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Abstract— Legged robots are emerging, and legged locomo-
tion is in critical need, which requires precise leg-body kinemat-
ics to execute control commands or plan motion trajectories.
This paper proposes online state estimation to determine legged
kinematics of robots with an arbitrary number of legs, which in-
cludes the kinematic parameters of the leg-body transformation,
time offset and the leg link lengths. In particular, we advocate
an in-place dance gait for kinematic determination where the
toes remain static on the ground and serve as static landmarks
as in SLAM. As a visual-inertial sensor is typically available
onboard robot and located at the floating base, we leverage
efficient MSCKF-based visual-inertial navigation to estimate
legged kinematics. To this end, we analytically derive the legged
kinematic measurements and tightly fuse them along with
visual-inertial measurements for MSCKF update of both the
leg’s kinematics and body’s motion. The proposed method has
been extensively validated in both simulations and experiments
with different quadrupeds, showing its robustness and accuracy.

I. INTRODUCTION

Due to their stability and traversability in complex terrains,
legged robots have demonstrated potential in various appli-
cations such as last-mile delivery and search and rescue [1].
Precise knowledge of the legged kinematics is fundamental
to unlock the agile and robust locomotion capabilities of
these high-DOF under-actuated legged robots. In particu-
lar, model-based locomotion controllers that presumably are
most widely used in real robots today require kinematic
parameters to plan body/foot trajectory and execute actuation
commands [2]. On the other hand, a state estimator which is
a prerequisite for the locomotion controller can benefit from
fusing the legged kinematic constraints, if they are accurate,
otherwise, detrimental effects are expected [3].

Determining legged kinematics typically involves either
costly precision manufacturing along with tolerance vali-
dation to ensure the CAD model serves as ground truth
or time-consuming offline manual calibration and validation
processes. When using it, one may simply rely on the
manufacturer-provided 3D model or manual measurements
(if possible), which however can be imprecise or obsoleted
due to manufacturing/operating variations or human errors.
These unaccounted errors can propagate through the kine-
matic chain and significantly degrade the estimator/controller
performance, possibly failing the robot’s mission.

To address these issues, this work aims to design an easy
and user-friendly procedure and method that can accurately
and reliably determine the kinematics of any legged robot
in an online real-time fashion. In particular, a legged robot
performs in-place dance motions to identify the kinematic
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Fig. 1: Left: Our quadrupeds (Ghost Vision 60 and Jueying
Lite 2) are dancing to determine their kinematic parameters.
Right: The leg frames {Li} and body (IMU) frame {I}.

parameters, including the spatial and temporal transformation
between the legs and body frames as well as the leg link
lengths, wherein its floating base excites all 6DOF motions.
Note that such fully-excited dance motion is essential to
ensure the observability of the kinematic parameters, in
analogy to the IMU-camera calibration in visual-inertial
navigation [4]. We find that a 25-second in-place dance of the
legged robot can be adequate to achieve rapid convergence of
the kinematic parameters, which is extremely easy to conduct
without any requirement on space or terrains. Note that
this in-place motion effectively eliminates the uncertainty
associated with foot contact, slippage, and accounting for
dynamic friction in contact modeling [5], which is inevitable
during walking or jumping but notoriously hard to address
properly. With this motion, we fully utilize the measurements
of the visual-inertial sensor (which is mounted on the robot
base and assumed to coincide with the body frame) to build
an efficient and consistent multi-state constraint Kalman
filter (MSCKF)-based estimator [6] to compute the kinematic
parameters along with the states.

The main contributions of this work are the following:
• We design an easy-to-use procedure with in-place dance

motions to fast determine legged kinematics which is
essential for legged locomotion (and state estimation).
We are among the first to identify all the kinematic pa-
rameters including the spatio-temporal transformations
(6DOF rigid transformation and time offset) between
the body and all legs along with their link length.

• We develop a tightly-coupled efficient MSCKF-based
state estimator to determine the kinematic parameters.
In turn, our estimator models and fuses the leg kine-
matic constraints to improve state estimates and thus
locomotion control. This proposed method is general
and can be extended to any number of legs.

• We validate the proposed approach in Monte-Carlo
simulations using our own legged simulator, and also
on two different quadruped robots, showing accurate



kinematic determination and its repeatability, as well as
that the found kinematics improves state estimation.

