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ABSTRACT

The use of visual-inertial navigation systems (VINS) has become ubiquitous due

to their ability to provide high quality 3D motion tracking and has continued to be

at the center of simultaneous localization and mapping (SLAM) research. Deployment

platforms continue to reduce in cost and miniaturize to further enable mass production

to consumers (e.g., smartphones, virtual and augmented-reality headsets, and micro-

aerial vehicles (MAV)). A key barrier that prevents the wider deployment of VINS

is the accuracy and computational demands for long-term persistent state estimation

(e.g., hours of continuous operation in a common global frame). Development of com-

putationally efficient VINS which can efficiently incorporate loop-closure information

to reduce estimator drift and increase accuracy over long-term estimation periods with

persistent maps remains a crucial challenge, which this thesis looks to address.

We first introduce a state-of-the-art open-sourced filter-based VINS research

framework, termed OpenVINS, which leverages cutting edge extended Kalman filter

(EKF) estimator techniques and demonstrates accurate and consistent state estimation

where both the mean and uncertainty of the state are recovered at each timestep. We

then focus on how to improve this visual-inertial odometry (VIO) to include further

loop-closure information by tracking large environmental plane geometric primitives in

an efficient manner leveraging a novel minimal plane representation termed the Clos-

est Point (CP) plane. We show that the inclusion of such CP planes, which can be

tracked for significant periods due to their large spatial nature and the proposed novel

tracking algorithm, reduces the long-term drift in both simulation and real-world ex-

periments. We then focus on the visual-inertial simultaneous localization and mapping

(VI-SLAM) task and how we can perform consistent long-term persistent localiza-

tion without causing computational complexity to explode over time. We show that
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the Schmidt-Kalman filter (SKF) methodology can be leveraged in conjunction with

two different measurement models, including a novel 2D-to-2D method for indirect

loop-closure to historical poses, to bound long-term drift which only increases com-

plexity linearly in terms of size of the historical map. We then show that the proposed

Schmidt-EKF for VI-SLAM (SEVIS) can be coupled with a secondary optimization

thread, which enables relinearization, to perform large-scale estimation. We finally ap-

ply the learned loop-closure and measurement constraint techniques to the distributed

multi-robot cooperative localization (CL) case. We show that covariance intersection

(CI) can be efficiently leveraged for distributed VI-SLAM and we can limit long-term

drift while also not requiring robots to simultaneously visit locations for cross-robot

constraints. This novel distributed CL estimator shows state-of-the-art accurate, con-

sistent, and efficient performance both in simulation and real-world experiments.
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Chapter 1

INTRODUCTION

1.1 Introduction

The use of visual-inertial navigation systems (VINS) has become ubiquitous due

to their ability to provide high quality 3D motion tracking and has continued to be

at the center of simultaneous localization and mapping (SLAM) research [80]. De-

ployment platforms continue to reduce in cost and miniaturize to further enable mass

production to consumers (e.g., smartphones, virtual and augmented-reality headsets,

and micro-aerial vehicles (MAV)). A key barrier which prevents the wider deployment

of VINS is the accuracy and computational demands for long-term persistent state esti-

mation (e.g., hours of continuous operation in a common global frame). Many existing

systems are unable to provide accurate drift-free state estimates for long periods or

have significant growth in the computational cost due to the inclusion of loop-closure

information and thus are limited by the memory and computational resources avail-

able. This is further compounded when single-user systems are expanded to multi-user

localization which can naively cause exponential growth in complexity. Development of

computationally efficient VINS which can efficiently incorporate loop-closure informa-

tion to reduce estimator drift and increase accuracy over long-term estimation periods

remains a crucial challenge, which this thesis looks to address.

One method, which is introduced in this thesis, to reduce long-term drift is

the use of high-level geometric primitives, e.g. lines and planes, which have large

spatial presences and can enable significant periods of re-detection and loop-closures.

Many state-of-the-art VINS ignore high-level structural regularities such as planes even

though they are common in man-made environments and can be exploited to further
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constrain the estimated trajectory. This is typically due to requiring a stereo cam-

era setup, an additional depth sensor, or a complex neural network which adds custom

hardware and complexity. We introduce a new plane representation, termed the Closest

Point (CP) plane, and demonstrate its use in a LiDAR-inertial planar SLAM system.

