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Abstract— This paper presents a general multi-camera
visual-inertial navigation system (mc-VINS) with online instrin-
sic and extrinsic calibration, which is able to utilize all the infor-
mation from an arbitrary number of asynchronous cameras. In
particular, within the standard multi-state constraint Kalman
Filter (MSCKF) framework, we only clone the IMU poses
related to a single “base camera” (rather than all cameras)
in the state vector, while the IMU poses corresponding to all
other camera images are represented via an interpolation of the
poses bounding the measuring time. By doing so, we can fuse
all observations from all cameras with inertial measurements
while allowing for efficient, tightly-coupled state estimation
through parallelization and asynchrony. Moreover, we perform
online sensor calibration of each camera’s intrinsics as well
as the spatial (transformation) and temporal (time offset)
extrinsic parameters between all involved sensors (cameras and
IMU), thus enabling high-fidelity localization. We validate the
proposed mc-VINS algorithm in various real-world experiments
with different sensor configurations, showing the ability to offer
real-time high-precision localization and calibration results.

I. INTRODUCTION

Over the last decade, visual-inertial navigation systems
(VINS) have witnessed a great increase in popularity largely
because of the increasing ubiquity of MEMS inertial mea-
surement units (IMUs) and cameras (e.g., see [1, 2]). Due
to being low-cost and light-weight while still providing rich
sensory information, such sensor platforms have become the
go-to sensor deployment in various fields such as unmanned
aerial vehicles (UAVs) [3, 4] and mobile devices [5].

Within the VINS literature, most efforts have focused on
the minimal sensing case of a single camera and IMU [1, 6–
9]. This configuration fully constrains the estimation problem
as the camera provides information to limit the drift inherent
to integrating noisy inertial measurements, while the IMU
(accelerometer) provides scale information and improved
robustness to dynamic motion. Among the current monoc-
ular VINS algorithms, one of the most popular lightweight
VINS estimators is the multi-state constraint Kalman filter
(MSCKF) [6], which has been extended and improved in
different directions [7–12]. The key idea of the MSCKF and
its variants is to perform propagation using the inertial mea-
surements while efficiently processing visual measurements
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through a novel update step that does not explicitly require
estimating the corresponding 3D features, thereby bounding
the computational burden. While 3D motion tracking with
minimal sensing capability is of interest, in practice, it is
highly desirable to optimally and efficiently fuse all informa-
tion from multiple cameras to improve estimation robustness
and accuracy [13].

In this paper, we design a general multi-camera VINS (mc-
VINS) algorithm that is capable of tightly fusing the visual
information from an arbitrary number of non-overlapping,
asynchronous cameras and IMU measurements within the
MSCKF framework, while limiting the increased computa-
tional burden on the estimator. In comparison to the state-
of-the-art VINS [1, 8, 9, 14], we not only online calibrate
all spatial and temporal calibration parameters between the
used sensors but also jointly estimate the intrinsics for each
camera, allowing for online refinement of these parameters.
In particular, the main contributions of this work are:
• By leveraging the computationally-efficient MSCKF

framework, we develop the tightly-coupled multi-
camera VINS (mc-VINS) with online intrinsic and
extrinsic calibration. The proposed mc-VINS is able
to utilize all information from any number of cameras
without constraints on sensor configurations since both
spatial/temporal calibration parameters and intrinsics of
each camera are simultaneously estimated online.

• Instead of maintaining stochastic clones for each cam-
era, we only perform cloning of the IMU poses at
imaging times of a freely chosen “base” camera, and use
interpolation on the SO(3)×R3 manifold to represent
the pose at an arbitrary intermediate time for all other
cameras. By representing this interpolation as a function
of the unknown time offset between cameras, we can
perform both spatial and temporal calibration between
all sensors (including the IMU), and additionally refine
the intrinsic parameters for each camera to allow for
high-fidelity estimation.

• We validate the proposed mc-VINS on real multi-
camera visual-inertial sensor platforms using different
camera configurations and in various environments.

