
Map-based Visual-Inertial Localization: A Numerical Study

Patrick Geneva and Guoquan Huang

Abstract— We revisit the problem of efficiently leveraging
prior map information within a visual-inertial estimation
framework. The use of traditional landmark-based maps with
2D-to-3D measurements along with the recently introduced
keyframe-based maps with 2D-to-2D measurements are inves-
tigated. The full joint estimation of the prior map is compared
within a visual-inertial simulator to the Schmidt-Kalman filter
(SKF) and measurement inflation methods in terms of their
computational complexity, consistency, accuracy, and memory
usage. This study shows that the SKF can enable efficient and
consistent estimation for small workspace scenarios and the use
of 2D-to-3D landmark maps have the highest levels of accuracy.
Keyframe-based 2D-to-2D maps can reduce the required state
size while still enabling accuracy gains. Finally, we show that
measurement inflation methods, after tuning, can be accurate
and efficient for large-scale environments if the guarantee of
consistency is relaxed.

I. INTRODUCTION

Camera and inertial sensors have become increasingly
prominent in robotic and autonomous applications due
to their small form factor, complimentary sensing nature,
weight, and low cost [1]. Visual-inertial navigation systems
(VINS) look to fuse this visual and inertial dynamic infor-
mation into an estimate of the platform’s pose and corre-
sponding uncertainty. One of the barriers which prevents the
wider deployment of VINS is that visual-inertial sensors can
only provide the relative change to an arbitrary frame and
cannot recover global yaw and position [2], [3].

To overcome this, VINS is typically a sub-system of the
complete localization solution and provides high frequency
relative pose information that is later fused with global infor-
mation (e.g., a prior map with loop-closures). Incorporating
global information increases the computational complexity
and memory resources, thus many works have relegated this
problem to secondary non-realtime background threads [4]–
[9]. This has typically been achieved by splitting the un-
derlying joint optimization problem into one which recovers
the global pose and introduces loop-closure constraints, and
another odometry method which provides high frequency
relative poses. The two optimization problems do not model
the correlations between each other and thus are, at best,
an imperfect inconsistent approximation of the original joint
problem. The popular design which uses a visual-inertial
odometry (VIO) front-end, and a backend optimization which
incorporates loop-closure information typically has the addi-
tional downside that global correction information cannot be
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Fig. 1: Simulated 1.2km hand-held Room trajectory, axes are
in units of meters. Every other keyframe is shown to increase
clarity. Feature depths (purple) are between 5 and 7 meters.

leveraged in the “front-end” VIO [4]–[6], [10]. Works which
have allowed the front-end to use an optimized map which
includes global information, treat the map as perfectly know
or do not track the correlations [7], [11]–[16].

A few works have looked to efficiently incorporate global
information directly into the estimator in a consistent manor.
Most leverage the Schmidt-Kalman filter (SKF) [17] formu-
lation which allows for estimation of the active states and
“schmidt’ed” states which are treated as nuisance parameters
and not updated. The SKF’s computational cost is linear in
the number of schmidt’ed states which is ideal for large
prior map sizes. Dutoit et al. [18] introduced the Cholesky-
Schmidt-Kalman filter which explicitly considered the un-
certainty of a given fixed prior map. They showed that, as
compared to doing simple measurement inflation and treating
the prior map as true, their method was consistent and com-
putationally efficient. Ke et al. [19] presents an approximate
information variant of the Schmidt-Kalman filter, termed
RISE-SLAM, which enabled efficient information filtering,
but required state re-ordering between “exploration” and
“relocalization” phases. Huai and Huang [20] later expanded
in this direction and showed that tracking of two states
in opposite state ordering and incorporating loop-closure
constraints asynchronously was feasible. Additionally, we
have previously proposed two works which have investigated
the use of the SKF for efficient online map-based localization
[21], [22]. Both leveraged the SKF and built either a point-
based or keyframe pose-based map and directly updated the
state with loop-closure information in real-time.