II. RELATED WORK

Kinematic identification has been extensively studied in
robotic manipulators, which typically uses costly external
sensors in providing high-quality motion information [7].
Hand-eye calibration methods [8], [9] remove the need of
external sensors and have been used to determine the kine-
matics of humanoid robots [10], [11]. This idea was also used
for foot-eye calibration of quadruped robots, i.e., finding the
extrinsic transformation between the camera and legs along
with the leg encoder offsets and link lengths [12]. As the
closest to our work, an offline batch estimation method was
introduced to estimate the kinematic parameters including
the transformation between the IMU and the body frame and
the link lengths [13]. However, these kinematic parameters
may not remain constant and may change over time due to
changes in payload, sensor attachment changes, mechanical
vibrations, and wear over time. As such, online kinematic
calibration was studied recently in [14], [15], which also
leverages visual-inertial navigation as we do in this work
but focuses only on the one (last) leg link length along with
observability analysis. In contrast, our proposed approach
online determines the full kinematics including the spatial
transformations and time offsets between all the legs and
body frame and all the leg link parameters.

As visual-inertial estimation is a key enabler for the
proposed method, we here also provide a brief overview of
visual-inertial navigation systems (VINS), which have seen
significant research efforts in the last decade [16]. There
exists some work leveraging VINS for system identification.
For example, in [17] dynamic parameters of an aerial vehicle
were determined along with VINS estimation while wheel
odometry kinematics of a ground vehicle was estimated
based on VINS in [18]. However, challenges emerge when
leveraging VINS on legged robots for kinematic determina-
tion. In particular, the impact shocks generated by footsteps
can introduce motion blur in images and introduce additional
noise into IMU measurements. Nevertheless, if the legged
kinematics is accurate, fusing the kinematic constraints into
VINS can improve estimation performance [3], [19]–[24].
This further motivates us to determine accurate legged kine-
matics and fuse its constraints in state estimation.

III. LEGGED KINEMATICS

In this section, we present a general kinematic model of a
single leg, while it can be extended to a legged robot with an
arbitrary number of legs, such as quadrupeds or hexapods.

Fig. 2 illustrates the standard kinematic chain and frame
of reference of a robot leg. The leg frame {L} is rigidly
connected to the robot’s body frame of reference {I} where
the high-level motion planner, low-level locomotion con-
troller, or state estimator is typically operating, which clearly
necessitates finding the leg kinematic relationships for the
legged robot’s estimation and control. The leg {L} often
aligns with the abduction joint {A} whose orientation is
altered by activating the first joint. As seen from Fig. 2, the
three links connect the four joint frames of abduction {A},

Fig. 2: Kinematics of a robot leg with three joint frames:
abduction {A}, hip {H}, knee {K}, and toe frame {T}, and
three links: hip (l1), thigh (l2) and shank (l3).

hip {H}, knee {K}, and toe {T}. The top three joints are
actuated with joint encoders to provide absolute joint angle
measurements:

θm,i = θi + nθi , ∀i ∈ {A,H,K} (1)

where θi is the true angle and nθi is the white Gaussian
noise. Stacking them yields the measurement vector θm.

Foot placement is critical for legged locomotion [2], [25],
which requires the kinematic chain to determine the time-
varying position of the foot (toe) {T} with respect to the leg
{L} and thus the body {I}:
IpT = (2)
IpL + L

I R
⊤ [

LpA + L
AR(ApH + A

HR(HpK + H
KRKpT ))

]
where the 6DOF rigid transformation between the leg and
body frames {IpL,

L
I R} needs to be estimated, e.g., by lever-

aging visual-inertial systems, and the other transformations
between the associated joint frames are given by:

LpA = 03×1 ,
L
AR = exp(θAkA) (3)

ApH = l1k1 , A
HR = exp(θHkH) (4)

HpK = l2k2 , H
KR = exp(θKkK) (5)

KpT = l3k3 (6)

In the above expressions, kA, kH , and kK are the rotation
axis of the joints. k1, k2, and k3 are the unit direction vector
between the joints. Exp(·) is the SO(3) matrix exponential
function to represent the rotation [26].

It becomes evident from the leg forward kinematic
chain (2) that the rigid transformation {LpI ,

L
I R} is one of

the key parameters required to calibrate accurately. More-
over, note that the leg is assumed to be aligned with
the abduction actuator/encoder, which could be temporally
(not only spatially) different from the body’s IMU due to
improper hardware triggering, transmission delays, or clock
synchronization errors. This necessitates estimation of the
timeline misalignment (time offset) between the body’s IMU
and the leg’s encoders. We thus model this varying time
offset ItL as:

Itk = Ltk + LtI (7)

where Itk and Ltk are the timestamps when measurement
was stamped in the body IMU and leg encoder’s clocks.

