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Abstract— A navigation system which can output drift-free
global trajectory estimation with local consistency holds great
potential for autonomous vehicles and mobile devices. We
propose a tightly-coupled GNSS-aided visual-inertial navigation
system (GAINS) which is able to leverage the complementary
sensing modality from a visual-inertial sensing pair, which
provides high-frequency local information, and a Global Nav-
igation Satellite System (GNSS) receiver with low-frequency
global observations. Specifically, the raw GNSS measurements
(including pseudorange, carrier phase changes, and Doppler
frequency shift) are carefully leveraged and tightly fused within
a visual-inertial framework. The proposed GAINS can accu-
rately model the raw measurement uncertainties by canceling
the atmospheric effects (e.g., ionospheric and tropospheric
delays) which requires no prior model information. A robust
state initialization procedure is presented to facilitate the fusion
of global GNSS information with local visual-inertial odometry,
and the spatiotemporal calibration between IMU-GNSS are
also optimized in the estimator. The proposed GAINS is
evaluated on extensive Monte-Carlo simulations on a trajectory
generated from a large-scale urban driving dataset with specific
verification for each component (i.e., online calibration and
system initialization). GAINS also demonstrates competitive
performance against existing state-of-the-art methods on a
publicly available dataset with ground truth.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) have
been a fundamental technology for autonomous robots, such
as micro-aerial vehicles (MAVs), autonomous vehicles, and
mobile devices [1]. SLAM tries to recover the platform’s
pose (orientation and position) while also reconstructing
the surrounding environment to enable perception or for
the further benefit of localization. Of the many different
sensor combinations available, e.g., RGB-D [2]–[4], event
cameras [5], LiDARs [6]–[8], wheel odometry [9], [10],
the monocular camera and inertial sensors, which can be
leveraged to build visual-inertial navigation systems (VINS),
have become increasingly prominent due to their small size,
complimentary sensing nature, weight, and low cost [11].
VINS-based methods are still limited by their ability to
only provide the relative pose change to an arbitrary local
frame and inability to recover the 4 degree-of-freedom (dof)
global yaw and position [12], [13]. This has motivated the
fusion of additional sensors, and in particular, the coupling
of VINS with a Global Navigation Satellite System (GNSS)
has seen attraction due to the drift-free nature of GNSS in
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Fig. 1: Estimated trajectories of each algorithm with the 9.1 km simulation
dataset. VIO [14] (red), RTKLIB [15] (magenta), GPS-VIO [16] (blue),
GVINS [17] with true atmospheric model (green), GVINS with 3 m
atmospheric model error (light blue), GVINS with 6m atmospheric model
error (yellow), proposed GAINS (purple), and ground truth (black). The
green and red squares correspond to the start and end of the trajectory,
respectively.

a global scale and the high-accuracy trajectory of VINS in
the local scale. This combination can enable accurate drift-
free large-scale localization, consistent local trajectories, and
robustness to low GNSS visibility scenarios.

There have been quite a few works which have investigated
incorporating GNSS measurements in a “loosely-coupled”
manor [18]–[22], along with many that have investigated a
more “tightly-coupled” fusion of all sources of information
into a single joint optimization problem [16], [23]–[26]. Of
these, a few research efforts have looked to leverage the raw
GNSS measurements (pseudorange, carrier phase changes, or
Doppler frequency shift changes) with visual-inertial sensors
[17], [26]–[32]. A major advantage of such effort is that
with raw measurements the system can still gain information
in scenarios with limited GNSS coverage (such as two or
three satellites), which can be frequent in urban environments
or with conservative elevation thresholding [27], [28], [31].
Soloviev and Venable [27] showed that by leveraging the
raw measurements this limited GNSS coverage case could
be handled. Won et al. [28] studied these “low GNSS visibil-
ity conditions” and additionally conducted an observability
analysis to investigate the identifiability of the state with
different numbers of GNSS satellites. Recently two pre-
prints which have re-visited the tightly-coupled fusion of raw
GNSS measurements [17], [32] have been released. Liu et
al. [32] leveraged the raw GNSS measurements to enable au-



tonomous driving in urban canyons where skyscrapers block
a majority of the sky. They present an optimization-based
approach which jointly fuses inertial, camera feature repro-
jection, GNSS pseudorange, and Doppler shift measurements
in a joint sliding window. However, the atmospheric delays
of the GNSS signal, such as ionospheric and tropospheric
delays, were not considered which can yield very large errors
in practice. Cao et al. [17] presented another optimization-
based real-time estimator, termed GVINS, which accurately
provides 6 dof estimates in complex indoor-outdoor envi-
ronments by leveraging GNSS pseudorange and Doppler
shift measurements. They modeled ionospheric delay using
the ionospheric parameters that are included the signal, and
used standard atmosphere model for troposphere delay [33].
As these models are approximating the possible delays, the
accuracy of the models can vary from time to time.