There are a few different ways to relate global map
information to the state. The most common method is to
leverage sparse visual landmark maps and constrain the front-
end state with 2D-to-3D constraints [7], [12], [15], [16], [18],
[21]. Typically, due to the large map size, these methods



either treat the sparse landmark map as true or perform
measurement inflation. We presented an alternative method
in [22], which leveraged prior keyframes with historical ob-
servations. After matching to features tracked in the current
frame, these historical observations could be used to related
the active feature to the historical keyframe pose, and thus
indirectly constrain the current pose to the global prior map.

In this paper we investigate how these different methods
can be incorporated within a VINS, and how each impacts
the computational complexity, accuracy, and consistency. The
key contributions of our work are as follows:
• We investigate in depth the use of landmark 2D-to-3D

and keyframe-based 2D-to-2D prior maps within a filter-
based real-time visual-inertial estimator.

• We study different techniques for incorporating loop-
closure information: (i) full estimation of the prior map
in a joint manor, (ii) Schmidt’ing of the prior map,
and (iii) a variety of different measurement inflation
methods.

• All variations are evaluated numerically within a re-
alistic visual-inertial simulator leveraging real-world
trajectories and discussed in terms of their accuracy,
consistency, computational complexity, and memory.

II. PROBLEM STATEMENT

A. Map-based EKF-SLAM

We build off MSCKF-based VIO [23]–[25] and incorpo-
rate prior landmark or keyframe maps. Specifically, we can
define the following state of the system:

xk =
[
x>A x>M x>K

]>
(1)

xA =
[
x>Ik x>C x>L

]>
(2)

xM =
[
Gp>f1 · · ·

Gp>fm
]>

(3)

xK =
[
x>T1
· · · x>Tn

]>
(4)

where:

xIk =
[
Ik
G q̄
> b>ωk

Gv>Ik b>ak

Gp>Ik
]>

(5)

xC =
[
x>Tk−1

· · · x>Tk−c

]>
(6)

xL =
[
Gp>f1 · · ·

Gp>fd
]>

, xTi =
[
Ii
G q̄
> Gp>Ii

]>
(7)

where we define the “active” state xA, map of m features
xM , and map of n keyframe poses xK . The clone state
xC contains c historical IMU poses and a local temporal
SLAM feature map xL stores features which are tracked and
updated until lost. I

Gq̄ is the unit quaternion parameterizing
the rotation I

GR from the global frame of reference {G} to
the IMU local frame {I} [26], bω and ba are the gyroscope
and accelerometer biases, and GvI and GpI are the velocity
and position of the IMU expressed in the global frame,
respectively.

B. Propagation

The state evolves according to the inertial nonlinear IMU
kinematics [27]. All states besides the inertial state, xI , have

zero dynamics. Integrating incoming IMU linear accelera-
tions, am, and angular velocities, ωm, we get:

xIk+1
= f(xIk ,amk

− nak
,ωmk

− nωk
) (8)

where na and nω are the zero-mean white Gaussian noise of
the IMU measurements. We can then linearize the nonlinear
model and propagate the state and covariance forward [23].

C. Feature Measurement Function

As the sensor platform moves, bearings to environmental
features are tracked on the image plane using KLT optical
flow [28]. A bearing measurement z seen at timestep k
can be related to the state by the following (simplified for
presentation, model in [25] is used):

zk = h(xTk
,Gpf ) + nk =: Λ(Ckpf ) + nk (9)

Λ([x y z]>) =
[
x/z y/z

]>
(10)

Ckpf = C
I RIk

G R(Gpf − GpIk) + CpI (11)

where nk is the white Gaussian noise with covariance Rk =
σ2
pixI. We can now linearize this measurement model and

obtain the following residual:

rk = zk − h(x̂Tk
,Gp̂f ) (12)

' HTk
x̃Tk

+ Hfk
Gp̃f + nk (13)

where HTk
and Hfk are the measurement Jacobians, and

x̃Tk
and Gp̃f are the error states for the observation pose

and feature, respectively.1 After sufficient observations of the
feature, we can “stack” them to get:

r = HT x̃T1..c
+ Hf

Gp̃f + n (14)

where the measurement is a function of c clone poses,
x̃T1..c

= [x̃>T1
· · · x̃>Tc

]>, corresponding to each observation
time the feature was seen, and the stacked measurement noise
is n ∼ N (0,R) where R = σ2

pixI.