On the other hand, we do assume the leg encoders are all
synchronized, which is a reasonable and common assumption



in practice in order to synchronize all actuators. However, we
do need to determine the lengths of the three-link segments
xLI = [l1 l2 l3]

⊤, as they are required to capitalize the leg
kinematics (2) and may undergo variations due to contact-
induced deformation during operations (e.g., walking).

IV. DETERMINING KINEMATIC PARAMETERS

As discussed in the previous section, determining the
legged kinematics (2) requires to identify the parameters
including the leg-body transformation {LpI ,

L
I R} and time

offset ItL and the link lengths xLI . To this end, in anal-
ogy to the full calibration of multi-visual-inertial systems
whose extrinsics is akin to the leg-body transformation and
baselines between IMUs (or cameras) are parallel to the
leg links, 3-axis fully excited motion is needed to ensure
observability of these kinematic parameters. Although the
standard walking or running gaits of a legged robot would
produce such fully excited motion, motion along certain axis
(e.g., roll and pitch if walking on flat ground) might not be
significant enough to guarantee fast convergence, and the
time or space constraints imposed by these gaits may not
be possible in practice. Bearing that in mind, we advocate
to perform an in-place dance motion1 for a short period
of time (e.g., 25 seconds in our experiments) where the
toes remain static on ground without consuming much space
(see Fig. 1), which would generate adequate motions for
identifying our kinematic parameters. Interestingly, during
this in-place dance, the static toes of the legged robot
can serve as “landmarks” as in SLAM for our kinematics
identification to bound estimation errors, while avoiding the
notorious contact detection inaccuracies.

Evidently, it is essential to be able to efficiently and
accurately track 3D motion of the robot’s body (or float-
ing base) in order to determine the kinematic parameters.
To this end, we employ visual-inertial sensors which are
typically available onboard robots and leverage our prior
work OpenVINS [6] which is an efficient MSCKF-based
VINS estimator and offers accurate 3D motion tracking of
the sensor platform. As such, conceptually, we can treat the
VINS as 3D “odometry” and employ the legged kinematic
constraints (2) as 3D position measurements to build a
3D feature-based SLAM system to estimate the kinematic
parameters. In particular, the state vector of the proposed
estimator includes the kinematic parameters along with the
standard navigation states:

xk =
[
x⊤
Ik

x⊤
Ck

x⊤
T x⊤

Θ

]⊤
(8)

xIk =
[
Ik
G q̄⊤ Gp⊤

Ik
Gv⊤

Ik
b⊤
g b⊤

a

]⊤
(9)

xCk
=

[
Ik91
G q̄⊤ Gp⊤

Ik91
· · · Ik9n

G q̄⊤ Gp⊤
Ik9n

]⊤
(10)

xT =
[
Gp⊤

T1
· · · Gp⊤

Tw

]⊤
(11)

xLi
=

[
Li

I q̄⊤ Lip⊤
I li1 li2 li3

]⊤
(12)

xΘ =
[
x⊤
L1

· · · x⊤
Lw

LtI
]⊤

(13)

where xIk is the current body/IMU state [27], xCk
are the n

historical cloned poses in the global frame {G}, xT are the w

1For example, see: https://www.youtube.com/watch?v=
vLSq6wDJm7s

static toe landmark positions, xLi
are the IMU-LEG spatial

extrinsic and link length parameters for ith leg, and xΘ are
the kinematic parameters of w legs along with a common
temporal time offset between IMU and leg encoders.2

A. VINS-based Motion Tracking of Floating Base

As a common practice, we assume the legged robot system
is represented by the IMU states on the robot’s body or
floating base, which the locomotion control is applied to.
We build upon OpenVINS [6] to efficiently track its motion.
Specifically, the IMU state (9) evolves over time with the
IMU kinematics, using incoming linear acceleration Iak, and
angular velocity Iωk, which is given by (see [29]):

xIk+1
= fI(xIk ,

Iak,
Iωk,nI) (14)

where nI = [n⊤
a n⊤

g n⊤
wa n⊤

wg]
⊤ contains the zero-mean

white Gaussian noises and random walks of the biases. We
detect and track static environmental features over images
with optical flow. The bearing measurement zCk

of a feature
pf at timestep k is the perspective projection of its 3D global
position Gpf onto the image plane:

zCk
= hc(xCk

,Ckpf ) + nCk
(15)

Ckpf = C
I R

Ik
G R(Gpf − GpIk) +

CpI (16)

where {CI R,CpI} is the IMU-camera extrinsic transfor-
mation which is assumed to be known otherwise can be
calibrated either online or offline [4], and nCk

is the white
Gaussian measurement noise. We now employ the MSCKF
to efficiently update the state with these visual measure-
ments [27].