As compared to these previous works we leverage a
lightweight computationally efficient filter-based estimator.
Raw measurements including GNSS pseudorange, carrier
phase changes, and Doppler frequency are leveraged to
constrain the visual-inertial state, without requirement of
prior knowledge of the atmospheric delay model or external
information. The spatiotemporal calibration between the re-
ceiver and IMU is also estimated and leverages efficient state
interpolation to facilitate crucial sensor-to-sensor time-offset
calibration. The system is able to leverage raw measurements
from the constellation (e.g., GPS, Galileo, GLONASS, Bei-
Dou) to improve measurement noise uncertainty modeling.
Specifically, the main contributions are as follows:

• We propose GAINS which optimally and efficiently
fuses raw GNSS pseudorange, carrier phase changes,
and Doppler frequency measurements in a tightly cou-
pled manner with visual and inertial information.

• A differential measurement model is leveraged to re-
move atmospheric effects (e.g., ionospheric and tropo-
spheric delays) and enables the accurate measurement
modeling without approximating the delays.

• The proposed initialization procedure enables robust re-
covery of all GNSS-related parameters required to fuse
global GNSS information with the local VIO system.
Additionally, all spatiotemporal calibrations between
sensors are performed including the crucial temporal
offset between the receiver and IMU.

• The system is compared against an existing state-of-the-
art method and different baselines in both large-scale
urban driving simulations and real-world experiments.
The proposed GAINS is able to achieve high levels of
accuracy and robustness to high GNSS noise during
initialization.

II. VISUAL-INERTIAL LOCALIZATION

In this section, we review the standard multi-state con-
straint Kalman filter (MSCKF [34]) framework which is later
expanded to handle raw GNSS measurements. Specifically,
at time tk, the state vector xk consists of the current inertial
state xIk and n historical IMU pose clones xCk

represented

in the local VIO world frame {W}:

xk =
[
x>Ik x>Ck

]>
(1)

xIk =
[
Ik
W q̄> Wp>Ik

Wv>Ik b>g b>a
]>

(2)

xCk
=
[
Ik91
W q̄> Wp>Ik91

· · · Ik9n
W q̄> Wp>Ik9n

]>
(3)

where Ik
W q̄ is the JPL unit quaternion [35] corresponding to

the rotation matrix Ik
WR rotating from {W} to IMU frame

{I}; WpIk and WvIk are the position and velocity of IMU
in {W}; bg and ba are the biases of the gyroscope and
accelerometer.1

A. IMU Kinematic Model

The state is propagated forward in time using the IMU’s
linear acceleration am and angular velocity ωm measure-
ments:

am = a + I
WRg + ba + na, ωm = ω + bg + ng (4)

where g ≈ [0 0 9.81]> is the gravity in {W}, and na and ng

are zero mean Gaussian noises. The state and covariance is
propagated from time tk to tk+1 using the inertial kinematics
f(·) [35]:

x̂k+1|k = f(x̂k|k,am,ωm) (5)

Pk+1|k = Φ(tk+1, tk)Pk|kΦ(tk+1, tk)> + Qk (6)

where Φ is the error state transition matrix and Q is the
discrete noise covariance [34].

B. Camera Measurement Model

Sparse corner features are detected and tracked over a
series of historical states xCk

. A bearing measurement, zk,
collected at time tk is:

zk = Π(Ckpf ) + nk (7)
Ckpf = C

I RIk
G R(Gpf − GpIk) + CpI (8)

where Π([x y z]>) = [x/z y/z]> is the perspective projec-
tion function; Gpf is the 3D point feature; and {CI R,CpI}
are the camera-IMU extrinsics. We then stack all measure-
ments and nullspace project to create a featureless residual
(i.e., N>Hf = 0) [34], [37]:

N>z̃ = N>HxCk
x̃Ck

+ N>Hf
Gp̃f + N>nf (9)

⇒ z̃′ = H′xCk
x̃Ck

+ n′f (10)

This then can be directly used in the EKF update.

III. FUNDAMENTALS OF GNSS

GNSS uses satellites to provide geospatial positioning and
is composed of three distinct segments: space, control, and
user [38]. The space segment consists of GNSS satellites,
orbiting about 20,000km above the earth and broadcasting a
signal that identifies it and provides its time, orbit, and status.
The control segment is composed of ground stations that
adjust the satellites’ orbit parameters and clocks to maintain

1We define x = x̂ � x̃, where x is the true state, x̂ is its estimate, x̃ is
the error state, and the operation � which maps the error state vector to its
corresponding manifold [36]. The state x̂a|b denotes the estimate at time
ta formed by processing the measurements up to time tb. Camera and IMU
spatiotemporal calibration is not included for clarity.