D. Prior Map Update - 2D-to-3D

Consider an actively tracked feature that has matched to
the i’th prior map feature in xM . This is the traditional
2D-to-3D measurement model that has been typically seen
throughout the literature [12], [15], [18], [21]. We have:

r = HT x̃T1..c
+ Hfi

Gp̃fi + n (15)

where Gpfi ∈ xM . This measurement function can directly
update the state.

E. Prior Map Update - 2D-to-2D

Presented in [22], consider the case that we observe a
feature from the k’th keyframe in our prior map of keyframes
and has also been seen by c active clones:

r = HT x̃T1..c
+ HTk

x̃Tk
+ Hf

Gp̃f + n (16)

1Throughout this paper x̂ is used to denote the estimate of a random
variable x, while x̃ = x � x̂ is the error in this estimate. The updated
estimate from a correction δx is x̂⊕ = x̂ � δx.



where xTk
∈ xK . We then remove the dependency on

the feature Gpf , Gpf 6∈ xk, by projecting r onto the left
nullspace of Hf (i.e., N>Hf = 0) [23]:

N>r = N>HT x̃T1..c
+ N>HTk

x̃Tk

+ N>Hf
Gp̃f + N>n (17)

⇒ r′ = H′T x̃T1..c
+ H′Tk

x̃Tk
+ n′ (18)

where n′ = N>n with covariance R′ = N>RN. This
measurement function can directly update the state.

F. Non-Map Feature Updates

Features which have not been matched to the prior maps
can be processed as local “SLAM features” and inserted
into the state vector, xL, as part of a local temporal map
or as “MSCKF features” which directly update the state by
removing the feature position through the MSCKF nullspace
projection procedure [23]. The updates are similar to Eq.
(15) and Eq. (18) (see [25] for details).

III. METHODS FOR PRIOR MAP UPDATES

We now detail the different methods and techniques which
enable efficient incorporation of global information. In gen-
eral, for a filter or non-linear least squares the complexity is
on order O(x2) or O(x3) (where x is the total map state size)
in the worst case if the measurement residual size is assumed
to be much smaller in order. We now present different
approximations which aim to reduce this complexity.

A. Extended Kalman Filter

We first begin with the standard EKF which jointly esti-
mates all variables. We split the state into an active and map
portion at timestep k.

xk =

[
xAk

xSk

]
, Pk =

[
PAAk

PASk

PSAk
PSSk

]
(19)

where xSk
= [x>M x>K ]>. We can define the following

linearized measurement function:

r ' HAk
x̃Ak

+ HSk
x̃Sk

+ n (20)

where x̃Sk
= Gp̃fi if we matched to a historical feature [see

Sec. II-D], or x̃Sk
= x̃Tk

in the case that we matched to a
historical keyframe [see Sec. II-E]. We can then define the
Kalman gain as follows:

Kk =

[
KAk

KSk

]
=

[
PAAk

H>Ak
+ PASk

H>Sk

PSAk
H>Ak

+ PSSk
H>Sk

]
S−1k

=:

[
LAk

LSk

]
S−1k (21)

where Hk = [HAk
HSk

] and Sk = HkPkH>k + R is
the measurement residual innovation. This then leads to the
following mean and covariance update equations:

x̂⊕Ak
= x̂Ak

+ KAk
r , x̂⊕Sk

= x̂Sk
+ KSk

r (22)

P⊕k = Pk− KAk
SkK>Ak

KAk
Hk

[
PASk

PSSk

]
[
PASk

PSSk

]>
Hk
>K>Ak

KSk
SkK>Sk

 (23)

We note that this process is O(x2) complexity if the number
of measurements is far smaller than the state size (i.e.,
Sk
−1 is cheap) due to the covariance update multiplication

KSkK>. The memory requirement for landmark-based and
keyframe based maps are O((3m)2) and O((6n)2), respec-
tively.