II. RELATED WORK

While monocular-VINS has been widely studied (e.g.,
see [1, 7–10, 12, 15] and references therein), one straight-
forward extended configuration over the monocular setting
is to use a stereo camera, wherein the two cameras are
mounted such that they observe the same spatial volume from
offset camera centers at the same image time. Stereo vision



enables 3D triangulation of features seen in the overlapping
view without requiring motion of the sensor platform, thus
allowing for the direct recovery of scale if the spatial
transforms between cameras are known. Motivated by this
increase in robustness, Sun et al. [3] developed the MSCKF-
based stereo-VINS with the particular application to high-
speed aerial vehicles. Paul et al. [13] extended the inverse
square-root version of the MSCKF (namely SR-ISWF) [5]
to provide real-time VINS on mobile devices while allow-
ing for a configuration of both stereo and binocular (non-
overlapping) cameras, and showed that the inclusion of more
visual information improves the estimation accuracy.

While stereo cameras provide robustness due to their
ability to perform feature triangulation and scale recovery
even without the IMU, they remain vulnerable to dynamic
environmental motion and textureless regions in its given
viewing direction. More importantly, the requirement of an
overlapping field of view and synchronous camera triggering
may not easily extend to an arbitrary number of plug-and-
play cameras – which is a highly-desirable characteristic and
could greatly promote the widespread deployment of VINS
in practice. Additionally, due to the enforcement of cross-
image matching (for example matching features from the
left to right stereo image) the process of visual tracking
is coupled and cannot be directly parallelized. For these
reasons, we propose a general multi-camera VINS in this
work, which can tightly fuse the visual information from
an arbitrary number of non-overlapping, asynchronous and
heterogeneous cameras and the IMU measurements, so that
the proposed approach is robust to environmental conditions
and single-camera failure. We shall stress that in the proposed
mc-VINS, we do not perform any cross-image matching,
since we have non-overlapping images and instead allow
each camera feed to be processed independently and in
parallel.

Houben et al. [16] extended the ORB-SLAM [17] to a
system of multiple cameras with varying viewing directions
and an IMU for UAVs within a graph-SLAM framework but
assumed known sensor calibration and simultaneous trigger-
ing of all involved cameras. Recently, Paul and Roumeliotis
[18] addressed the problem of increased computational bur-
den in stereo-VINS and proposed an alternating stereo-VINS
algorithm. In their system, the two cameras in a stereo pair
were triggered in an alternating manner, preventing the need
to process both images at the same time while still taking
advantage of the offset camera centers provided by a stereo
configuration. In addition, they further reduced computation
by explicitly estimating the historical IMU poses correspond-
ing to only one of the camera’s imaging times, while using
pose interpolation to represent the state at intermediate times
corresponding to the other camera. While in this work we
use a similar interpolation scheme to reduce computation,
we simultaneously perform time offset and spatial calibration
between n ≥ 2 cameras.

An integral part of any multi-sensor fusion system is the
spatial (relative transformation), temporal (time offset), and
intrinsic (e.g., focal length, camera center, and distortion

parameters) calibration parameters for each sensor, as errors
in the values of these parameters can greatly degrade lo-
calization performance – if not catastrophically. Calibration
can be broadly divided into two main categories. Offline
methods perform a computationally expensive solution pro-
cess in exchange for providing highly accurate calibration
estimates. In particular, Furgale, Rehder, and Siegwart [19]
have developed a multi-sensor calibration system that can
perform spatial, temporal, and intrinsic calibration of an
arbitrary number of cameras along with an IMU. However,
performing offline calibration could be a tedious process that
limits deployment time and requires the calibration to be
repeated if the sensor configuration changes. In addition,
treating the calibration parameters provided by these methods
as “known” (zero uncertainty) may lead to unmodelled
errors, thereby introducing estimation inconsistency [20].
By contrast, online methods treat the calibration parameters
as unknown random variables, simultaneously estimating
them along with the navigation states. While many VINS
algorithms perform online calibration of the spatial extrinsic
transform between the camera and IMU, relatively few also
estimate the time offset between them [3, 21]. Systems that
do perform online temporal calibration [22–24], however,
are typically limited to a single IMU-camera pair. One of
the most notably complete systems in this category is by Li
et. al. [20], who performed online calibration of both the
extrinsic parameters between the IMU and camera as well
as the intrinsics of both sensors.