Fig. 2: The frame of the references: ECEF frame {E}, ENU frame {N},
and World frame {W}. {W} is the local frame set up by VIO whose
orientation is aligned with gravity along with the norm direction of {N}.

accuracy. The user segment consists of the signal receiver
that performs signal processing. In general, three types of
measurements can be extracted from the signal to estimate
the receiver state: pseudorange, carrier phase, and Doppler
shift. These signals are considered to be the “raw” mea-
surements of GNSS and carry essential information which
enables accurate global localization.

A. Pseudorange

The most basic GNSS measurement is the difference
between the signal emission time from the satellite and the
receiver reception time. After multiplying by the speed of
light, this is now a pseudorange between the two systems.
Consider that the receiver got the signal at Etr,m and the
decoded departure time from satellite is Ets,m we have:

Etr,m = Etr + Ebr,
Ets,m = Ets + Ebs (11)

where the superscript E stands for the Earth-Centered, Earth-
Fixed (ECEF) coordinate {E} of the satellite system (see
Fig. 2); Etr and Ets are the true signal reception and
departure time, and Ebr and Ebs are the time bias of the
receiver and the satellite, respectively. Hence, the pseudo-
range measurement can be computed by time differences:

zp = c(Etr,m − Ets,m) (12)

where c ≈ 3.0× 109m/s is the speed of light. Considering
the clock biases, the pseudorange measurement is modeled
as:

zp = dr,s + c(Ebr − Ebs) + I + T +M + np (13)

dr,s = ||Epr(Etr)− Eps(
Ets)||2 (14)

where Epa(t) is the position of a in {E} at time ta with a
denotes r or s, ionospheric delay I , tropospheric delay T ,
multi-path M , and np is a white Gaussian noise.

B. Carrier Phase

The carrier phase of the signal can also be used to obtain
a range between the satellite and receiver. The carrier phase
measurements are often more precise than pseudorange by
typically two orders of magnitude. They are modeled as:

zc = dr,s + c(Ebr − Ebs)− I + T +M + λN + nc (15)

dr,s = ||Epr(Etr)− Eps(
Ets)||2 (16)

where λ is the GNSS carrier wavelength, N is the phase
count error, and nc is a white Gaussian noise. Note that the

Fig. 3: In classical differential GNSS (left), the base interprets the GNSS
signal (blue arrow) and provides correction information (black arrow) to
the rover. The proposed system (right) stacks GNSS measurements and
formulates a differential measurement model to perform update directly. To
handle the asynchronicity, we interpolate two bounding IMU poses

I has a negative sign due to the ionosphere producing an
advance of the carrier phase measurement equal to the delay
on the pseudorange measurements, and that N may change
arbitrarily every time the receiver loses lock, producing
measurement discontinuities.

C. Doppler Shift

The receiver and satellite range change as both move
through space. This range change is reflected in the phase
of the signal and is called the Doppler shift. The Doppler
shift allows for recovery of the relative velocity between the
receiver satellite. The Doppler shift is modeled as:

zd = − 1

λ

(
(k>(Evs − Evr) + c(E ḃr − E ḃs)

)
+ nd (17)

where k is a unit vector of the receiver to the satellite
position, E ḃr and E ḃs are the receiver and the satellite time
bias drift rate, and nd is a white Gaussian noise.

D. Differential GNSS

Differential GNSS techniques are well-known enhance-
ments that leverage a known base station and that certain
parameters vary slowly with time (e.g., ephemeris prediction,
ionospheric and tropospheric delays). The Differential GNSS
algorithm is based on differences of pseudorange measure-
ments [see Eq. (13) and Fig. 3] :

zD = zp,b − zp,r (18)

Assuming no multi-path errors, we can model this measure-
ment as (we drop the times for clarity):

zD = ∆dr,s,b + c(Ebb − Ebs)− c(Ebr − Ebs) (19)
+Ib − Ir + Tb − Tr + np,b − np,r

∆dr,s,b = ||Epb − Eps||22 − ||Epr − Eps||2 (20)

where the subscript b stands for the base station. When the
base station and receiver are close to each other, both signals
travel through almost the same path and thus the slow varying
ionospheric and tropospheric delays should approximately
cancel out:

zD = ∆dr,s,b + c(Ebb − Ebr) + np,b − np,r (21)

This enables the use of GNSS measurements without mod-
eling ionospheric and tropospheric delays. The resulting
solutions can reach centimeter-level accuracy with a base
station within 10km.