B. Linear Schmidt-Kalman Filter

A consistent alternative to the standard EKF is the
Schmidt-Kalman filter (SKF) [17]. This has been success-
fully used (along with different variations) to reduce the up-
date complexity for map-based localization [18]–[22]. Using
the same state definition as in Eq. (19), we set KSk

= 0 and
get the following update equations [see Eq. (22) and (23)]:

x̂⊕Ak
= x̂Ak

+ KAk
r , x̂⊕Sk

= x̂Sk
(24)

P⊕k = Pk− KAk
SkK>Ak

KAk
Hk

[
PASk

PSSk

]
[
PASk

PSSk

]>
Hk
>K>Ak

0

 (25)

This process is O(x) and its memory requirement for
landmark-based and keyframe based maps are O((3m)2)
and O((6n)2), respectively. This is due to only updating the
cross-covariance terms. We note that this is a consistent2

approximation which ensures that the filter is never more
confident then the original EKF [see [18]].

C. Noise Inflation - Measurement

Another method for incorporating global information is
to not explicitly estimate the map states (landmarks or
keyframes). The downside is that this prevents the modeling
of the correlation between the state and the map and thus is
inconsistent. Specifically, in Eq. (12) and (18) we treat the
feature position and keyframe pose as known, and thus their
Jacobians, Hfi and H′Tk

, become zero.
Naively the simplest way to solve this inconsistency due to

an over confident measurement is to inflate the measurement
noise. For landmark-based or keyframe-based maps we can
simply inflate the measurement observation noise as:

R = (γσpix)2I (26)

The key advantage of this method is that the computational
cost is now constant O(1) since only the inertial state, sliding
window, and temporal SLAM map is tracked. The memory
requirement for both landmark and keyframe-based maps
is O(0). This can have profound impacts on large maps
and thus giving up the guarantee of consistency for this
computational advantage is very alluring.

2An estimator is consistent when its errors are zero-mean (unbiased) and
covariance matrix is equal to that reported by the estimator [29, Section 5.4].



TABLE I: Simulation parameters and priors that perturba-
tions of measurements and initial states were drawn from.

Parameter Value Parameter Value

Pixel Proj. (px) 1 Num. Camera 1
IMU Freq. (hz) 400 Cam Freq. (hz) 10

Avg. Feats 15 Num. SLAM 10
Num. Clones 11 Feat. Rep. GLOBAL

Gyro. White Noise 1.6968e-04 Gyro. Rand. Walk 1.9393e-05
Accel. White Noise 2.0000e-03 Accel. Rand. Walk 3.0000e-03
Prior Key. Ori. (deg) 1.0 Prior Key. Pos. (cm) 6
Prior Feat. Pos. (cm) 12 % Feat. Lost Btw Key. 75

Max Dist. Btw Key. (m) 1 Max Deg. Btw Key. (deg) 15
Map PTS 210 Map KF 86

D. Noise Inflation - Marginal Covariance Inflation

Many works have leveraged the marginal covariance of
the prior map to both reduce the complexity and memory
requirements of the system (e.g., [15]). The main advantage
is that this allows for each landmark or keyframe to have
different levels of uncertainty and the use of its Jacobian to
map the additional error to the observed measurement. More
concretely we have the following modified measurement
noise for landmark-based and keyframe-based prior maps
respectively [see Eq. (12) and (18)]:

R = µHfiPffiH
>
fi + σ2

pixI (27)

R = µH′Tk
PTTk

H′>Tk
+ σ2

pixI (28)

where Pffi and PTTk
are the 3x3 and 6x6 prior landmark

and keyframe covariances, respectively. This process also en-
sures the computational cost is also now constant O(1), with
memory requirements of O(9m) and O(36n), respectively.