III. THE PROPOSED MC-VINS ALGORITHM

In this section, within the standard MSCKF framework [6],
we present in detail the proposed multi-camera (mc)-VINS
with online instrinsic and extrinsic sensor calibration.

A. State Vector
As standard, the inertial navigation state is given by:

xI =
[
I
Gq̄
> b>ω

Gv>I b>a
Gp>I

]>
(1)

where I
Gq̄ is the JPL unit quaternion [25] associated with the

rotation matrix, IGR, which rotates vectors from the global
frame of reference {G} into the local frame {I} of the
IMU, bω and ba are the gyroscope and accelerometer biases
which corrupt the IMU measurements, GpI is the position
of the IMU expressed in the global frame, and GvI is the
corresponding velocity. Associated with this navigation state
we also define the corresponding error state as:

δxI =
[
Iδθ>G δb>ω

Gδv>I δb>a
Gδp>I

]>
(2)

The true value of the state, xI , estimated value x̂I , and
error state, δxI , are related by the generalized update op-
eration [26]:

xI = x̂I � δxI (3)

where for vector quantities, v, this operation is simply
addition, i.e., v = v̂ + δv, while for quaternions we have:

q̄ ≈
[
1
2δθ
1

]
⊗ ˆ̄q (4)



where ⊗ denotes quaternion multiplication. In addition, we
can also write the inverse operation δx = x � x̂.

Secondly, adhering to the standard MSCKF, we maintain
a window of IMU clones at the past M imaging times tj .
Since we have an asynchronous multi-camera system, we
maintain only those imaging times associated with one of
the cameras which we denote as the “base” camera, as this
greatly decreases the number of variables in our state, and
thus the computational burden:

xcl =
[
I(tk)
G q̄> Gp>I(tk) · · ·

I(tk−M+1)
G q̄> Gp>I(tk−M+1)

]>
(5)

Lastly, with the multi-camera setting under consideration,
we also estimate extrinsics including both the spatial (relative
pose) and temporal (time offset) calibration parameters, as
well as the intrinsics of each camera. Specifically, each
camera state contains the following parameters:

xci =
[
Ci
I q̄> Cip>I

itb ζ
>
i

]>
(6)

ζi =
[
fxi fyi pxi pyi d>i

]>
(7)

where itb is the time offset between camera i and the base
camera, fxi, fyi represent the focal lengths, pxi, pyi denote
the location of the principal point, and di refers to the vector
of distortion parameters whose length/definition depends on
the camera model being used (see [27]). For the base camera,
however, we store its temporal misalignment with respect to
the IMU, btI as the relative time offset to itself is zero.

B. IMU Propagation

As the sensor platform navigates in the space, the IMU
measures both the angular velocity, ωm, and local linear
acceleration, am, which are utilized for propagation:

ωm = ω + bω + nω (8)

am = Ia + I
GRGg + ba + na (9)

where ω and Ia represent the true local angular velocity
and local linear acceleration of the IMU, while nω and
na are continuous-time Gaussian white noises, and Gg ≈
[0 0 9.81]> is the known global gravity.

It is important to note that due to hardware latency of on-
board processing, the time reported by the base camera will
differ from the same time expressed in the IMU’s clock. We
consider a time bt as expressed in the base camera’s clock,
which is related to the same instant represented in the IMU
clock, It, by a time offset btI , i.e.,

It = bt+ btI (10)

As this time offset is unknown, we include it as a parameter
in our state vector to be estimated.

With the estimate of this time offset bt̂I , whenever we
receive the (k + 1)-th image with reported time btk+1, we
perform propagation of our IMU up to the estimated time
of the image as expressed in the IMU clock [see (10)]:
I t̂k+1 = btk+1 + bt̂I . Specifically, we propagate the IMU
from its current time I t̂k (actually the estimate of the IMU
time for k-th image at the time of the previous propagation,

before update) up to this new time by processing all IMU
measurements I collected over the time interval [I t̂k,

