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1 Problem Statement

In an extended Kalman filter [5], we wish initialize previously unseen state variables using feature
measurements. This process is called delayed initialization since typically the process delayed to
collect enough measurement observations to fully recover the to-be initialized state variable. In what
follows we will first introduce two methods for performing delayed initialization, after which we will
introduce the covariance intersection (CI) [2] update. We then re-derive the delayed initialization
procedure when covariance intersection is leveraged.

1.1 Nonlinear Measurement Model

Consider the following nonlinear measurement function:

zm = h(xk) + nm (1)

where we have the measurement noise nm ∼ N (0,Rm). For the standard EKF update, one
linearizes the above equation at the current state estimate. In our case, as in the indirect EKF [4],
we linearize (1) with respect to the current zero-mean error state (i.e. x̃ = x⊟ x̂ ∼ N (0,P)):

zm,k = h(x̂k) +Hkx̃k + nm,k (2)

⇒ r = Hkx̃k + nm (3)

where Hk is the measurement Jacobian. Throughout this paper x̂ is used to denote the estimate
of a random variable x, while x̃ = x⊟ x̂ is the error in this estimate. The updated estimate from a
correction δx is x̂⊕ = x̂⊞ δx. Using this linearized measurement model, we can now perform the
following standard EKF update to ensure the updated states remain on-manifold:

x̂⊕
k = x̂k +Kk r (4)

= x̂k +Kk(zm − h(x̂k)) (5)

P⊕
k = Pk −KkHkPk (6)

Kk = PkH
⊤
k S

−1
k (7)

S−1
k = (HkPkH

⊤
k +Rm)−1 (8)
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1.2 Feature Bearing Observation Model
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Figure 1: Illustration of the considered visual feature observation scenario. In
this case, a historical keyframe {K1} has been matched to an actively tracked
feature (red). We wish to initialize this feature estimate into our state using all

three measurements from the keyframe and poses {C1} and {C2}.

We now consider a bit more concrete measurement model as shown in Figure 1. We consider we
observe a 3d environmental feature with a camera from two camera clone poses, {C1} and {C2},
along with a loop-closure measurement from a historical keyframe state {K1}. In general we have
the following state vector:

xk =
[
x⊤
A x⊤

K
Gp⊤

f

]⊤
(9)

xA =
[
x⊤
Ik

x⊤
C

]⊤
(10)

xK =
[
x⊤
T1

· · · x⊤
Tn

]⊤
(11)

where we have:

xIk =
[
Ik
G q̄⊤ b⊤

ωk

Gv⊤
Ik

b⊤
ak

Gp⊤
Ik

]⊤
(12)

xC =
[
x⊤
Tk−1

· · · x⊤
Tk−c

]⊤
(13)

xTi =
[
Ii
G q̄

⊤ Gp⊤
Ii

]⊤
(14)

where we define the “active” state xA and map of n keyframe poses xK . The clone state xC

contains c historical IMU poses. I
Gq̄ is the unit quaternion parameterizing the rotation I

GR from
the global frame of reference {G} to the IMU local frame {I} [6], bω and ba are the gyroscope and
accelerometer biases, and GvI and GpI are the velocity and position of the IMU expressed in the
global frame, respectively. In the case of delayed initialization we do not have the feature estimate
Gpf mean, its uncertainty, and its correlation with the rest of the state yet.

We consider a bearing measurement z seen at timestep i can be related to the state by the
following (simplified for presentation, model in [1] is used):

zi = h(xTi ,
Gpf ) + ni (15)

= Λ(Cipf ) + ni (16)

Λ([x y z]⊤) =
[
x/z y/z

]⊤
(17)

Cipf = C
I R

Ii
GR(Gpf − GpIi) +

CpI (18)

where ni is the white Gaussian noise with covariance Ri = σ2
pixI. We can now linearize this

measurement model and obtain the following residual:

ri = zi − h(x̂Ti ,
Gp̂f ) (19)
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≃ HTi x̃Ti +Hfi
Gp̃f + ni (20)

where HTi and Hfi are the measurement Jacobians, and x̃Ti and Gp̃f are the error states for
the observation pose and feature, respectively. After sufficient observations of the feature, we can
“stack” them as:

r = HT x̃T1..c +HTk
x̃Tk

+Hf
Gp̃f + n (21)

= Hax̃A +Hkx̃K +Hf
Gp̃f + n (22)

=
[
Ha Hk

]︸ ︷︷ ︸
Hx

[
x̃A

x̃K

]
+Hf

Gp̃f + n (23)

where the measurement is a function of c clone poses, x̃T1..c = [x̃⊤
T1

· · · x̃⊤
Tc
]⊤, corresponding to

each non-keyframe observation time the feature was seen, and the stacked measurement noise is
n ∼ N (0,R) where R = σ2

pixI. Additionally, the loop-closure measurement from the keyframe
introduces the Jacobian in respect to xTk

∈ xK .