We show that collections of 3D points can be compressed into a single CP plane mea-

surement and uncertainty which can be efficiently fused and thus reduce the number

of residuals used during optimization. We then look to the monocular-inertial case

where we cannot actively extract these planes but wish the leverage point-on-plane

constraints to provide loop-closures to planes which can be seen for significantly longer

periods of time as compared to traditional point features. This is a particularly chal-

lenging open problem as without depth information we cannot directly recover surface

normals which have been typically used to find planes when RGB-D [67, 75, 104, 209],

1D LRF [77, 175], or 3D LiDAR [106, 228, 230] are available. In contrast, we limit

ourselves to a single monocular camera and IMU and present a novel method to track,

initialize, estimate, and merge these environmental planes within an efficient filter-

based VINS. We show in simulation and on real-world datasets that tracking planes

for significant periods of time has large trajectory improvements.

We then look at how to consistently incorporate long-term loop-closure infor-

mation without impacting the efficiency of our state estimator. Typically visual place

recognition is first leveraged to recover correspondence information to historical states

which can then be incorporated into VINS by constraining historical estimates states

through different measurement models such as 2D-to-3D [34, 126, 127, 141, 146]. The

major downside is that extra historical states are detrimental to estimator complexity,

which is typically O(n3) in size of the state, since as more historical states are kept

during environmental exploration, the estimator becomes more costly to run. To over-

come this, light-weight visual-inertial odometry (VIO) [7, 13, 60, 71, 72, 78, 109, 112,

139, 153, 199, 200, 220] typically only estimates a small temporal window of states

and is a small sub-system of the complete localization solution which has traditionally

operated independently of the long-term visual-inertial simultaneous localization and
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mapping (VI-SLAM) module. This VIO is relegated to only provide high frequency

relative pose information to secondary non-realtime processing methods which can fuse

loop-closure information and whose complexity is typically left to grow unbounded or

some keyframing scheme is leveraged to bound complexity while slowly degrading con-

straint quality. This architecture has significant challenges when trying to deploy to

resource constrained mobile platforms and additionally does not allow for the VIO to

leverage historical information to constrain its state estimates since it is naturally de-

coupled in nature. Clearly, there is a need for a computationally efficient method which

can incorporate historical information while retaining sufficient levels of accuracy and

consistency.

A key focus throughout this work is to ensure we have a consistent estimator

which estimates both an accurate mean and covariance both of which are crucial for

practical use for downstream applications (e.g., control and planning). Additionally,

we argue from a more fundamental level that the “consistency is necessary for filter

optimality” [4, Section 5.4.1] and thus consistency is key to unlocking accurate estima-

tion. This is of particular importance to VINS since it has been shown that through

the linearization process, VINS estimators become inconsistent due to spurious infor-

mation gain along the 4 degree-of-freedom (DoF) global yaw and position unobservable

directions [71], and trajectory performance is directly tied to the consistency of the es-

timator. This has ultimately led to significant efforts within the class of visual-inertial

estimators to perform “observability aware” state estimation and correct for these

inaccurate information gains causing filter over-confidence [72, 84, 112]. There are

many key works such as robocentric VINS [7, 78], invariant filters [12, 199, 206, 220],

observability-constrained [72], and first-estimates Jacobian [22, 83, 84, 112] which have

focused on this. Within the context of long-term VI-SLAM, there have been very

limited works such as those by Mourikis et al. [140] which ensure consistent state

estimation through pausing the VIO and performing a full VI-SLAM optimization to

recompute the current state and covariance and Sartipi et al. [174] which tries to

capture the untracked correlations through measurement inflation. In this thesis, we
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show that it is possible to have both a consistent and efficient long-term VI-SLAM

system. The proposed method leverages the efficiency and guaranteed consistency of

the Schmidt-Kalman filter (SKF) [177], which can enable linear complexity in terms

of the size of the map, to perform VI-SLAM with both traditional 2D-to-3D and a

novel 2D-to-2D loop-closure constraint. Within the context of prior map localization,

these two constraints are compared against naive inflation methods and their trade-offs

are discussed in depth. This culminates in a novel hybrid estimator which couples the

lightweight and consistent SKF-based VINS frontend with a secondary mapping thread

which recovers an accuracy and consistent map with uncertainty via C-KLAM [147]

which can then be leveraged.