IV. SEQUENTIAL-DIFFERENTIAL GNSS

To minimize sources of noise and errors, we propose us-
ing differential measurements between sequentially received
measurements, see Fig. 3. This differential measurement
model is used to remove the affects of I and T [see Eq.
(13)-(17)] which can have model errors on the level of 7m
and 1m, respectively [39].

A. Differential Pseudorange

Consider two pseudorange measurements from a satellite
at time tk and tk+1:

zDp = zp,k+1 − zp,k (22)

zDp = ∆dDr,s + c(Ebr,k+1 − Ebs,k+1)− c(Ebr,k − Ebs,k)

+Ik+1 − Ik + Tk+1 − Tk +Mk+1 −Mk

+np,k+1 − np,k

∆dDr,s = ||Epr(Etr,k+1)− Eps(
Ets,k+1)||2 (23)

−||Epr(Etr,k)− Eps(
Ets,k)||2

The signal path and time remain nearly constant between
consecutive timestamps. Hence, the atmospheric delays I
and T remain constant, which indicates that Ik+1 − Ik ' 0
and Tk+1 − Tk ' 0. We also assume there is no multi-path
delay M or that it is constant under the same logic. Thus,
the following differential pseudorange measurement model
is defined:

zDp = ∆dDr,s + c(Ebr,k+1 − Ebs,k+1) (24)

−c(Ebr,k − Ebs,k) + np,k+1 − np,k
Note that satellite parameters Eps, Ets and Ebs can be
predicted very accurately as the information is managed by
the ground stations.

B. Differential Carrier Phase

The carrier phase measurement, Eq. (15), is similar to Eq.
(13). Analogously, we define the differential carrier phase
measurement model as:

zDc = ∆dDr,s + c(Ebr,k+1 − Ebs,k+1) (25)

−c(Ebr,k − Ebs,k) + nc,k+1 − nc,k (26)

∆dDr,s = ||Epr(Etr,k+1)− Eps(
Ets,k+1)||2 (27)

−||Epr(Etr,k)− Eps(
Ets,k)||2

Note that we also cancel out the λNk+1 − λNk terms. In
practice, we only choose to compute this model when the
satellite lock is stable to ensure this is true.

C. Doppler Shift

Unlike the other measurement models, Eq. (17) can be
used to directly update our state. We can define the receiver
satellite bearing and relative velocity as:

k =
Eps − Epr√
Eps − Epr

(28)

Evr = E
WR(WvI + I

WR>bIωIcIpr) (29)

where b·c is the skew-symmetric matrix.

D. Complete GNSS Measurement Model

Due to the delayed asynchronous nature of the GNSS
receiver, the inertial state has likely advanced beyond the
collection time and thus we need to be able to recover the
pose at an arbitrary time. We leverage linear interpolation of
the IMU pose (Fig. 3 right) to recover the receiver position
in the world {W} frame:

Epr(tk) = EpW + W
E R>

(
WpIk + Ik

WR>Ipr

)
(30)

Ik
WR = Exp

(
λ Log

(
Ib
WRIa

WR>
))

Ia
WR (31)

WpIk = (1 9 λ)WpIa + λWpIb (32)

λ = (tk + Itr 9 ta)/(tb 9 ta) (33)

where Itr is the time offset between the GNSS and IMU
clocks, the bounding poses have timestamps ta ≤ (tk +
Itr) ≤ tb, and Exp(·), Log(·) are the SO(3) matrix expo-
nential and logarithmic functions [40]. We can see that the
position of the receiver at time tk is a function of, and thus all
GNSS measurements, the IMU states, GNSS-IMU extrinsic,
and time offset. All these can be directly estimated by finding
their derivatives in the above functions.

Having now defining the complete measurement model in
Eq. (24), (26), (17), and (30), we can now see that an initial
estimate of the ECEF to World transform {EWR,EpW } (see
Fig. 2), receiver time bias Ebr, and receiver time bias drift
rate E ḃr is required.

V. ECEF-TO-WORLD GNSS INITIALIZATION

A. Step 1: Reference Frame Transform Initialization

To initialize the transform {EWR,EpW }, we follow Lee’s
method [16] which provides robust initialization given
enough measurements. We collect Single Point Positioning
(SPP) output of the GNSS receiver, which is the position
in East-North-Up frame (ENU, {N}) when using the first
measurement as the datum (see Fig. 2). Given a set of
GNSS positions in the ENU frame {Npr1 , · · · ,Nprn} and
the corresponding interpolated positions in the World frame
{Wpr1 , · · ·Wprn}, we use the following geometric con-
straints to derive the frame initialization between {N} and
{W}:

Npri = NpW + N
WRWpri , ∀i = 1 · · ·n⇒ (34)

Nprj − Npr1 = N
WR(Wprj−Wpr1), ∀j = 2 · · ·n (35)

Note that, this is a 4 d.o.f (instead of 6 d.o.f) transformation
including 3 d.o.f translation and 1 d.o.f for yaw between
the {N} and {W} since both frames are gravity aligned.
We solve Eq. (35) as the linear least-squares with quadratic
constraint problem to get {NWR,NpW }. We then compute
the following to find reference frame transform:

E
WR = E

NRN
WR (36)

EpW = EpN + E
NRNpW (37)

where E
NR and EpN can are computed from the datum [41].