I t̂k+1],
based on the conventional IMU dynamics whose integration
yields the prediction function f(·) [28]:

x̂I(I t̂k+1)|k = E
[
f
(
xI(I t̂k)), I,nI

)]
= f
(
x̂I(I t̂k)|k, I,0

)
where the x̂|k notation denotes the estimate for variable x
given all measurements up to the k-th image, while nI is
the stacked IMU noises. Based on this prediction function,
we compute the state-transition matrix across the interval Φk

as well as the corresponding noise covariance Qk as in [7,
8]. Once computed, the covariance after propagation Pk+1|k
can be calculated as:

Pk+1|k =

[
ΦkPII,k|kΦ

>
k + Qk ΦkPIS,k|k

PSI,k|kΦ
>
k PSS,k|k

]
(11)

where the subscripts I and S denote the partition of the
covariance respectively with respect to the IMU navigation
states (1) and the rest of the time-invariant states including
cloned states (5) and calibration parameters (6)-(7).

C. State Augmentation

After propagating to time step k + 1, we only have a
state estimate of the IMU at the estimated time I t̂k+1,
while we actually need to express all camera measure-
ments as a function of the IMU pose at the true time
Itk+1. To accomplish this, we utilize stochastic cloning [29].
Specifically, consider our current state x with covariance P,
which we wish to augment with another state that can be
written as a function g (x). The augmented state mean and
covariance of the corresponding Gaussian can be computed

as: N
([

x̂
g (x̂)

]
, ΨPΨ>

)
, where Ψ =

[
I

∂g(x̂�δx)�g(x̂)
∂δx

]
.

Using this methodology, the following linearized stochastic
cloning is performed to create an estimate of the IMU at this
true time in a manner analogous to [22]:

GpI(Itk+1) ≈
GpI(I t̂k+1)

+ GvI(I t̂k+1)
δbtI (12)

I(Itk+1)
G R ≈ Exp

(
−ωδbtI

) I(I t̂k+1)
G R (13)

Where Exp(·) is the SO(3) matrix exponential which maps
a vector in R3 to a rotation matrix [30]. That is, because we
can write the pose at the true time as a function of the pose
at the estimated time, as well as the time offset error (both of
which are contained in our state), we can augment our state
to contain this new pose. The Jacobians for this cloning are
given by:

∂GδpI(Itk+1)

∂GδpI(I t̂k+1)

= I3,
∂GδpI(Itk+1)

∂δbtI
= Gv̂I(I t̂k+1)

∂I(
Itk+1)δθG

∂I(I t̂k+1)δθG
= I3,

∂I(
Itk+1)δθG
∂δbtI

= ωm(I t̂k+1)− b̂w(I t̂k+1)

With these Jacobians, we obtain the covariance of the aug-
mented state as explained above [29].



D. Multi-Camera Measurements Update

Consider a 3D feature, Gpf , which is captured by the i-th
camera at imaging time btk with respect to the base camera.
In this work we track features extracted uniformly using
FAST [31] and tracked independently for each camera’s
image stream using KLT [32], with outliers rejected via
8-point RANSAC. The perspective projection measurement
function for this feature is given by:

zk = wi

(
Π
(
Ci(btk)pf

)
, ζi

)
+ nk, Π

xy
z

 =

[
x
z
y
z

]
where wi(·) is the function mapping the normalized image
coordinates onto the image plane based on the camera in-
trinsics ζi and the camera model used (e.g., radial-tangential
or fisheye [33]), and Ci(btk)pf = [x y z]> is the position of
the feature expressed in camera i’s frame at true time btk:

Ci(btk)pf = Ci

I R
I(btk)
G R

(
Gpf − GpI(btk)

)
+ CipI (14)

Letting a = Π
(
Ci(btk)pf

)
denote the normalized image

coordinates, we note that when computing Jacobians for this
function, dependence on the intrinsics comes from the image
plane mapping function wi:

∂zk
∂δζi

=
∂wi (a, ζi)

∂δζi
(15)

while for other variables v, the dependency is from
Ci(btk)pf :

∂zk
∂δv

=
∂wi (a, ζi)

∂a

∂a

∂Ci(btk)δpf

∂Ci(btk)δpf
∂δv

(16)

In summary, rather than using the undistorted, normalized
pixel coordinates as measurements (as is typically done), we
utilize the raw image coordinates, allowing us to calibrate
the intrinsics of each camera along with the rest of the state.