Having addressed significant challenges within the single robot case, we then

looked to see how these efficient and consistent long-term estimator methodologies can

be applied to the challenging multi-robot case which is typically plagued by the same

issues of complexity due to state size. Accurate and efficient cooperative localization

(CL) that enables multi-user augmented reality (AR) experiences, multi-device coop-

erative mapping, and multi-vehicle formation control, is a key barrier to overcome

due to the challenges of communication, distributed computation, and complex multi-

robot asynchronous measurement constraints. The last part of this thesis builds upon

the cooperative localization work by Zhu et al. [226] and proposes a fully distributed

multi-robot visual-inertial covariance intersection (CI)-based estimator by delicately

exploiting information contained in both environmental SLAM landmarks and loop-

closures across robots and time. Specifically, a novel first-of-its-kind consistent and

efficient CI-based distributed estimator is designed to include both SLAM features and

incorporate loop-closure constraints to historical states of other robots leveraging our

knowledge developed for the single-robot case in the previous thrust. As a result, the

proposed distributed CL estimator does not require the simultaneous viewing of the

same location due to leveraging of historical common features (e.g., a robot can gain

information if another robot had previously explored the same location), while sig-

nificantly improving the localization performance thanks to such common multi-robot
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measurement information. We contrast the proposed method with the work by Sar-

tipi et al. [174] which introduced a distributed method for multi-user AR experiences

through the use of multi-map feature constraints. Within their estimator, common

features between the current robot and another are found by performing a 2D-to-3D

match to the other robot’s environmental map, as compared to directly leveraging the

other robot’s feature measurements. They address the inconsistency of unknown cross-

robot correlations by treating the feature in the other robot’s map as true through

measurement noise inflation and adding noise to the cross-robot map global frame

map transform. As compared to this, the proposed distributed CL leverages CI that

theoretically guarantees consistency in the case of unknown correlations and directly

leverages the other user’s common feature measurements avoiding limiting matching to

only features with 3D position estimates. We show that this computationally efficient

distributed estimator which only has each robot estimate its own state can leverage in-

formation from other robots through consistent CI can perform accurate and consistent

localization in simulation and real-world datasets.

1.2 Related Works

Visual-inertial state estimation has over two decades of literature and continues

to have significant innovations in recent years as it continues to become foundational

to many robotic and commercial applications [80]. In this section, we will cover the

key works which relate to the main thrusts of this thesis.

1.2.1 Higher Level Plane Primitives in VI-SLAM

Within the literature involving range based sensors, planar features have been

shown to improve point cloud registration accuracy [150, 189, 194, 201]. In the field of

LiDAR-based odometry, the state-of-the-art method is LOAM [218], which sequentially

registers extracted planar and edge features to an incrementally built global map,

and demonstrates impressive efficiency and accuracy. Proencca et al. [158] recently

presented a planar odometry method that used a modified Hesse plane representation
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but during plane matching they defined the cost function as the difference between two

points residing on the planes. While this was not used as a planar representation, we

will more formally present it as the “closest point” representation in Section 3.2.

One of the first uses of planes in SLAM was by Weingarten et al. [198] who

extracted planes from incoming point clouds through a breadth-first region growing

algorithm and fused similar planes using a Mahalanobis-distance test. Pathak et al.

[151] extended this work by presenting a plane correspondence algorithm that maxi-

mized geometric scene consistency and allowed for real-time performance. Trevor et al.

[187] combined lines, planes, and odometry measurements in a graph-based framework,

but used the overparametrized Hesse form during optimization. Taguchi et al. [184]

introduced a handheld RGBD point-plane SLAM system, provided analysis of degen-

eracy issues, and presented a RANSAC-based approach to the feature correspondence

problem. Salas et al. [173] leveraged the creation of a dense planar map to allow for

simple localization of incoming RGBD sensor readings through the direct projection of

the dense planar map into the camera frame. Kaess [89] presented the unit quaternion

plane representation, proposed a relative plane formulation for improved convergence

in batch optimization, and demonstrated simple planar 3D mapping with a handheld

RGBD sensor. Based on this work, Hsiao et al. [75, 76] performed keyframe-based

dense planar SLAM and achieved higher estimation accuracy due to the additional

plane constraints and recently incorporated discrete inertial preintegration. More re-

cently, Zhang et al. [219] introduced a fast plane segmentation and map refinement

step that improved real-time performance and constructed map quality. Ma et al. [128]

used a RGBD camera to perform direct alignment to planar keyframes and optimized

a global graph using an expectation-maximization framework. All these works have

tried to solve the same basic question: How does one optimally leverage high level plane

primitives in SLAM?