The {EWR,EpW } is further corrected during the delayed
initialization into the state [42].



Fig. 4: Calibration errors of GNSS spatiotemporal calibration (solid) and 3σ
bound (dotted) for five different runs. Each runs has a different realization
of the measurement noise and perturbations.

TABLE I: Monte-Carlo simulation parameters

Parameter Value Parameter Value

IMU Freq. (hz) 400 Max Cam Pts/Frame 100
Cam Freq. (hz) 10 Max SLAM Feats 50

GNSS Freq. (hz) 1 Feature Rep. GLOBAL
Max. Clone Size 11 Pixel Noise (px) 1

Gyro White Noise 1.7e-4 Gyro Random Walk 1.9e-4
Accel. White Noise 2.0e-3 Accel. Random Walk 3.0-3
Ion. Random Walk 1.0e-2 Tro. Random Walk 1.0e-2
Satellite Time Drift 1.0e-6 Receiver Time Drift 1.0e-06
Pse. Meas. Noise 1.0e-0 Number of Satellites 30

B. Step 2: GNSS Receiver Bias Initialization

Once the reference frame transformation {EWR,EpW } is
initialized, we collect GNSS measurements and compute the
initial guesses of Ebr and E ḃr as follows:

zR = t + Bb (38)

where zR is the stack of all the measurements [see zDp (24),
zDc (26), and λzd (17)], t is the stacked right side terms, B is
a incident matrix [43] multiplied by the speed of light c, and
b is a stack of GNSS receiver time biases Ebr,k ∀k = 1 · · ·n
and the bias drift rate E ḃr. By solving the above least square
problem, we can get the initial guesses of the time biases
and the drift rate. After gaining the initial guess, we further
perform delayed initialization for higher accuracy.

VI. SIMULATION

We verify our proposed system in a Monte-Carlo simula-
tion on a large-scale trajectory, see Fig. 1. We simulate IMU
readings, visual bearing tracks, and raw GNSS readings from
30 satellites based on the parameters in Table I [14], [44].

A. GNSS Spatiotemporal Calibration

We first verify the online spatiotemporal GNSS-IMU cali-
bration (include the 3D translation and time offset) through 5
Monte-Carlo runs, with the different realization of measure-
ment noises and initial calibration values. Fig. 4 shows the
estimation errors and 3σ bounds. The estimation errors are

Fig. 5: The effects of time bias and bias drift rates on initialization errors.

TABLE II: Average yaw and position errors over 50 runs for different
initialization distances and GNSS SPP noise values in units of degree/meter.

dist\σ 0.1m 0.5m 1m 2m 5m

5m 1.57 / 0.58 6.25 / 2.91 14.52 / 6.79 30.66 / 71.75 69.26 / 88.42
10m 1.31 / 0.52 5.54 / 2.19 9.45 / 4.17 20.41 / 44.94 47.45 / 94.93
20m 0.79 / 0.27 2.47 / 0.99 4.84 / 2.01 10.24 / 4.10 26.96 / 51.54
50m 0.53 / 0.07 0.80 / 0.16 0.97 / 0.27 1.79 / 0.62 4.86 / 1.48

100m 0.45 / 0.09 0.49 / 0.06 0.50 / 0.12 0.78 / 0.24 2.11 / 0.65

encapsulated within the envelope of 3σ bounds and converge
to near zero, thus showing the consistency and accuracy
of the online calibration along with their ability to quickly
converge in less than 20 seconds.

B. Hyper-parameter Sensitivity of Initialization

To gain insight into how the initialization procedure is af-
fected by GNSS measurement noise and trajectory length, we
simulated 0.1-5m GNSS SPP noise and 5-100m initialization
distance thresholds. To prevent biasing these results to the
initial section of this particular trajectory, it is split into non-
overlapping segments that the initalization procedure was
performed on. The resulting statistics on the initialization
accuracy are shown in Table II. In general, the initialization
errors are smaller for larger distances and with smaller
noise. The results indicate that reasonable accuracy for this
transformation can be achieved after 50m for most realistic
levels of GNSS SPP noise. In practice, these results can be
used to determine the necessary distance threshold for system
initialization with different sensors.