B. Estimating Legged Kinematics

Provided the motion tracking (i.e., “odometry”) of the
robot’s body as described in the preceding section and
given the legged kinematic constraint in Eq. (2), one may
simply build a decoupled SLAM estimator by including the
kinematic parameters and the static toes (as landmarks) as
part of the state vector along with the robot body/IMU states
in order to identify the kinematics. However, as decoupling
the legged kinematics from the body’s motion tracking may
cause information loss, we propose to tightly couple the
kinematic parameters into VINS so that the body’s motion
tracking can also benefit from the legged kinematics.

Specifically, the forward legged kinematics (2) reveals the
relationship of the toe position in the body frame, IpTk

, with
the joint encoder measurements and the kinematic parameters
(which are included in our state vector (8)). On the other
hand, we can also represent the toe position in terms of the
body pose and the global toe position (both of which are part
of the state vector (8)) as follows:

IpTk
= Ik

G R(GpT − GpIk) (17)

To infer a legged kinematic measurement model that can
be used in the proposed tightly-coupled MSCKF update,

2Ik
G q̄ is the JPL unit quaternion [28] corresponding to the rotation Ik

G R
from {G} to {I}, GpIk and GvIk are the position and velocity of {I}
in {G}, and bg and ba are the biases of the gyroscope and accelerometer,
respectively.

https://www.youtube.com/watch?v=vLSq6wDJm7s
https://www.youtube.com/watch?v=vLSq6wDJm7s


we equate (2) and (17) and build the following implicit
measurement (note that we drop off the time index for
simplicity):

zℓ := 0 = I
GR

GpT − I
GR

GpI − IpT =: hℓ(x,θm) (18)

Where θm denotes the stacked joint encoder measurements
which are corrupted by zero-mean white Gaussian noise
nℓ = [nθ1 nθ2 nθ3 ]

⊤ (see (1)). The residual of this inferred
legged measurement (18) is obtained by linearizing with
respect to the state x3 and encoder noise nℓ as:

rℓ = zℓ − ẑℓ = −ẑℓ = Hxx̃+Gnnℓ (19)

where the two Jacobians are respectively defined by
Hx =

[
∂hℓ

∂I
Gθ

∂hℓ

∂GpI

∂hℓ

∂GpT

∂hℓ

∂ItL
∂hℓ

∂L
I θ

∂hℓ

∂LpI

∂hℓ

∂l1
∂hℓ

∂l2
∂hℓ

∂l3

]
and Gn =

[
∂hℓ

∂nθA

∂hℓ

∂nθH

∂hℓ

∂nθK

]
, and are given by:

∂hℓ

∂I
Gθ

= ⌊IGR̂(Gp̂T − Gp̂I)⌋ ,
∂hℓ

∂GpI
= −I

GR̂ (20)

∂hℓ

∂GpT
= I

GR̂ ,
∂hℓ

∂l3
= −L

I R̂
⊤L
AR

A
HRH

KRk3 (21)

∂hℓ

∂ItL
= −⌊IGR̂(Gp̂T − Gp̂I)⌋Iω + I

GR̂
GvI (22)

∂hℓ

∂L
I θ

= −L
I R̂

⊤⌊(Lp̂I − LpT )⌋ ,
∂hℓ

∂LpI
= L

I R̂
⊤ (23)

∂hℓ

∂l1
= −L

I R̂
⊤L
ARk2 ,

∂hℓ

∂l2
= −L

I R̂
⊤L
AR

A
HRk3 (24)

∂hℓ

∂nθA

= −L
I R̂

⊤L
AR⌊ApT ⌋Jr(θm,AkA)kA (25)

∂hℓ

∂nθH

= −L
I R̂

⊤L
AR

A
HR⌊HpT ⌋Jr(θm,HkH) kH (26)