In the context of specifically LiDAR-inertial, conventionally IMUs have only

really been used to provide 3D pose predictions for LiDAR registration methods. The

work by Hesch et al. [73] first proposed a LiDAR-aided inertial EKF that used a 2D
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LiDAR for indoor mapping where they assumed that all planes extracted were or-

thogonal in the environment and also performed frequent stops to prevent drift in the

unobservable z-direction. Guo et al. [67] investigated the observability properties of an

IMU-RGBD system and constructed an observability-constrained Kalman filter. They

leveraged both point and planar features and only used the plane orientation as a mea-

surement losing the information captured in the distance to the plane while avoiding

singularity issues. In this thesis, we will present a new minimal plane representation

called the Closest Point (CP) and demonstrate its efficient incorporation within a full

LiDAR-inertial SLAM estimator.

We next consider the visual-inertial sensing case and the use of geometric planes

within this context. Existing literature has primarily focused on explicitly detecting

line and plane features with stereo or depth sensors [67, 204, 212, 223]. In particu-

lar, many methods have leveraged line features in conjunction with Manhattan [26]

or Atlanta world [176] regularities, improving accuracy due to structured lines (e.g.,

aligned with building cardinal directions) that directly provide global attitude informa-

tion [68, 69, 102, 117, 197, 227]. As environmental planes cannot be directly detected

with a single monocular camera since the depth is unavailable, generic depth sensors

that can directly measure environmental planes – such as RGB-D [67, 75, 104, 209],

1D LRF [77, 175], or 3D LiDAR [106, 228, 230] – have been fused with great success.

Similarly to line features, planar Manhattan frames have been leveraged with success

[99, 216]. Additionally, some works have enforced cross-plane orthogonality, parallelism

[75, 117], or point-on-plane regularities [209], but require an additional sensor which

increases cost, computation, calibration complexity, and data association challenges.

Recently, deep-learning-based methods have become of interest due to their ability to

perform single-shot detection of planar surfaces and normals [29, 118, 195, 214]. For

example, RP-VIO [162] leverages a plane segmentation network [203] to separate pla-

nar surfaces which are assumed to be static within a dynamic environment and enforce

point-on-plane camera homography constraints.

7



Closest to the method presented in this thesis, which leverages planar struc-

tural regularities, is that by Rosinol et al. [164–166]. They proposed a stereo VIO

system that incrementally builds and estimates 3D meshes (planes) in which point-on-

plane structural regularities are enforced during optimization. They have shown that

the inclusion of planar regularities improves both state estimation and environmental

mesh accuracy. This plane detection method was extended to include lines within the

monocular VINS-Mono [160] framework in PLP-VIO [116], which additionally enforced

point-to-line and line-to-plane regularities. Both only enforce structural regularities for

vertical and horizontal planes (with respect to gravity), require the inclusion of planes

in the state (increasing computation), and may experience significant computational

spikes when the number of constraints grows. We will show that the inclusion of these

planar regularities within an efficient filter-based VINS reduces trajectory drift due to

the significant periods for which spatial planes can be tracked.

1.2.2 Leveraging Loop-closures and VI-SLAM

We now focus on long-term visual-inertial simultaneous localization and map-

ping (VI-SLAM). The related works have been summarized in Table 1.1. In the follow-

ing subsections, we will first survey the literature for how loop-closures are leveraged

when performing map-based localization. We will then consider the most common

architectures, termed “decoupled”, where a VIO is combined with a secondary process

which then performs non-linear refinement and publishes a result. Importantly, the

information only flows from the VIO to the backend sectionary optimization, not the

other way. We then look at methods that close the “loop”, and allow the VIO frontend

to leverage the backend optimized result. Finally, we then focus on the few works

which have tried to perform VI-SLAM in a consistent manner.

1.2.2.1 Prior Map-based VINS

One of the earliest works which incorporated prior features within an efficient

filter-based estimator was Mourikis et al. [141] which leveraged a prior surface map
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Table 1.1: Overview of key works which build a map online (SLAM?), have real-time fron-
tend leverage loop-closure-aided results (Feedback?), can perform relinerization to handle
large loop-closures (Relinearize?), and provide consistent uncertainty estimation of the state
(Consistent?).

SLAM? Feedback? Relinearize? Consistent?