2 EKF-based Delayed Initialization

2.1 Method 1: Two System Invertible

Based on the stacked linearized measurement equation, Eq. (21), we aim to optimally compute the
initial estimate of a new state variable and its covariance and correlations with the existing state
variables. As derived by Mingyang Li [3] we first perform QR decomposition (e.g., using computa-
tionally efficient in-place Givens rotations) to separate the linear system into two subsystems: (i)
one that depends on the new state (i.e., Gpf ), and (ii) the other that does not.

r =
[
Hx Hf

] [ x̃k
Gp̃f

]
+ n (24)

⇒
[
r1
r2

]
=

[
Hx1 Hf1

Hx2 0

] [
x̃k
Gp̃f

]
+

[
nf1

nf2

]
(25)

where nfi ∼ N (0,Rfi), i ∈ {1, 2}. Note that in the above expression r1 and r2 are orthonormally
transformed measurement residuals, not the direct partitions of r. With the top transformed
linearized measurement residual r1 in Eq. (25), we now initialize the state estimate of Gpf and its
covariance and correlations to xk [see Eq. (5)], which will then be augmented to the current state
and covariance matrix.

Gp̃f = H−1
f1 (r1 − n1 −Hxx̃) (26)

⇒ E[Gp̃f ] = H−1
f1 (r1) (27)

Pff = E
[
(Gp̃f − E[Gp̃f ])(

Gp̃f − E[Gp̃f ])
⊤
]

(28)

= E
[
(H−1

f1 (−n1 −Hx1x̃))(H
−1
f1 (−n1 −Hx1x̃))

⊤
]

(29)

= H−1
f1 (Hx1PxxH

⊤
x1 +R1)H

−⊤
f1 (30)

Pxf = E
[
(x̃)(Gp̃f − E[Gp̃f ])

⊤
]

(31)

= E
[
(x̃)(H−1

f1 (−n1 −Hx1x̃))
⊤
]

(32)
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= −PxxH
⊤
x1H

−⊤
f1 (33)

where E[·] is the expectation operator. These derivations can be summarized as follows:

Gp⊕
f = Gpf +H−1

f1 r1 (34)

P⊕
xx = Pxx (35)

P⊕
ff = H−1

f1 (Hx1PxxH
⊤
x1 +Rf1)H

−⊤
f1 (36)

P⊕
xf = −PxxH

⊤
x1H

−⊤
f1 (37)

P⊕
fx = (P⊕

xf )
⊤ (38)

It should be noted that a full-rank Hf1 is needed to perform the above initialization, which
normally is the case if enough measurements are collected (i.e., delayed initialization). Note also
that to utilize all available measurement information, we also perform EKF update using the bottom
measurement residual r2 in Eq. (25).

2.2 Method 2: Infinite Uncertainty with Update

We now look at an alternate formulation for delayed initialization. In this method, we consider the
case were the state already has a prior covariance of the state-to-be-initialized but its uncertainty
is at infinity and has not been correlated with the current state through a measurement yet. More
concretely, we define the following covariance:

Pk =

[
Pxx 0
0 µI

]
(39)

where we have defined Pff = µI with µ → ∞ since we have no prior knowledge of the feature’s
state. We now wish to perform an EKF update, see Eq. (6), using the measurement information
collected. We define the stacked measurements as:

r = Hkx̃k + n (40)

=
[
Hx Hf

] [ x̃A
Gp̃f

]
+ n (41)

This gives us the following update equations:

x⊕
A = xA +Kxr (42)

Gp⊕
f = Gpf +Kfr (43)

P⊕
k = Pk −

 KxSkK
⊤
x KxHk

[
Pxf

Pff

]
[
Pxf

Pff

]⊤
Hk

⊤K⊤
x KfSkK

⊤
f

 (44)