We also verify the proposed GNSS time bias and time
bias drift rate initialization algorithm and its performances
in Fig. 5. The time bias and time bias drift rate initialization
errors highly relate to the number of available measurements
used during the initialization. The proposed algorithm can
achieve reasonable initialization performance using ≥ 40
measurements with corresponding range accuracy of 1.5m
for time bias while 0.3m for time bias drift rates (error ×
speed of light).

Remarks: Intuitively, the shorter distance the robot trav-
els, the less information about the transformation can be
gained because the “true” trajectory is buried in the GNSS
measurement noise. However, some systems may be required
to be initialized before collecting the proper length of the
trajectory. In this case, the transformation error can be
taken into account by inflating the state covariance after the
initialization step.

C. Navigation Performance Evaluation

We further evaluate the localization accuracy of the pro-
posed GAINS (proposed) with regrading to GPS-VIO [16],



TABLE III: Relative pose error (RPE) plots for each estimator in simulation.
Units are in degrees/meters.

Algorithms 8m 16m 24m 40m

VIO 0.042 / 0.112 0.058 / 0.163 0.071 / 0.199 0.082 / 0.265
GPS-VIO 0.039 / 0.092 0.053 / 0.131 0.065 / 0.161 0.075 / 0.211
RTKLIB 0.447 / 2.553 0.510 / 2.569 0.634 / 2.555 0.531 / 2.595

GVINS(true) 0.038 / 0.084 0.051 / 0.119 0.062 / 0.144 0.072 / 0.188
GVINS(3) 0.236 / 0.521 0.343 / 0.749 0.749 / 0.904 0.466 / 1.215
GVINS(6) 0.636 / 1.464 0.867 / 2.041 1.028 / 2.356 1.184 / 3.096

Proposed 0.036 / 0.080 0.049 / 0.115 0.059 / 0.141 0.076 / 0.185

Fig. 6: The position error evaluation for different algorithms with simulated
dataset. GAINS (proposed) achieves the best accuracy compared to GPS-
VIO, VIO, and GVINS with true & perturbed atmospheric models.

GVINS [17], RTKLIB [15], and VIO [14] using the sim-
ulation data. Note that we tested GVINS providing perfect
atmospheric model (GVINS(true)) and wrong atmospheric
model equivalent to 3m & 6m pseudorange error (GVINS(3)
& GVINS(6)). These errors are realistic as the tropospheric
delay varies from 1-3m [45] and the ionospheric delay can
be even larger. All methods leverage the same visual front-
end to provide a fair comparison. The simulated trajectory is
designed based a realistic dataset collected in drive through a
neighbourhood with a total length of 9.1km (see Fig. 1). The
position errors presented in Fig. 6 show that the proposed
GAINS achieves the smallest position estimation errors com-
pared to the other algorithms. Also, the estimation accuracy
of GVINS(3) and GVINS(6) is sometimes worse than the
baseline VIO system due to the GNSS atmospheric model
error. The relative pose error (RPE) [46] for orientation
and position are shown in Table III. The proposed GAINS
outperforms the majority of other GNSS-aided algorithms
in estimation accuracy, with slight performance gains when
compared to GVINS (true) which requires a perfect GNSS
model for the atmospheric affects.

VII. REAL-WORLD EXPERIMENT

We further evaluate the proposed system on the GVINS-
Dataset sports field 2 real-word dataset [17]. This
dataset contains a monocular Aptina MT9V034 camera,
ADIS16448 IMU, and a u-blox ZED-F9P GNSS receiver.
The sports field sequence from this dataset is collected
in a typical outdoor opened area and buildings environment.
To get reliable groundtruth, during the experiment, we en-
sured that the RTK GNSS locked onto a few satellites and
outputted stable position estimates for the sensor. We ran
the proposed GAINS on the dataset along with GVINS [17],
and GPS-VIO [16]. OpenVINS [14] and VINS-Mono [47]

2https://github.com/HKUST-Aerial-Robotics/GVINS-Dataset

Fig. 7: Estimated trajectories of different VIO and GPS/GNSS aided
algorithms with sports field dataset.