[126, 127, 138, 141, 178, 192]
[34, 62] *

[92, 119, 123, 160, 165, 190] * *
[16, 100, 108] * * *

[59, 65, 79, 93, 224] * * *
[140, 174], Proposed * * * *

to aid a planetary terrain-relative estimation during entry, landing, and decent (EDL).

Many later works by Ventura et al. [192] and Middelberg et al. [138] showed that client-

server architecture could be leveraged for which a remote server provided the compute

to perform global localization which could be communicated back to a client low-power

device. These works, along with many others, treated the map as perfectly known with

sufficient accuracy and thus didn’t consider this source of error. A work which looked to

address some of the inconsistencies is that by Lynen et al. [126, 127]. They investigated

reduction techniques for visual descriptor and map summarization to ensure sufficient

localization performance. The leveraged prior map feature positions were still treated

as true, but loop-closure measurement noises were inflated to account for dropping the

correlation between the current state and the map itself. There have been significant

works which have looked at map summarization and sparsification [20, 35, 36, 69, 143],

with the work by Dymczyk et al. [35, 36] showing that optimal removal of over 95%

of map features had little impact on prior map localization performance. This work

was released as a part of the maplab framework [27, 178], which additionally contains

an extension of ROVIO [8], termed ROVIOLI, which provided prior map relocalization

through pose updates, ignoring the consistency problem.

Closer to the work presented in this thesis are methods which try to address the

consistency problem when leveraging an uncertain prior map and estimate the correla-

tion of the current estimate with the prior map after loop-closure. The work by Dutoit
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et al. [34] introduced the Cholesky-Schmidt-Kalman filter which explicitly considered

the uncertainty of a given fixed prior map and enabled the tracking of correlations be-

tween the current state and map. This is typically expensive, but through leveraging

a proposed Cholesky-SKF (C-SKF) update and a submap-based relaxation which split

the map into independent submaps with duplicated features [69, 147], they showed

impressive performance and consistency. While this allowed for consistency and O(n)

in terms of the map size complexity, the extension of the C-SKF to real-time simulta-

neous map building is unclear. In the later sections of this thesis we will compare and

contrast different schemes in the context of map-based localization in terms of their

complexity, consistency, and memory.

1.2.2.2 SLAM without Feedback (decoupled)

A common approach to incorporate loop-closure information and allow for re-

linearization is to decouple the high-frequency odometry by leveraging the relative pose

information generated to construct a backend secondary relative pose graph. This was

seen in the earlier works by Engel et al. [46, 47] which leveraged a secondary pose

thread, and direct sparse odometry [45] which was extended to include loop-closures

[54] and inertial information [123, 124]. The works by Kasyanov et al. [92] and Qin

et al. [160] further popularized this methodology. Specifically, they construct a visual-

inertial sliding window bundle adjustment frontend which feeds pose estimates into

a backend pose-graph backend which then inserts relative pose constraints between

keyframes. This is decoupled by nature as the frontend cannot gain any corrections,

and thus continuously drifts. Loop-closure constraints between keyframes are found

through PnP of the landmark feature estimates provided by the frontend after per-

forming place recognition. To recover a drift-free pose estimation, the most recent

optimized keyframe estimate is used to “correct” the frontend drift by simple concate-

nation of the keyframe to the latest estimated relative pose from the frontend. This

architecture is also leveraged in the work by Rosinol et al. [165], which additionally

robustifies their secondary graph to loop-closure outliers with an incremental version
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of PCM [129]. All these methods are unable to recover the uncertainty of the latest

pose and leverage an unweighted relative pose graph.

The work by Liu et al. [119] and Usenko et al. [190] focused on recovering

factors for use in the secondary optimization. Liu et al. [119] presented ICE-BA which

optimized a sliding window relative to the last marginalized keyframe. This relative

prior enables the backend drift to be corrected, but it is unclear if the frontend is

able to leverage loop-closures. Usenko et al. [190] presented BASALT which recov-

ers relative poses and global roll and pitch factors through non-linear factor recovery

(NFR) [133], which were directly combined with traditional re-projection errors in the

backend. Importantly, they showed that by leveraging the uncertainty of the frontend

(as compared to uniformly weighting all edges) the backend optimization had accuracy

gains.