As features are tracked over the sliding window of camera
clones, if the feature reaches its maximum track length or is
lost, we perform the MSCKF update with its measurements.
Specifically, let r denote the stacked vector of residuals
associated with this feature, rk = zk − wi(â, ζ̂i). The
linearized system for this feature can be written as:

r = Hxδx + Hf
Gδpf + n (17)

where Hx and Hf refer to the stacked Jacobians of the
residuals with respect to the state and feature variables
respectively, while n is the stacked noise vector with covari-
ance R. To bound our problem size by not explicitly storing
the feature position into our state vector, we perform linear
marginalization of the feature position by the projecting this
system onto the nullspace of the feature Jacobian, which is
spanned by the columns of matrix N.

N>r = N>Hxδx + N>Hf
Gδpf + N>n (18)

⇒ r′ = H′xδx + n′ (19)

where the transformed noise, n′, has covariance N>RN. As
this transformed measurement is only a function of variables
in our state, it can be utilized in the EKF update.

fC1(t1)g
fCb(t0)g fCb(t4)g

fC2(t2)g
fC1(t3)g

Fig. 1: Illustration of how asynchronous multi-camera mea-
surements are collected. We have cloned at the base camera
imaging times: {Cb(t0)}, {Cb(t4)} (blue). A series of mea-
surements between these times from other non-base cameras
C1 and C2 are received, requiring us to interpolate these
poses in terms of the base camera so that they can be utilized
in the MSCKF update.

1) Asynchronous multi-camera measurements: Note that
the cloned state xcl (5) only contains the IMU poses at the
true imaging times of the base camera, while the camera
measurements (14) require that for all non-base cameras
we can express the pose at their image times, which may
not align with those of the base camera (see Figure 1).
Clearly, without solving this issue, the inclusion of all other
measurements that are not collected synchronously with the
base camera cannot be written as functions of the state and
used in the update. Therefore, we employ a SO(3) × R3

linear interpolation method between these poses to allow for
the incorporation of measurements at arbitrary times. We
note that while higher-order interpolation schemes may be
utilized for improved accuracy, in this work we leverage a
linear scheme for its computational efficiency.

In particular, assuming the measured time reported by the
i-th camera as itk, to express this time in the base camera’s
clock, we must compensate for the time offset, i.e., btk =
itk + itb. Let bt1 and bt2 denote the times for the bounding
base camera/IMU clones between which bt̂k = itk+it̂b falls.
We linearly interpolate the cloned poses at bt1 and bt2 to find
the pose at at the measurement time:

I(btk)
G R = Exp

(
λkLog

(
I(bt2)
G RG

I(bt1)
R
))

I(bt1)
G R (20)

GpI(btk) = (1− λk)GpI(bt1) + λk
GpI(bt2) (21)

λk =
itk + itb − bt1

bt2 − bt1
(22)

where Log(·) is the inverse operation of Exp(·) which
maps a rotation matrix to a vector in R3. These equations
essentially interpolate both the orientation and position under
the approximation of constant linear and angular velocity
over the interval. As images of the base camera typically
arrive at high rate (around 20 Hz in most applications)
as compared to the physical camera motion, we argue
that this serves as a good approximation. Due to the fact
that marginalization is only ever performed on the oldest
clone, any required camera pose will typically be within 25
milliseconds of a clone in the sliding window. Note that a
similar interpolation scheme was used in our prior work on
asynchonous multi-sensor fusion [34] but without either the
intrinsic and extrinsic (spatial and temporal) calibration of
multiple non-base cameras as focused on in this work.