∂hℓ

∂nθK

= −L
I R̂

⊤L
AR

A
HRH

KR⌊KpT ⌋Jr(θm,KkK)kK (27)

HpT = HpK + H
KRKpT , ApT = ApH + A

HRHpT

where ⌊·⌋ is the skew-symmetric matrix, I
Gθ is R3 repre-

sentation of corresponding rotation I
GR in SO(3). These

Jacobians are critical to ensure accurate and consistent
estimation, and their detailed derivations can be found in
our supplementary technical report [30]. A crucial aspect
of this linearization is to properly compute Jacobian Gn

with respect to the encoder noise. It is important to note
that when evaluating the above linearization, we employ the
first estimates Jacobian (FEJ) methodology [31], of the toe
landmarks GpT , to ensure estimation consistency.

C. Contact Detection via Consistent Estimation
In general scenarios, at this point, we are ready to use

the above legged measurement residual (19), together with
the visual measurement residual as in VINS (see (15)),
to perform tightly-coupled EKF update of both the body’s
motion states and the leg’s kinematic parameters. In the
following, we take special care for toe landmarks when a
legged robot performs different motion gaits, which are of
practical significance.

3Throughout this paper x̂ is used to denote the estimate of a random
variable x, while x̃ = x ⊟ x̂ is the error of this estimate. We define the
orientation error quaternion, δθ, as q̄⊗ ˆ̄q

−1 ≃
[
1
2
δθ⊤ 1

]⊤ [28].

TABLE I: Simulation parameters and prior single standard
deviations were drawn from perturbations of measurements
and initial states.

Parameter Value Parameter Value

Cam Freq. (Hz) 10 IMU Freq. (Hz) 400
Leg Freq. (Hz) 50 Num. Clones 11
Pixel Proj. (px) 1 Leg White Noise (m) 2.0e-02

Gyro. White Noise 5.4e-04 Gyro. Rand. Walk 1.6e-05
Accel. White Noise 7.3e-03 Accel. Rand. Walk 6.6e-04

Num. Legs 4 Leg Toff. Ptrb. (sec) 8.0e-03
Leg Ext (Ori). Ptrb. (rad) 0.015 Leg Ext (Pos). Ptrb. (m) 3.0e-02

Fig. 3: Extrinsic calibration errors (solid) and 3σ bound
(dotted) for 25 different runs under random motion. Each
solid line denotes a run with a different realization of the
measurement noise and the initial values.

Note that the above EKF update with the leg measure-
ments is only valid while the toe is in contact at the same
point; otherwise, it could hurt our estimation performance.
This reveals the fact that robust and accurate contact de-
tection during walking is crucial for fusing leg information,
with various contact detection methods being investigated
[32], [33]. However, we take advantage of the proper legged
kinematic model and consistent covariance estimates avail-
able from our MSCKF, and adopt the Mahalanobis distance
test. Specifically, we perform the following threshold check
to see if the toe is in the same position:

r⊤ℓk(Hx,k Pk|k Hx,k
⊤ +Gn,kR

′Gn,k
⊤)−1 rℓk < χ2

where Pk|k is the covariance of the augmented state,
Hx,k,Gn,k consists of the Jacobians (19), R′ consists of
the leg encoder noise variance, and χ is the threshold for
the test and is set at 95%. When the test fails, we consider
the toe is lifted from the ground and marginalize GpT from
the state. The measurement will be used to update the state
as a contact constraint via the legged kinematics.

V. SIMULATION RESULTS

To verify the proposed online kinematic determination,
we extended the visual-inertial simulator based on Open-
VINS [6] to simulate quadruped motion and generate leg



Fig. 4: Estimation results of the legged kinematic parameters for the Dance dataset: (left) Jueying Lite 2, and (right) Ghost
Vision 60. Each color denotes runs with different initial guesses of the parameters (a total of 25 runs).



TABLE II: Parameter repeatability over 25 runs with different initial conditions (see Tab. III for initial distributions) for
Jueying Lite 2 and Ghost Vision 60 quadruped. All values reported are a single standard deviation after a 30-second dance
for “dance” dataset and a 30-second dance followed by two minutes of walk in “dance walk” dataset.