1.2.2.3 SLAM with Feedback (tightly-coupled)

The parallel tracking and mapping (PTAM) [100] methodologies continue to

remain popular due to their ability to split the computational complexity across threads

in a multi-core machine. Most notably, the ORB-SLAM [16, 144–146] family of works

has expanded to include inertial information to further improve performance. ORB-

SLAM 3 [16] maintains three threads which perform “tracking” of the most recent

image to a fixed map alongside inertial information, “local mapping” which manages

keyframes and optimizes a small window states around the current estimate, and “loop

and map merging” which detects large scale loop-closures, optimizes a pose graph and

propagates these loop-closures through the feature map. Leutenegger [108] recently

presented the OKVIS 2 extension of OKVIS [110] with a focus on the marginalization

of active states into relative pose factors, and loop-closures to prior locations. However,

as common with the majority of all graph-based systems, all these methods are unable

to recover their uncertainty, guarantee any sort of consistency, and are inherently

inconsistent due to fixing of historical states and thus incorrectly conditions the current

estimate on them.
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More recently, there has been an effort to enable real-time consistent estimation

which leverages incrementally built maps online but does not refine the map after its

creation to reduce complexity. This was first shown by the conference publications

of this thesis [59, 65] which leveraged the Schmidt-Kalman filter (SKF) to reduce

the computational complexity of building a consistent map online and introduced the

2D-to-2D pose measurement model which showed impressive real-time performance

with high accuracy. The work by Ke et al. [93] focused on a square-root information

variant of the SKF to enable efficient estimation, but required state re-ordering between

“exploration” and “relocalization” phases, which was later addressed in the work by

Huai and Huang [79].

1.2.2.4 Persistent Large-scale Consistent VI-SLAM with Feedback

Of the many works which have looked to incorporate loop-closure information,

only a few allow for relinearization of states, feedback of backend estimates to the real-

time frontend, and tried to address the inconsistency problems. The two works closest

to the work in this thesis are the dual-layered estimation framework by Mourikis and

Roumeliotis [140] and the method leveraged for multi-robot decentralized cooperative

localization presented by Sartipi et al. [174]. The method by Mourikis and Roumeliotis

[140] proposes to run a light-weight MSCKF until a loop-closure is detected, after which

it is paused and a visual-inertial batch least-squares (VI-BLS) refines all states after

which the sliding window covariance is recovered in its entirety. The key advantage

is that this approach allows for the frontend covariance to incorporate relinearizations

and loop-closures, at the cost of significant periods of high latency while it pauses for

the BA to optimize. The method by Sartipi et al. [174] has each agent optimize a

sub-set of their prior map and publish this to the other users which can then loop-close

and localize against.

Both these methods perform full VI-BLS in their backend (i.e., they optimize

both states and environmental features), which presents a significant computational

challenge for both optimization and covariance recovery. Mourikis and Roumeliotis

12



[140] address this problem by selectively marginalizing historical states to bound the

complexity but note that this limits the ability to loop-closure and prevents later re-

lineraization. The work by Sartipi et al. [174] only optimizes the latest trajectory

segment until the optimization process takes more than 6 seconds to complete. They

additionally use an approximate marginal feature uncertain (which is leveraged by fron-

tend) by conditioning on the camera poses they are anchored in, reducing complexity.

To address the inconsistency of incremental VIO drift, they argue that the estimation

and inflate of the relative robot to map transform is able to prevent the underlying

inconsistencies.

As compared to these two works, in this thesis, we present a backend method

which removes the need to estimate environmental features by leveraging a consistent

relative pose graph formulation which reduces the complexity of the VI-BLS prob-

lem. Particular focus is spent on how we recover the relative uncertainty between

keyframes, and how we are able to quantify the uncertainty of loop-closures provided

through relative pose PnP. We show that this backend can be used to reduce VIO drift

and corrected map feature estimates all while marginal uncertainties of environmental

point features are efficiently and consistency recovered. We stress that we deliberately

avoid performing a full VI-BLS to enable the use of the proposed architecture on more

resource constrained platforms and keep a significant number of historical states to

maximize the probability of loop-closures.

1.2.3 Distributed Cooperative Localization

In the last thrust of this thesis we look at the multi-robot case and how we can

reduce the complexity through distributed estimation while remaining consistent. A

naive extension of the single-robot estimation framework to the multi-robot case would

be prohibitively costly and non-real-time. For example, one could communicate all

measurements generated from itself to each other (or fusion center), where all mea-

surements could be optimally fused and all states can be refined jointly. While this

does allow for accurate estimation, both the requirement for constant communication
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and the joint estimation of robot states requires O((m∗n)3) computational complexity

in terms of the number of m robots. As such, a multi-robot distributed estimator is

needed to address these shortcomings by relaxing communication requirements and

distributing the computation cost across all robots resulting in O(m ∗ n3) complexity.