Let xI(
bt1), xI(

bt2) and xI(
btk) denote the IMU clones

at the neighboring times, and the interpolated value, re-
spectively. By substituting the above expressions into the
measurement function, we have the following Jacobians with
respect to the bounding IMU clones and the time offset itb:

∂Ci(
btk)δpf

∂δxI(bt1)
=

Ci(
btk)δpf

∂δxI(btk)

∂δxI(
btk)

∂δxI(bt1)
(23)

∂Ci(
btk)δpf

∂δxI(bt2)
=

Ci(
btk)δpf

∂δxI(btk)

∂δxI(
btk)

∂δxI(bt2)
(24)

∂Ci(
btk)δpf
∂δitb

=
Ci(

btk)δpf
∂δxI(btk)

∂δxI(
btk)

∂δitb
(25)

To compute these Jacobians, we use the following approxi-
mations for a small angle ψ [35]:

Exp (θ +ψ) ≈ Exp (Jl (θ)ψ) Exp (θ) (26)
≈ Exp (θ) Exp (Jr (θ)ψ) (27)

where Jl(·) and Jr(·) are the left and right Jacobians
of SO(3) [30], respectively. By defining for convenience
2
1θ̂ = Log

(
I(bt2)

I(bt1)
R̂
)

, we have the following Jacobians with
detailed derivations found in our technical report [36]:

∂I(
btk)δθG

∂I(bt1)δθG
= −

(
λ̂kJl

(
λ̂k

2
1θ̂
)

J−1r

(
2
1θ̂
)
− Exp

(
λ̂k

2
1θ̂
))

∂I(
btk)δθG

∂I(bt2)δθG
= λ̂kJl

(
λ̂k

2
1θ̂
)

J−1l

(
2
1θ̂
)

∂I(
btk)δθG
∂δitb

= − 1
bt2 − bt1

2
1θ̂

∂GδpI(btk)

∂GδpI(bt1)
= (1− λ̂k)I,

∂GδpI(btk)

∂GδpI(bt2)
= λ̂kI

∂GδpI(btk)

∂δitb
=

1
bt2 − bt1

(
Gp̂I(bt2) −

Gp̂I(bt1)
)

(28)

As a result, by incorporating this representation, we can
estimate both the spatial and temporal calibration parameters
for all cameras, while only storing those poses related to the
base camera’s imaging times.

E. Note on Complexity

A key advantage of the proposed approach is the ability
to parallelize the visual tracking front-end. Since all cam-
eras can be processed independently, we argue that one
can perform “camera-edge” visual tracking allowing for
the horizontal scaling of the visual front-ends. As seen in
Figure 2, the visual front-ends can be treated as independent
and images from all cameras can be processed in parallel.
For example, in practice we could let each camera have
a local micro-computer or hardware embedded processor
(“camera-edge” processing) that performs feature tracking
that upon completion can be sent to the centralized estimator
for asynchronous fusion. The only introduced increase in
computation is the possibly larger magnitude of features used
during update, which can be managed by careful selection
of a subset of features to be processed.

IMGC0

IMGCi

IMGCN

.

.

.

.

.

.

.

.

.

.

.

.

IMU

Fig. 2: Illustration showing how the proposed system hor-
izontally scales as more images are added. Simply scaling
of the visual tracker (VT) allows for the parallelization of
feature tracking, which feeds these tracks to the estimator
(EST) for processing.

IV. EXPERIENTIAL RESULTS

A. Duo-Camera Configuration

For our first experiment, a custom 3D printed mount
was used to attach two Omnivision OV7251 fisheye global
shutter cameras to the Snapdragon Flight.1 The cameras
were mounted in a binocular configuration such that one
faced forward and the other faced downward as shown in
Figure 4. The overall size of the quadrotor was 10in ×
11in, with 5in rotors. The Snapdragon Flight was mounted
underneath. The cameras were triggered at 30Hz and the
onboard InvenSense MPU-9250 IMU ran at 500Hz. The
dataset was recorded at the University of Delaware’s Spencer
Lab, in which the quadrotor traveled from the first floor,
traversed the staircase to the third floor, and returned to the
starting location to allow for computation of the start-end
error. The approximately 143 meter trajectory traveled can
be seen in Figure 3 (top-left). The extrinsic calibration values
provided by the offline calibration toolbox Kalibr [19], which
are expected to be close to the actual values, were taken
as a proxy for the ground-truth. To illustrate calibration,
we manually perturbed these ground-truth values, which
were then used as the initial estimates in the filter. The
intrinsics values provided from Kalibr were not perturbed
in this experiment, but were refined online. We bounded the
maximum number of features extracted from each image at
250, and utilized an MSCKF window size of 15. To account
for the randomness in RANSAC-based vision, the averaged
results from ten runs are reported.