Datasets Leg0 Rot (deg) Leg0 Pos (cm) Leg0 Intrinsic (cm) Toff (ms)

jye dance 1 0.18± 0.20, 0.87± 0.11,−1.10± 0.22 7.74± 0.11,−10.02± 0.13, 7.89± 0.07 7.30± 0.06, 19.00± 0.09, 21.00± 0.08 −1.35± 1.55
jye dance 2 1.25± 0.11, 1.01± 0.09,−0.34± 0.16 8.23± 0.09,−10.01± 0.16, 8.18± 0.08 7.00± 0.10, 19.00± 0.09, 22.00± 0.14 −2.0± 0.77
jye dance 3 0.09± 0.05, 0.94± 0.07,−1.58± 0.06 8.97± 0.08,−10.29± 0.15, 8.32± 0.06 8.33± 0.14, 19.00± 0.06, 22.00± 0.06 −1.21± 1.14

jye dance walk 1 −1.19± 0.31,−2.9± 0.12,−1.18± 0.29 9.82± 0.33,−10.44± 0.26, 6.86± 0.27 10.0± 0.30, 21.0± 0.16, 24.0± 0.15 −0.50± 0.64
jye dance walk 2 −0.54± 0.32,−3.93± 0.19,−1.21± 0.23 9.40± 0.23,−9.44± 0.23, 5.50± 0.17 9.20± 0.18, 20.09± 0.20, 23.00± 0.28 0.09± 0.73

Average −0.04± 0.85,−0.79± 2.17,−1.07± 0.46 8.83± 0.78,−10.04± 0.39, 7.36± 1.07 8.20± 1.30, 20.01± 0.81, 22.01± 0.90 −1.05± 1.22

ghost dance 1 2.73± 0.92, 3.93± 0.94,−0.20± 0.30 −29.36± 0.44,−10.64± 0.36,−1.13± 0.48 9.74± 2.21,−31.56± 0.73, 34.17± 0.96 7.84± 2.36
ghost dance 2 2.19± 0.85, 4.68± 0.49,−0.59± 0.17 −31.24± 1.16,−10.82± 0.44,−2.09± 0.24 8.25± 1.18,−34.30± 1.52, 33.14± 1.31 9.08± 2.75
ghost dance 3 0.97± 0.90, 3.31± 0.28,−0.93± 0.38 −30.74± 1.36,−10.64± 0.42,−1.26± 0.28 9.77± 0.94,−34.14± 1.47, 33.19± 1.42 0.54± 4.46

ghost dance walk 1 1.05± 2.00, 2.46± 1.67,−1.27± 0.42 −28.58± 1.66,−10.29± 0.58,−1.02± 0.97 8.96± 1.46,−32.02± 1.64, 30.56± 1.89 11.60± 2.63
ghost dance walk 2 3.04± 3.34, 2.68± 1.32,−1.00± 0.45 −29.90± 1.47,−10.75± 0.56,−2.55± 0.81 6.75± 3.99,−32.27± 1.31, 32.75± 2.03 8.50± 1.13

Average 2.00± 2.03, 3.41± 1.33,−0.80± 0.51 −29.97± 1.58,−10.63± 0.50,−1.15± 0.85 8.69± 2.48,−32.86± 1.77, 32.76± 1.96 7.51± 4.67

TABLE III: Real-world experiment parameters and prior
standard deviations which perturbations of measurements
and initial states for Jueying Lite 2 and Ghost Vision 60.

Jueying Lite 2 Parameter Value Ghost Vision 60 Parameter Value

Pixel Proj. (px) 1 Pixel Proj. (px) 1
Link Length. Ptrb. (m) 0.010 Link Length. Ptrb. (m) 0.04

Leg Ext (Ori). Ptrb. (rad) 0.017 Leg Ext (Ori). Ptrb. (rad) 0.043
Leg encoder Noise (rad) 0.005 Leg encoder Noise (rad) 0.006

Leg Toff. Ptrb. (sec) 0.003 Leg Toff. Ptrb. (sec) 0.004
Leg Ext (Pos). Ptrb. (m) 0.010 Leg Ext (Pos). Ptrb. (m) 0.03

TABLE IV: Absolute Trajectory Error (ATE) (deg/m) of each
algorithm on Jueying Lite 2 and Ghost Vision 60. The best
results are highlighted in bold font.