Efficient 2D CL has focused on the fusion of relative measurements between

robots (e.g., relative robot-to-robot bearing or distance range measurements). Roume-

liotis et al. [169] proposed a decentralized algorithm that achieves performance equiv-

alent to the centralized formulation, but requires communication between all robots

and increases in computational cost due to its centralized nature as the number of

robots grows. Other works such as [122] have investigated the approximation of the

robot-to-robot cross-covariances that are not involved in a relative measurement up-

date to reduce the computational cost, and while it performs close to its centralized,

it is unable to guarantee consistency and thus can easily diverge. More recently, Jung

et al. [88] extended this work to the 3D case, but inherits the same underlying issues

and requires maintaining the approximated robot-to-robot cross-covariances. There

exist other works aiming at estimating the relative poses between robots using rela-

tive measurements [131, 202]. Alternative approaches have leveraged CI [18, 225] to

guarantee consistency and only require that each robot maintains its own state and

auto-covariance (the correlations between robots are ignored). By contrast, in this

thesis we specifically take advantage of the CI formulation for 3D multi-robot state

estimation, enabling a consistent distributed algorithm which fuses inertial and visual

sparse environmental feature information.

As compared to CL with relative distance, bearing, or poses between robots

[18, 88, 105, 107, 122, 130, 131, 169, 202, 225], common sparse environmental features

are used in [91, 135, 154, 174], which is appealing as getting relative robot information

can be difficult with visual-inertial sensors in practice and requires both the detec-

tion and tracking of other robots (e.g., [42, 44]). For example, Melnyk et al. [135]

introduced CL-MSCKF using common environmental feature constraints within a cen-

tralized formulation that jointly estimated all robot states. They required that robots
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communicate all sensor data to a common fusion center and demonstrated its use for

the two robot case in simulation. Karrer et al. [91] developed a graph-based centralized

server which handled non-real-time computationally expensive loop closure detection

and optimization of all robot maps to find the joint global optimal.

The closest work is that by Sartipi et al. [174] which introduced a distributed

method for multi-user AR experiences through the use of multi-map feature constraints.

Common features were detected in environmental maps received from other users and

the transmitted feature position estimates were used to constrain the user’s state di-

rectly. Instead of inflating measurement noise to compensate for the unknown cor-

relations between the current user and the other user’s map, we leverage CI that

theoretically guarantees consistency to handle the unknown correlations. Also, instead

of requiring that all common features must match sparse features in the other user’s

map, we leverage the other user’s common feature measurements directly allowing for

updates with additional measurements.

1.2.4 Era of Deep Learning

While the majority of the research presented in this thesis does not leverage deep

learning techniques, it remains an ever-evolving field which has continued to develop

interesting solutions which continue to become more and more applicable to robotics.

In the following sections, we summarize some interesting works and discuss how they

could be leveraged in the future.

1.2.4.1 Bayesian Deep Networks

A key to incorporating deep neural networks into the more traditional proba-

bilistically sound SLAM algorithms is modeling their prediction uncertainties. Gal et

al. [51, 52] introduced the idea of using dropout layers as a Bayesian approximation

to the underlying deep Gaussian process. They evaluated their proposed method for

recovering model uncertainty on a variety of tasks and showed improvement over the
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state-of-the-art. Within the computer vision field, Kendall et al. [95, 96, 98] inves-

tigated the use of aleatoric uncertainty, which captures noise inherent to the input

data, and epistemic uncertainty, which captures the imperfect nature of the trained

model parameters. Kendall et al. showed that by modeling both uncertainties the

combined uncertainty better captures the predictive error. Additionally in multi-task

learning, leveraging the uncertainties to normalize loss functions improves prediction

performance as compared to each independent training of tasks. Gast and Roth [55]

proposed to obtain predictive uncertainties efficiently through proposed probabilistic

output layers, replacing intermediate activation with distributions, and used density

filtering to propagate activation uncertainties through the network in a single pass.

While these all aim to provide a predictive variance, none have looked at what type of

distribution these predictions follow.