TABLE IV: RMSE on the sports field dataset (meters)

Proposed GVINS [17] GPS-VIO [16] OpenVINS [14] VINS-Mono [47]

0.319 0.327 0.374 11.265 9.189

were also run to provide a baseline and show the accuracy
improvement of the proposed GNSS-aided system compared
to visual-inertial only methods. The resulting trajectories
from are shown in Fig 7 alongside the reference RTK
trajectory. It can be seen that all GNSS-aided algorithms are
close to the RTK while VIO systems diverge over time as
they are the local estimators. Table IV further shows the
Root Mean Squared Error (RMSE) results of each algorithm
showing GAINS similar accuracy to GVINS even though
GAINS do not explicitly model the atmospheric delays.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose GAINS, a tightly coupled GNSS
aided visual-inertial localization system, which can optimally
and efficiently fuse raw GNSS pseudorange, Doppler fre-
quency shift, and carrier phase measurements within a visual-
inertial estimator framework. A differential measurement
model is leveraged to accurately model the raw measurement
uncertainty of GNSS measurements by removing the atmo-
spheric effects (e.g., ionospheric and tropospheric delays).
We also proposed a 2-step initialization algorithm which
robustly recoveries all GNSS-related parameters needed to
fuse global GNSS information with local visual-inertial
odometry. In addition, all spatiotemporal calibration param-
eters between GNSS receiver and IMU are incorporated in
state estimation, allowing for flexible sensor integration for
GAINS. The system is compared against an existing state-
of-the-art method and different baselines in both large-scale
urban driving simulations and real-world experiments and
is able to achieve high levels of accuracy and robustness
to high GNSS noise during initialization. In the future,
we will perform the observability analysis for GAINS to
identify possible existing degeneration motions and explore
integrating more sensors (multi-cameras, LiDAR, and wheel
encoder) for improved localization accuracy.

https://github.com/HKUST-Aerial-Robotics/GVINS-Dataset


REFERENCES

[1] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. D. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” IEEE
Transactions on Robotics, vol. 32, no. 6, pp. 1309–1332, 2016.

[2] A. Bachrach, S. Prentice, R. He, P. Henry, A. S. Huang, M. Krainin,
D. Maturana, D. Fox, and N. Roy, “Estimation, planning, and map-
ping for autonomous flight using an RGB-D camera in GPS-denied
environments,” International Journal of Robotics Research, vol. 31,
no. 11, pp. 1320–1343, 2012.

[3] F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard, “3-d
mapping with an rgb-d camera,” IEEE Transactions on Robotics,
vol. PP, no. 99, pp. 1–11, 2013.

[4] T. Whelan, M. Kaess, H. Johannsson, M. Fallon, J. J. Leonard,
and J. McDonald, “Real-time large-scale dense RGB-D SLAM with
volumetric fusion,” International Journal of Robotics Research, Dec.
2014.

[5] E. Mueggler, G. Gallego, H. Rebecq, and D. Scaramuzza,
“Continuous-time visual-inertial odometry for event cameras,” IEEE
Transactions on Robotics, pp. 1–16, 2018.

[6] P. Geneva, K. Eckenhoff, Y. Yang, and G. Huang, “LIPS: Lidar-
inertial 3d plane slam,” in Proc. IEEE/RSJ International Conference
on Intelligent Robots and Systems, Madrid, Spain, Oct. 2018.

[7] X. Zuo, P. Geneva, W. Lee, Y. Liu, and G. Huang, “LIC-Fusion: Lidar-
inertial-camera odometry,” in Proc. IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, Macau, China, Nov. 2019.

[8] X. Zuo, P. Geneva, Y. Yang, W. Ye, Y. Liu, and G. Huang, “Visual-
inertial localization with prior lidar map constraints,” IEEE Robotics
and Automation Letters (RA-L), 2019.

[9] K. J. Wu, C. X. Guo, G. Georgiou, and S. I. Roumeliotis, “VINS on
wheels,” in Proc. of the IEEE International Conference on Robotics
and Automation, May 2017, pp. 5155–5162.

[10] W. Lee, K. Eckenhoff, Y. Yang, P. Geneva, and G. Huang, “Visual-
inertial-wheel odometry with online calibration,” in Proc. of the
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Las Vegas, NV, 2020.

[11] G. Huang, “Visual-inertial navigation: A concise review,” in Proc.
International Conference on Robotics and Automation, Montreal,
Canada, May 2019.

[12] J. Kelly and G. S. Sukhatme, “Visual-inertial sensor fusion: Local-
ization, mapping and sensor-to-sensor self-calibration,” International
Journal of Robotics Research, vol. 30, no. 1, pp. 56–79, Jan. 2011.

[13] J. A. Hesch, D. G. Kottas, S. L. Bowman, and S. I. Roumeliotis,
“Observability-constrained vision-aided inertial navigation,” Univer-
sity of Minnesota, Dept. of Comp. Sci. & Eng., MARS Lab, Tech. Rep,
vol. 1, p. 6, 2012.

[14] P. Geneva, K. Eckenhoff, W. Lee, Y. Yang, and G. Huang, “OpenVINS:
A research platform for visual-inertial estimation,” in Proc. of the
IEEE International Conference on Robotics and Automation, Paris,
France, 2020. [Online]. Available: https://github.com/rpng/open vins

[15] T. Takasu and A. Yasuda, “Development of the low-cost rtk-gps
receiver with an open source program package rtklib,” in International
symposium on GPS/GNSS, vol. 1. International Convention Center
Jeju Korea, 2009.