E. Noise Inflation - Alpha Beta Inflation

The final noise inflation variation investigated is the one
presented in [30], which incorporates not only inflation due
to the marginal prior map covariance but also the current state
covariance (originally adopted by NASA’s Apollo program
[31] and used to “intentionally slow adaptation in linearized
estimation problems”). Specifically we have the following:

R = αHfiPffiH
>
fi + βHTPH>T + σ2

pixI (29)

R = αH′Tk
PTTk

H′>Tk
+ βH′TPH′>T + σ2

pixI (30)

This process is constant O(1) in terms of computational
cost, with memory requirements of O(9m) and O(36n) for
landmark and keyframe-based maps. We normally “whitten”
the linearized measurement function with the now dense
noise to regain an identity noise covariance form.

IV. NUMERICAL STUDY

To investigate and compare the different methods for
global measurement inclusion we simulated a realistic indoor
single room dataset which is approximately 15 minutes long
and 1.2km in length (see Fig. 1). We employ the OpenVINS
simulator [22] to generate realistic visual-bearing and inertial
measurements from the trajectory generated by an existing
VINS. Simulation parameters used are documented in Tab. I,
while details on how the prior map is generated are specified
in the following section. First-estimates Jacobians (FEJ) [32],
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Fig. 2: Relation between state state size (number of vari-
ables) and the average number of features observed for both
landmark-based (PTS) and keyframe-based (KF) maps in
the Room dataset. Different maximum keyframe distance
thresholds are also plotted.

[33] were used to improve the estimator consistency as
the use of environmental landmarks is known to introduce
inconsistent information gains. For metrics we report the
Absolute Trajectory Error (ATE), Normalized Estimation
Error Squared (NEES), and Relative Pose Error (RPE)
throughout the different experiments (see [34] and [29]).
NEES’s magnitude should match the 3 degree-of-freedom
orientation and position state sizes.

Feature matching to historical keyframes to gain additional
feature observations was simulated by selecting the closest
keyframe and using groundtruth labels, while for map fea-
tures the groundtruth labels were directly used (thus perfect
matching). In real-world experiments, where incorrect feature
associations are prevalent, chi-squared thresholding can be
leveraged before update to reject outliers. Additional simu-
lation results for different trajectories and noise perturbations
can be found in the companion technical report [35]

A. Prior Map Generation

We now describe the procedure on how we generate a prior
map of environmental landmarks and keyframes (e.g., Fig.
1). Starting at the beginning of the trajectory we move the
camera forward in time at a rate of 4 Hz. At each timestep
we project the current landmark map into the camera frame
and if the number of seen features falls below our average
feature tracking amount we generate new features. This is
repeated until the end of the trajectory is reached and our
prior landmark map is complete after applying perturbations.

To generate the keyframe map, we repeat this procedure.
Specifically at each timestep the current camera must be
near an existing keyframe and share a sufficient percentage
of common overlapping features; otherwise a new keyframe
is created. After generating our keyframes, we project the
landmark map into each to generate bearing observations,
and both the keyframe poses and observations are perturbed.

Shown in Fig. 2, we perform a small study on how the
prior map state size changes with the average number of
feature tracks. Landmark-based maps have a state of 3m,
where m is the number of landmarks, and keyframe-based
maps have 6n, where n is the number of keyframes. The
landmark map has a very linear relationship with the average
number of tracked features and grows to a very large size,
which is expected. We additionally show three keyframe



TABLE II: Average ATE and NEES over 5 Room dataset
runs for different map priors and algorithms.