Datasets Leg-VINS wo. Calib Leg-VINS w. Calib

jye dance walk 1 6.596 / 0.387 5.466 / 0.437
jye dance walk 2 7.258 / 0.681 6.314 / 0.495
jye dance walk 3 13.317 / 1.158 10.497 / 0.822
jye dance walk 4 6.736 / 0.550 6.509 / 0.433

Average 8.476 / 0.694 7.196 / 0.547

ghost dance walk 1 8.867 / 0.283 7.186 / 0.292
ghost dance walk 2 12.045 / 0.583 7.929 / 0.455
ghost dance walk 3 11.981 / 0.523 8.144 / 0.515

Average 10.96 / 0.463 7.753 / 0.420

measurements. Note that we here focus on evaluating only
the kinematic parameters of the spatial rigid transformation
between the robot’s body and leg and the time offset between
the body IMU and leg encoders, which are body-leg spa-
tiotemporal parameters. During the simulation, the position
of the toe in the leg frame, LpTk

, is directly simulated
with additive white noise perturbations. We include our
initial perturbation of spatiotemporal parameters to get the
kinematic measurements as in (2). We performed 25 Monte-
Carlo runs with different initial perturbations, see Tab. I, and
have shown a single representative leg result in Fig. 3. It is
clear that the proposed method is able to accurately recover
the spatiotemporal parameters within 20 seconds, and the
estimated uncertainty captures the true error distribution.

VI. EXPERIMENTAL RESULTS

We have also evaluated the proposed method on two
quadruped robots, Jueying Lite 2 and Ghost Vision 60, which
are equipped with a stereo camera and an IMU, along with
four 3-link chain legs (see Fig. 1). Two different motion
scenarios are captured: (1) dance in which toe remains

in contact with the ground for the whole duration and
enables evaluation of the calibration repeatability, and (2)
dance walk where after 10-15 seconds of dancing motion,
the robot walks within a motion capture room so that we
can quantify the impact of good and bad calibration of
localization performance after parameter identification. For
Dancing motion, we provided different combinations of roll,
pitch, and yaw commands while keeping their feet stationary
at all times. There is no particular dancing motion require-
ment; any combination that thoroughly excites all the joints
and body will suffice. All dance sequences are about 25-
40 seconds, and dance walk sequences are about 2 minutes;
their trajectory plots and additional results can be found in
our supplementary material [30]. The datasets for the two
robots are distinguished as jye dance and ghost dance for the
dance datasets, and jye dance walk and ghost dance walk
for dance walk datasets.

We first evaluated on the dance sequences to see the
performance without being affected by the contact detection
problem. The kinematic results of two legs are shown in Fig.
4, while results for the remaining legs can be found in the
supplementary material [30]. For each run, we perturb the
manufacturer-provided calibration (URDF) by the values in
Tab. III, and we can see that most parameters quickly con-
verged after 25 seconds of calibration start. The converged
values are near our best estimate and have a low variance
compared to prior perturbation variance, indicating the pro-
posed system’s fast and reliable identification performance.
To quantify the repeatability, we look at the variance of the
final estimated value in Tab. II for a representative leg on
each dataset. The dance walk datasets have higher variance,
which we attribute to evaluation after walking, which is
affected by the contact detection accuracy. We also calculate
the average value for all the parameters and their variances
across all the datasets, and similar results can be seen for
Ghost Vision 60 for both types of datasets. This shows that
we are able to calibrate with good repeatability using the
proposed estimator.

We further evaluate the estimation performance on all
sequences (dance walk) in terms of localization accuracy by
comparing estimation with and without calibrating legged
kinematic parameters (tagged Leg-VINS w. Calib and Leg-
VINS wo. Calib, respectively). Note that we set the same
initial kinematic values for all compared methods. The



Absolute Trajectory Errors (ATE) [34] are shown in Tab.
IV for Jueying Lite 2, the orientation error reduces by 15%
and position error reduces by 20%, for Ghost Vision 60 the
orientation error reduces by 30% and position error reduces
by 20% for a two-minute walking datasets which clearly
shows that the proposed Leg-VINS w. Calib improves the
localization accuracy by properly incorporating the legged
kinematic constraints as compared with Leg-VINS wo. Calib.
This reconfirms that localization accuracy can be improved
through the proposed online kinematic determination.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have designed a user-friendly procedure
featuring in-place dance motions that quickly determine the
legged kinematics, which is crucial for legged locomotion
and state estimation. We have developed a tightly-coupled
efficient MSCKF-based estimator to determine the kine-
matic parameters simultaneously modeling and fusing the
leg kinematic constraints which improves the state estimation
and consequently locomotion control. Extensive evaluations
were performed to demonstrate that the proposed method
shows the repeatability and convergence of these kinematic
parameters and improve estimation accuracy.
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