[16] W. Lee, K. Eckenhoff, P. Geneva, and G. Huang, “Intermittent gps-
aided vio: Online initialization and calibration,” in Proc. of the IEEE
International Conference on Robotics and Automation, Paris, France,
2020.

[17] S. Cao, X. Lu, and S. Shen, “GVINS: Tightly coupled gnss-visual-
inertial fusion for smooth and consistent state estimation,” arXiv
preprint arXiv:2103.07899, 2021.

[18] C. V. Angelino, V. R. Baraniello, and L. Cicala, “Uav position
and attitude estimation using imu, gnss and camera,” in 2012 15th
International Conference on Information Fusion. IEEE, 2012, pp.
735–742.

[19] S. Lynen, M. W. Achtelik, S. Weiss, M. Chli, and R. Siegwart, “A
robust and modular multi-sensor fusion approach applied to mav nav-
igation,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, Nov 2013, pp. 3923–3929.

[20] R. Mascaro, L. Teixeira, T. Hinzmann, R. Siegwart, and M. Chli,
“Gomsf: Graph-optimization based multi-sensor fusion for robust uav
pose estimation,” in 2018 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2018, pp. 1421–1428.

[21] L. Xiong, R. Kang, J. Zhao, P. Zhang, M. Xu, R. Ju, C. Ye,
and T. Feng, “G-VIDO: A vehicle dynamics and intermittent gnss-
aided visual-inertial state estimator for autonomous driving,” IEEE
Transactions on Intelligent Transportation Systems, 2021.

[22] T. Qin, S. Cao, J. Pan, and S. Shen, “A general optimization-based
framework for global pose estimation with multiple sensors,” arXiv
preprint arXiv:1901.03642, 2019.

[23] D. P. Shepard and T. E. Humphreys, “High-precision globally-
referenced position and attitude via a fusion of visual slam, carrier-
phase-based gps, and inertial measurements,” in 2014 IEEE/ION
Position, Location and Navigation Symposium-PLANS 2014. IEEE,
2014, pp. 1309–1328.

[24] J. E. Yoder, P. A. Iannucci, L. Narula, and T. E. Humphreys, “Multi-
antenna vision-and-inertial-aided cdgnss for micro aerial vehicle pose
estimation,” in Proceedings of the 33rd International Technical Meet-
ing of the Satellite Division of The Institute of Navigation (ION GNSS+
2020), 2020, pp. 2281–2298.

[25] G. Cioffi and D. Scaramuzza, “Tightly-coupled fusion of global posi-
tional measurements in optimization-based visual-inertial odometry,”
in 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2020, pp. 5089–5095.

[26] X. Li, X. Wang, J. Liao, X. Li, S. Li, and H. Lyu, “Semi-tightly cou-
pled integration of multi-gnss ppp and s-vins for precise positioning
in gnss-challenged environments,” Satellite Navigation, vol. 2, no. 1,
pp. 1–14, 2021.

[27] A. Soloviev and D. Venable, “Integration of gps and vision measure-
ments for navigation in gps challenged environments,” in IEEE/ION
Position, Location and Navigation Symposium, 2010, pp. 826–833.

[28] D. H. Won, E. Lee, M. Heo, S. Sung, J. Lee, and Y. J. Lee,
“Gnss integration with vision-based navigation for low gnss visibility
conditions,” GPS solutions, vol. 18, no. 2, pp. 177–187, 2014.

[29] M. Schreiber, H. Königshof, A.-M. Hellmund, and C. Stiller, “Vehicle
localization with tightly coupled gnss and visual odometry,” in 2016
IEEE Intelligent Vehicles Symposium (IV). IEEE, 2016, pp. 858–863.

[30] T. Li, H. Zhang, Z. Gao, X. Niu, and N. El-Sheimy, “Tight fusion
of a monocular camera, mems-imu, and single-frequency multi-gnss
rtk for precise navigation in gnss-challenged environments,” Remote
Sensing, vol. 11, no. 6, p. 610, 2019.

[31] P. V. Gakne and K. O’Keefe, “Tightly-coupled gnss/vision using a
sky-pointing camera for vehicle navigation in urban areas,” Sensors,
vol. 18, no. 4, p. 1244, 2018.

[32] J. Liu, W. Gao, and Z. Hu, “Optimization-based visual-inertial
slam tightly coupled with raw gnss measurements,” arXiv preprint
arXiv:2010.11675, 2020.

[33] J. Saastamoinen, “Contributions to the theory of atmospheric refrac-
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