Prior Algo. ATE (deg / m) NEES (3)

V
IO - - 2.603 / 0.271 3.524 / 1.591

2D
-t

o-
2D

0.5◦, 3cm EKF 0.324 / 0.090 2.933 / 3.327
SKF 0.374 / 0.099 2.758 / 3.248

1.0◦, 6cm EKF 0.442 / 0.105 3.236 / 3.698
SKF 0.518 / 0.130 2.806 / 3.466

3.0◦, 12cm EKF 0.629 / 0.127 4.353 / 5.335
SKF 0.941 / 0.167 3.009 / 3.585

2D
-t

o-
3D

3cm EKF 0.051 / 0.010 5.975 / 6.586
SKF 0.064 / 0.021 2.898 / 3.188

6cm EKF 0.068 / 0.014 8.224 / 9.292
SKF 0.087 / 0.036 2.863 / 3.210

12cm EKF 0.079 / 0.015 9.321 / 9.472
SKF 0.122 / 0.065 2.761 / 3.175

prior maps with different maximum distances between gen-
erated keyframes. For the keyframe-based maps there is
a clear advantage in state size, as the average number of
tracked features increase, since more features just increases
the number of observations in all keyframes. For the rest of
the experiments we select a keyframe distance of 1 meter
since the state size is close to the size of a point-based
map when using 15 average features, and thus this advantage
won’t be shown.

B. Map Prior Noise Sensitivity

A natural question is how good will the “best” estimator
perform with different prior map noises. We first investigate
this using the standard EKF and SKF to see how the accuracy
is affected by the quality and uncertainty levels of the
prior map. Shown in Tab. II, we report the VIO, which
doesn’t leverage any prior map, the landmark-based 2D-
to-3D map, and the keyframe-based 2D-to-2D map. The
simulator parameters used are reported in Tab. I.

First, we can see that all the prior map methods are
able to outperform the odometry VIO method. Additionally,
even at large noise levels of 12cm, both the landmark
and keyframe methods are still able to gain in both the
orientation and position accuracy. Additionally, we can see
that the 2D-to-3D methods greatly outperform the 2D-to-
2D method. This makes sense since the 2D-to-2D indirectly
constrain the current pose of the system through additional
feature observations, while the 2D-to-3D directly constrain
all observations for a feature. It is also interesting to note that
while the EKF 2D-to-3D has very good levels of accuracy
the NEES increases with noise. We conjecture this is due to
FEJ, which can introduce linearization errors at high noise
levels (the SKF hides this due to its naturally conservative
covariance, see [36] for a discussion). Given these results
we pick our priors used during the rest of the simulations,
Tab. I, as 12cm for the landmark-based map and 1 degree
and 6 centimeters for the keyframe-based map with 1 pixel
observation noise.
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Fig. 3: Runtime in milliseconds for both propagation and up-
date without (VIO) and with both landmark-based (PTS) and
keyframe-based (KF) maps for the Room dataset. Keyframe-
based map are reported for different max keyframe distances.

C. Inflation Tuning Sensitivity

A downside of the inflation methods is that their inflation
multipliers need to be tuned. The results reported in Tab.
III look to answer if they are sensitive to their value and
determine what the optimal is. We can first see that the
measurement-based inflation, γ, requires the largest amount
of inflation levels to reach consistent estimation, and with an
inflation value of 1 the estimator quickly diverged since it is
equivalent to treating the feature position as true. The amount
of inflation when using the marginal covariance µ, alpha α,
and beta β inflation does not have that large of an affect on
accuracy which is ideal. Additionally, there seems to be little
difference between the two. We can therefore recommend
inflating using the marginal or alpha beta covariance with a
conservative (one order) multiplier (this does not guarantee
consistency). It is also important to note that while these
two methods do have some invariance to different prior
map noises, the measurement inflation parameter γ highly
depends on the prior map quality. We select an inflation of
γ = 20, µ = 10, α = 10, and β = 5 for the rest of the
experiments.