As shown in Figure 3 (center), the calibration parameters
quickly converge from poor initial guesses to the results
reported by Kalibr. This validates the proposed method of
online calibration. As no ground-truth position estimates
were available, and as our trajectory returned to the start-
ing location, the difference in the reported start and end
locations serves as our error metric. The start-end error for
this trajectory was approximately 0.45 meters, amounting to
0.33% of the total path. This shows that even with incorrect
initial calibration, our system can recover and, by utilizing
the information from multiple image streams, can provide
accurate trajectory estimates. By contrast, the same system
using only the base camera provided an error of 0.65 m
(0.48%), of the path, thereby validating the improvement of
the multi-camera system. To highlight the effect of intrinsics
refinement, we also ran the duo-camera estimator without

1https://developer.qualcomm.com/hardware/qualcomm-flight
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Fig. 3: The trajectories of the proposed mc-VINS and minimal sensing cases are shown for both the 140 meter long
duo-camera (top-left) and 440 meter long three-camera (bottom-left) datasets. The calibration error for the duo-camera
configuration (center) and the three-camera configuration (right) show only the first few seconds of the total dataset and also
plot the camera to IMU time offset in the bottom most time offset error plots.

Fig. 4: Overview picture of the MAV (top). The camera
configuration with the frontwards camera (CAM0) and down-
wards facing camera (CAM1) are shown in the bottom.

Fig. 5: Overview picture of the three-camera configuration.
Note that in this experiment only one of the forward facing
cameras was used (CAM1), along the the two side-facing
fisheye cameras (CAM0/2).

online intrinsic refinement, and found the error to be 1.37
m (1.00%), a clear decrease in accuracy. Lastly, during
processing, the system remained real-time, as the time to
perform single image feature tracking (which can be run in
parallel for each camera) plus MSCKF update utilizing the
information from all cameras took on average 0.023 seconds
(44 Hz) compared to the 30 Hz rate of each camera.

B. Three-Camera Configuration

For our second experiment, a custom rig with multiple
Pointgrey Blackfly cameras and an MTI-100 IMU was de-
signed and is shown in Figure 5. One Blackfly faced forward,
while two others which were given fisheye lenses and tilted in
opposite directions. Each camera operated asynchronously at
20 Hz. An approximately 440 meter closed-loop trajectory
was performed across multiple floors in Gore Hall at the
University of Delaware under poor lighting conditions, with
the resulting trajectory shown in Figure 3 (bottom-left).

As in the previous experiment, we report the averaged
results from ten runs. As we have increased the number
of cameras as compared to the previous configuration, we
utilized a smaller MSCKF window size of 12 to ensure real-
time performance (in this experiment, image tracking plus
MSCKF update took on average 0.03 seconds). As shown
in Figure 3 (right), our system was able to perform accurate
calibration of the involved systems, despite having extremely
poor initial guesses (over 20 degree and 0.2 meter error
for the base camera to IMU transformation), our system
was able to converge to values close to those reported by
Kalibr, while the final position error was approximately 0.61
meters (0.14%). By contrast, the same dataset processed
with the base camera alone yielded a final ending error
of 3.58 meters (0.80%). This large increase in performance
clearly validates our desire to include more cameras into
the estimation process. For this experiment, we found that
online intrinsic calibration did not improve the estimate (the
non-calibrating version had 0.49 m error), indicating that the
Kalibr parameters were very accurate in this scenario.

V. CONCLUSIONS

In this paper we have proposed a real-time multi-camera
VINS (mc-VINS) within the MSCKF framework which is
capable of fusing the information from an arbitrary number
of asynchronous cameras. To limit the increase of compu-
tational burden, we only performed stochastic cloning at
times corresponding to one of the cameras, and represented
the state at intermediate times through linear interpolation.
In addition, for robust performance, online calibration was
performed for the spatial and temporal calibration parameters
between all sensors, as well as for the intrinsics of each
camera. The proposed estimator was tested on multiple
camera configurations in real-world experiments, where it
was shown to be able to provide highly accurate online
calibration and trajectory estimation. In the future, we will
increase the number of cameras to investigate the scaling
properties of the system.
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