=

[
Pxx 0
0 Pff

]
−
[

KxSkK
⊤
x KxHfPff

PffHf
⊤K⊤

x KfSkK
⊤
f

]
(45)
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where we have used that the initial feature is uncorrelated with the state (i.e., Pxf = P⊤
xf = 0)

and we have defined the following Kalman gains:

Kk =

[
Kx

Kf

]
=

[
PxxH

⊤
x +PxfH

⊤
f

PfxH
⊤
x +PffH

⊤
f

]
S−1
k :=

[
PxxH

⊤
x

PffH
⊤
f

]
S−1
k (46)

We now first look at how to calculate the measurement innovation term. It is as follows:

S−1
k =

(
HkPkH

⊤
k +Rm

)−1
(47)

=
(
HxPxxH

⊤
x +HfPffH

⊤
f +Rm

)−1
(48)

=
(
A+HfPffH

⊤
f

)−1
(49)

= A−1 −A−1Hf

(
H⊤

f A
−1Hf + P−1

ff

)−1
H⊤

f A
−1 (50)

= A−1 −A−1Hf

(
H⊤

f A
−1Hf

)−1
H⊤

f A
−1 (51)

where we have defined A = HxPxxH
⊤
x +Rm, and P−1

ff = (µI)−1 → 0 when µ → ∞, and the matrix
inversion lemma as:

(A+UCV)−1 = A−1 −A−1U
(
VA−1U+C−1

)−1
VA−1 (52)

This leads the following conclusion for Pxx:

P⊕
xx = Pxx −PxxH

⊤
x S

−1
k HxPxx (53)

= Pxx −PxxH
⊤
x

(
A−1 −A−1Hf

(
H⊤

f A
−1Hf

)−1
H⊤

f A
−1

)
HxPxx (54)

Now we look at how to compute updated feature uncertainty Pff . We have the following:

P⊕
ff = Pff −KfSkK

⊤
f (55)

= Pff −PffH
⊤
f S

−1
k HfPff (56)

= Pff +PffH
⊤
f (−S−1

k )HfPff (57)

=

(
P−1

ff − P−1
ffPffH

⊤
f

(
(−Sk) +HfPffP

−1
ffPffH

⊤
f

)−1
HfPffP

−1
ff

)−1

(58)

=

(
−H⊤

f

(
(−Sk) +HfPffH

⊤
f

)−1
Hf

)−1

(59)

=

(
−H⊤

f

(
(−A−HfPffH

⊤
f ) +HfPffH

⊤
f

)−1
Hf

)−1

(60)

=
(
H⊤

f A
−1Hf

)−1
(61)

(62)

This leads the following conclusion for Pff :
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P⊕
ff =

(
H⊤

f A
−1Hf

)−1
(63)

Now we look at how to compute feature’s correlation with the state Pxf . We have the following:

P⊕
xf = Pxf −KxHfPff (64)

= −PxxH
⊤
x S

−1
k HfPff (65)

Looking at the last three terms and substituting in the equality from Eq. (50) (the only part that
is a function of Pff ) we have:

S−1
k HfPff =

(
A−1 −A−1Hf

(
H⊤

f A
−1Hf +P−1

ff

)−1
H⊤

f A
−1

)
HfPff (66)

= A−1Hf

(
I−

(
H⊤

f A
−1Hf +P−1

ff

)−1
H⊤

f A
−1Hf

)
Pff (67)

= A−1Hf

(
H⊤

f A
−1Hf +P−1

ff

)−1 [(
H⊤

f A
−1Hf +P−1

ff

)
−H⊤

f A
−1Hf

]
Pff (68)

= A−1Hf

(
H⊤

f A
−1Hf + P−1

ff

)−1
(69)

= A−1Hf

(
H⊤

f A
−1Hf

)−1
(70)

This leads the following conclusion for Pxf :

P⊕
xf = −PxxH

⊤
xA

−1Hf

(
H⊤

f A
−1Hf

)−1
(71)

The state means can be updated similarly.