D. Map and Algorithm Comparison

We now look to compare the different prior map types
and methods that incorporate global information. We report
the results in Tab. IV. In general we see that the 2D-to-
3D landmark-based methods are able to achieve an order
of magnitude better accuracy across all variants, with near
constant error as the RPE segments grow in length. The 2D-
to-2D method is able to halve the orientation error, but the
position error has marginal improvements when compared to
that of the 2D-to-3D method. The majority of improvements
are at longer trajectory lengths of 200-240m as compared to
the shorter segments. This is likely due to the fact that it
takes many historical 2D-to-2D observations to improve the
state as compared to the “strong” constraint a 3D position
of the feature in the 2D-to-3D method provides.

We additionally report on the right of Tab. IV and in Fig.
3 each method’s average timing. The EKF takes the most
time, the SKF second, and the inflation methods all around



TABLE III: Average ATE and NEES over 5 Room runs for different inflation values.

γ ATE (deg / m) NEES (3) µ ATE (deg / m) NEES (3) α,β ATE (deg / m) NEES (3)
V

IO - 2.381 / 0.267 3.522 / 1.590 - 2.381 / 0.267 3.522 / 1.590 - 2.381 / 0.267 3.522 / 1.590

2D
-t

o-
2D

1 * / * * / * 1 0.853 / 0.187 4.219 / 6.928 1,1 0.883 / 0.187 3.796 / 6.070
5 0.737 / 0.219 5.197 / 17.377 5 0.846 / 0.182 3.124 / 3.198 5,2 0.810 / 0.182 2.826 / 2.916

10 0.931 / 0.181 3.960 / 6.099 10 0.787 / 0.180 2.699 / 2.385 10,5 0.899 / 0.192 2.688 / 2.275
20 0.886 / 0.184 2.949 / 3.557 20 0.822 / 0.185 2.574 / 1.893 20,5 0.928 / 0.193 2.650 / 1.867

2D
-t

o-
3D

1 * / * * / * 1 0.132 / 0.045 12.438 / 18.407 1,1 0.131 / 0.045 12.184 / 17.957
5 0.178 / 0.055 17.185 / 27.854 5 0.110 / 0.040 4.387 / 4.537 5,2 0.110 / 0.040 4.323 / 4.442

10 0.163 / 0.054 7.584 / 10.841 10 0.109 / 0.041 3.308 / 2.731 10,5 0.109 / 0.041 3.233 / 2.611
20 0.156 / 0.057 3.861 / 3.795 20 0.111 / 0.043 2.761 / 1.743 20,5 0.112 / 0.043 2.726 / 1.688

TABLE IV: Average RPE over the Room dataset for different prior map types and algorithms. Units are in degrees and
meters. Additionally the NEES and total time to process each image is reported.

Algo. 40m 80m 120m 160m 200m 240m NEES (ori / pos) Time (ms)

V
IO - 0.373 / 0.088 0.536 / 0.119 0.636 / 0.141 0.717 / 0.163 0.811 / 0.175 0.888 / 0.187 3.228 / 3.796 0.8 ± 0.3

2D
-t

o-
2D

EKF 0.225 / 0.091 0.323 / 0.111 0.372 / 0.120 0.402 / 0.121 0.424 / 0.122 0.394 / 0.125 3.298 / 4.311 3.6 ± 1.8
SKF 0.260 / 0.097 0.339 / 0.129 0.415 / 0.146 0.448 / 0.155 0.492 / 0.167 0.542 / 0.171 3.074 / 3.596 1.4 ± 0.7

Inf. Meas. 0.276 / 0.099 0.353 / 0.134 0.449 / 0.152 0.518 / 0.163 0.531 / 0.173 0.562 / 0.180 3.016 / 3.647 0.9 ± 0.3
Inf. Marg. 0.265 / 0.091 0.350 / 0.122 0.447 / 0.142 0.520 / 0.156 0.560 / 0.169 0.613 / 0.175 2.795 / 2.784 0.9 ± 0.3

