice, we performed a
Monte-Carlo simulations using a visual line-SLAM system.
A line map (64 lines in total) in an indoor room was
generated while a monocular camera was simulated to follow
a sinusoidal trajectory (150 poses were simulated in total),
as shown in the right of Fig. 3.

To simplify the simulation, we simulated relative pose
odometry measurements for the camera (which were also
disturbed with pose noises (40)). In order to test the robust-
ness of the line representations, we performed tests using 3
different noise levels (2, 6 and 8 pixels) to corrupt the line
endpoint measurements (as shown in the right of Fig. 3).
To simplify the simulation, the camera traversed a single
loop of this trajectory as shown in the left of Fig. 3. The
line features were triangulated using proposed Algorithm
A. For solving the visual line SLAM, we formulated the
Maximum Likelihood Estimation (MLE) problem which is
solved as an instance of Nonlinear Least Squares [26]. In this
simulation, we allowed 5 Gauss-Newton iterations for each
representation for a fair comparison. We ran 30 Monte-Carlo
simulations and computed the RMSE for the camera poses
to evaluate the accuracy.

It can seen from the results in Fig. 3 that all 3 repre-
sentations gave similar SLAM performance. However, as
we increase the measurement noise levels, the Plücker rep-
resentation with orthonormal error states tends to perform
slightly worse than the others (e.g., the CP and quaternion
representations). Note that in all the noise levels tested,
the CP and quaternion line representations yielded similar
performance. These results indicate that one of these two
representations should be used in practice, in particular for
low-cost visual sensors which display a large amount of
noise.

VI. EXPERIMENTS

For our real-world experiments, we implemented the pro-
posed triangulation and MSCKF line feature update. Our
implementation leverages both point and line features that

are tracked in parallel. Our sparse point feature pipeline first
extracts FAST [27] features which are then tracked frame
to frame using KLT [28], after which 8-point RANSAC is
used to reject outliers. For the line segments, we leverage the
Line Segment Detector (LSD) [24] implementation within
OpenCV [29] to detect lines and extract their descriptors
using Line Band Descriptors (LBD) [30]. Incoming gray
scale monocular images are first undistorted to allow for
extraction of straight line segments in the image plane. We
found that that we were able to robustly match lines without
RANSAC by first matching using knn-matcher, and enforc-
ing that the ratio between the top two match scores, returned
for a given line, was less than 0.7. We additionally enforced
that extracted lines had “significant” length to prevent noisy
detections for small line segments from being used. The line
detection within OpenCV is the major bottleneck within the
estimator, and limits the processing frame rate to 15 Hz,
while the point-only MSCKF can run up to 50 Hz. In the
future we look to improve this area to increase its real-time
performance for highly dynamic scenarios requiring high
framerates.

We validated the system on a relatively large-scale dataset
recorded in the University of Delaware’s Gore Hall using
the left image of our hand-held VI-Sensor with an IMU
frequency of 400 Hz. The amount of motion blur and
poor lighting conditions during this trajectory made it a
challenging scenario for VINS (examples of both point and
line tracking can be seen in Figure 5). Over the 223 meter
long trajectory we track 40 point features along with an
average of 10 lines in each frame (Figure 4 shows the
traveled trajectory). Lines that have been lost or reached
the maximum window size are first triangulated using the
method proposed in Section IV-A, after which they update
the state following Section II-D. As no groundtruth is avail-
able, we evaluate the performance of the system by returning
to the starting location and recording the accumulated drift of
the trajectory. Averaging the start-end-error over thirteen runs
to take into account the randomness in the feature tracking
frontends, we found that the standard point only MSCKF
achieved 2.13 meters (0.91%) while the point-line MSCKF
was able to achieve 1.83 meter (0.78%) error.

Throughout our experiments, we found that there are quite



Fig. 3: Simulation environmental setup for visual line SLAM (left). Average orientation and position RMSE for visual SLAM
with line features in different representations over the 30 Monte-Carlo simulation runs (right).

Fig. 4: Trajectory of the 223 meter long University of
Delaware Gore dataset spanning three floors.

a few cases where the inclusion of line features in VIO either
do not improve the estimation performance, and in some
special cases hurts the overall accuracy of the trajectory.
This is likely due to two key issues inherit to line features:
(i) structure of the explored environment, (ii) motion of
the monocular camera relative to the features. Through our
experiments, we saw that free-line tracking and estimates
of unstructured environments will be of low quality and
provide little information to the estimator. We also saw that
line triangulation and estimation can suffer if the motion
of the VIO platform traveled in the degenerate directions
(see Table II). Practically, this implies that certain VIO
trajectories are susceptive to poor performance due to this
degenerate properties inherit in lines. In the future we will
adopt long-term line features into our VIO state, avoiding
these degenerate triangulation cases and leveraging the loop-
closure properties of lines.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we designed a tightly-coupled monocular
visual-inertial navigation system using point and line fea-
tures with online spatial and temporal calibration. We also
proposed two sliding window based 3D line triangulation
algorithms and compared their performances. Based on the

Fig. 5: Example tracking on the University of Delaware Gore
dataset for both point features (left) and line tracks (right).
A history of tracks has been overlaid for each point/line in
the image.

proposed algorithm, we identified 3 degenerate motions for
monocular camera that cause the line triangulation to fail.
Monte-Carlo simulations with a visual line SLAM setup were
also performed to compare commonly used line feature rep-
resentations, and the results showed that the CP and quater-
nion representations performed better than the orthonormal
representation in scenarios with high measurement noises.
Finally real world experiments were performed to verify the
implemented system using the CP line representation.

APPENDIX I
LINE MEASUREMENT JACOBIANS

The jacobians for the CP line measurements are as follows:

∂ z̃l

∂ l̃
=

1
ln

[
u1− l1e1

ln2 v1− l2e1
ln2 1

u2− l1e2
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]
(41)
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where e1 = l>x1, e2 = l>xe. K is the projection matrix for
line features, fu, fv, cu and cv are the corresponding camera
intrinsic parameters.
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The Jacobians w.r.t. the pose can be written as:
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The Jacobians w.r.t. the CP line features can be written as:
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