2.3 Method Equivalence

A natural question is the equivalence between these two methods. Just by looking at Method’s 1
Eq. (35) and Method’s 2 Eq. (54) one can see that Method 2 updates the original covariance while
the first method does not! At first glance this would mean that the two methods are not doing
the exact same thing, and that one is better than the other. There is a subtle difference between
the two: Method 1 first initializes with a sub-system of the full measurement, while the Method
2 initializes the prior information with all measurements. We can show that Method 2 is exactly
the same as the first by considering we have a square measurement Jacobian that is invertible
HfH

−1
f = H−1

f Hf = I (thus there is no second update using r2 in method 1). We get:

P⊕
xx = Pxx −PxxH

⊤
x

(
A−1 −A−1Hf

(
H⊤

f A
−1Hf

)−1
H⊤

f A
−1

)
HxPxx (72)

= Pxx −PxxH
⊤
x

(
A−1 −A−1HfH

−1
f AH−⊤

f H⊤
f A

−1
)
HxPxx (73)
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= Pxx −PxxH
⊤
x

(
A−1 −A−1AA−1

)
HxPxx (74)

= Pxx − PxxH
⊤
x

(
A−1 −A−1

)
HxPxx (75)

= Pxx (76)

P⊕
ff =

(
H⊤

f A
−1Hf

)−1
(77)

= H−1
f

(
HxPxxH

⊤
x +Rm

)
H−⊤

f (78)

P⊕
xf = −PxxH

⊤
xA

−1Hf

(
H⊤

f A
−1Hf

)−1
(79)

= −PxxH
⊤
xA

−1HfH
−1
f AH−⊤

f (80)

= −PxxH
⊤
x A

−1AH−⊤
f (81)

= −PxxH
⊤
xH

−⊤
f (82)

To explain it in an intuitive way, if you have a square matrix, there is enough measurement infor-
mation to recover the state you wish to initialize. But just having this information does not allow
you to improve your state estimate (decrease Pxx). Once you have more measurements then what
is required to initialize it then you can improve it (e.g., non empty secondary system in Method 1).

3 Covariance Intersection-based Delayed Initialization

3.1 Covariance Intersection State Update

To guarantee consistency when updating with this measurement, we adopt the CI-EKF update [2]
to construct a prior covariance such that:

Diag

(
1

ωa
Paa,

1

ω1
P1, · · · ,

1

ωn
Pn

)
≥ Pk (83)

where the left side is the CI covariance with zero off-diagonal elements and the right hand side is the
unknown true covariance of the state with cross-covariances. The weights ωl > 0 and

∑
l ωl = 1, for

l ∈ {a, 1...n}, can be found optimally [2]. The first weight correspond to the “active” covariance,
while the remainder correspond to each keyframe forwhich we only keep their marginal covariance
and do not track their correlations with the active state elements.

Substituting Eq. (83) into the standard EKF equations and only selecting the portion that
updates active state yields (that is, we do not update keyframe states in the prior map):

x⊕
A = xA +

1

ωa
PaaH

⊤
a S

−1
k r (84)

P⊕
aa =

1

ωa
Paa −

1

ω2
a

PaaH
⊤
a S

−1
k HaPaa (85)

Sk =
∑

o∈{a,1...n}

(
1

ωo
HoPooH

⊤
o

)
+Rm (86)
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3.2 Delayed Initialization

We can follow the logic presented in the previous segments. Specifically, we can start with the
following covariance matrix:

Pk =



1
ωa

Paa 0 0 0 0

0
. . . 0 0 0

0 0 1
ωo
Poo 0 0

0 0 0
. . . 0

0 0 0 0 µI

 (87)

We can see that the CI variables only show up in the Sk term and can be grouped into the value
A as before (see Eq. (48)).

A =
1

ωa
HaPaaH

⊤
a +

∑
o∈{1...n}

(
1

ωo
HoPooH

⊤
o

)
+Rm (88)

We can then perform an update using Eq. (84)-(86) to get the following:

P⊕
xx =

1

ωa
Paa −

1

ω2
a

PaaH
⊤
a

(
A−1 −A−1Hf

(
H⊤

f A
−1Hf

)−1
H⊤

f A
−1

)
HaPaa (89)

P⊕
ff =

(
H⊤

f A
−1Hf

)−1
(90)

P⊕
af = − 1

ωa
PaaH

⊤
a A

−1Hf

(
H⊤

f A
−1Hf

)−1
(91)

We can then equate this result to Method’s 1 structure to get:

Gp⊕
f = Gpf +H−1

f r1 (92)

P⊕
aa =

1

ωa
Paa (93)

P⊕
ff = H−1

f

 1

ωa
HaPaaH

⊤
a +

∑
o∈{1...n}

(
1

ωo
HoPooH

⊤
o

)
+Rm

H−⊤
f (94)

P⊕
af = − 1

ωa
PaaH

⊤
a H

−⊤
f (95)

P⊕
fa = (P⊕

af )
⊤ (96)
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