Inf. αβ 0.269 / 0.091 0.353 / 0.122 0.456 / 0.142 0.546 / 0.156 0.599 / 0.168 0.656 / 0.173 2.781 / 2.689 0.9 ± 0.3

2D
-t

o-
3D

EKF 0.041 / 0.009 0.041 / 0.009 0.041 / 0.009 0.041 / 0.009 0.041 / 0.009 0.041 / 0.009 9.612 / 7.792 5.8 ± 1.1
SKF 0.090 / 0.040 0.092 / 0.038 0.091 / 0.040 0.090 / 0.038 0.092 / 0.039 0.091 / 0.039 3.051 / 2.963 1.4 ± 0.2

Inf. Meas. 0.125 / 0.068 0.139 / 0.065 0.141 / 0.067 0.141 / 0.064 0.142 / 0.066 0.136 / 0.065 3.663 / 3.528 0.6 ± 0.1
Inf. Marg. 0.102 / 0.046 0.103 / 0.045 0.102 / 0.046 0.098 / 0.044 0.103 / 0.046 0.100 / 0.045 3.201 / 2.546 0.6 ± 0.1

Inf. αβ 0.102 / 0.047 0.103 / 0.046 0.102 / 0.047 0.098 / 0.045 0.103 / 0.046 0.100 / 0.046 3.126 / 2.437 0.6 ± 0.1

the same.3 In Fig. 3, we additionally show the computational
cost as we increase the average number of features and for
different keyframe distance thresholds. The 2D-to-2D (KF)
methods have near constant offset from the VIO time as
the number of average features only marginally increases
the computational cost due to more measurements. This is a
clear advantage when the number of tracked features is large.
The 2D-to-3D (PTS) method quickly increases an order of
magnitude slower than VIO, which is expected as the state
size dramatically grows (see Fig. 2). The inflation methods
(INF) for both landmark and keyframe prior maps perform
as efficiently as VIO due to their near constant run-time and
constant state vector size.

E. Findings and Discussions

In summary, we have investigated through simulation
the: relation between state size and the average number of
features, achievable accuracy given different map priors, sen-
sitivity of inflation methods to their tuning parameters, and
how all methods compare in terms of accuracy, consistency,
and computational cost for both 2D-to-3D landmark and 2D-
to-2D keyframe maps.

We showed that even at extremely high noise levels,
in general, the 2D-to-3D maps outperform the 2D-to-2D
methods in accuracy. Keyframe maps have an computational
advantage due to their state size when using a large number
of features. The marginal and alpha beta covariance inflation
methods are relatively invariant to their inflation parameters

3All timings were run on an Intel(R) Xeon(R) CPU E3-1505M v6 @
3.00GHz processor in single threaded execution.

making them ideal for large environmental maps where EKF
and SKF estimators become prohibitively expensive or the
loss of consistency guarantees is acceptable.

Finally, we evaluated all methods against each other and
make the following general recommendations: (1) the SKF
should be used for small workspaces to ensure consistency
and achieve high accuracy levels with low computational
cost, (2) keyframe-based maps can be leveraged to reduce
the computational cost while still reducing drift, (3) for
large environments and map sizes, inflation methods can
practically be leveraged with conservative inflation values.

V. CONCLUSION

In this work we have revisited the map-based visual-
inertial estimation problem in detail. A thorough investiga-
tion of 2D-to-3D landmark-based and 2D-to-2D keyframe-
based prior maps was conducted. Different methods which
incorporate this global information were presented and dis-
cussed. Simulation experiments were performed to show
the achievable accuracy of estimators given different map
priors, the sensitivities of inflation-based methods to their
parameters, and how all variants compare in terms of their
accuracy, consistency, and computational cost. We finally
gave a series of general recommendations to leverage the
SKF for small workspace consistent estimation, the use of
keyframe-based maps to reduce state size and still limit
navigation drift, and that inflation methods, after tuning, can
be accuracy and efficient for large-scale environments. In
the future we plan to investigate these methods in real-world
scenarios.
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