There have also been a few works that look to do end-to-end pose estimation

from input images [94, 97, 196]. Notably, Kendall and Cipolla [94] fitted an unimodal

Gaussian to sampled pose predictions and noted that a deeper network was needed to

discriminate visually similar poses and thus remove the multi-modal (multi-hypothesis)

nature of the uncertainty. This work stands out as being one that provides some

preliminary investigation on what properties the predictive distribution has.

1.2.4.2 Deep Networks and SLAM

Outside of quantifying the uncertainty of the networks, many have looked to

incorporate networks into their SLAM systems through different heuristics or use cases.

There have been quite a few works which look to leverage segmentation of the image to

handle dynamic environmental objects. Yu et al. [215] used a segmentator to classify

points, and then checked each point to see if it is dynamically moving or not and

rejected dynamic points to prevent them from being included in the estimator. Brasch

et al. [9] focused on highly dynamic scenes where most of the camera viewport is taken

up by dynamic objects. They proposed using a network to predict an inlier ratio for all
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3d features, thus allowing for features which are more likely to be dynamic to be down-

weighted accordingly in the bundle adjustment. Esfahani et al. [48] proposed getting

both pixel-level semantic and dense optical flow which allows for distinguishing of which

semantic objects are moving or stationary (i.e., a car can be parked or moving). While

these works were successful, none of these works directly modeled that the network

predictions are imperfect.

There have been many SLAM systems which look to incorporate or leverage

network uncertainty [19, 134, 183, 222], which typically rely on hand-picked values for

the classification uncertainties or confidence scores. Other works have focused on esti-

mating environmental semantic objects outside of the current camera state estimation

[31, 49], preventing the current state estimate from improving from the additional se-

mantic information. There have been quite a few works that leverage depth estimates

in SLAM [120, 185, 203], but, to the best of our knowledge, none have addressed the

aleatoric and epistemic uncertainties and instead rely on hand-tuned predictive un-

certainties. Kopitkov and Indelman [101] introduced the idea of compressing images

into a feature vector, and learning a measurement model offline for this feature vector

including both a predictive mean and covariance given the current state estimates to

incorporate into a batch-optimization SLAM problem as an additional factor. This

contrasts traditional deep-learning state estimation approaches which typically predict

a pose estimate. They argue that learning the conditional prediction on the current

pose is more unimodal as compared to modeling the uncertainty of a predicted pose.

They provide a few preliminary results with a limited investigation on if this unimodal

nature is true. To the best of our knowledge, none of these works model that the

network is imperfect and has limited applicability outside of their training data due to

this. We argue that modeling the network as uncertain is key to robustly leveraging it

in practical SLAM systems and is crucial to ensuring accurate online state estimation.

Clark et al. [25] looked at incorporating inertial measurements into an end-

to-end network and showed that it outperformed SLAM systems which do not take

into account the inaccuracy of camera-IMU calibration. Brossard et al. [11], recently
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focused on learning IMU and odometry dead reckoning corrections, which could allow

for more accurate SLAM systems due to corrected predictions. There have additionally

been a few works that have looked into replacing the underlying Kalman filter equations

with deep networks [74, 103, 163]. While still in their infancy, in the future better

performance might be able to be achieved by leveraging a specifically trained estimator

for fusion.

1.3 Research Objectives

The first objective of the research presented in this dissertation is to develop a

comprehensive state-of-the-art visual-inertial navigation system, which can then enable

further research of the aforementioned problems. The second objective is to leverage

the proposed framework to address the challenges of long-term persistent single and

multi-robot localization and its sub-challenges of geometric feature representation for

persistent long-term loop-closure, efficient and consistent visual-inertial simultaneous

localization and mapping (VI-SLAM), and finally efficient and consistent distributed

multi-robot localization. A key focus throughout this work is to ensure proper consis-

tency of the estimator which is crucial for practical use for downstream applications

(e.g., control and planning). We argue that “consistency is necessary for filter opti-

mality” [4, Section 5.4.1], and thus the estimation of the current mean alongside its

uncertainty which captures the true error of the state is a fundamental goal. Within

the context of long-term VI-SLAM, the consistency of the estimator has traditionally

been a lower priority or ignored due to the significant computational cost penalty of

tracking the correlations between the active state (e.g., current pose and velocity) and

the historical map. In this thesis, we present multiple methodologies which can effi-

ciently perform visual-inertial estimation in a consistent manner, demonstrating that

it is possible and desirable to perform consistent persistent long-term VI-SLAM.
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1.3.1 Research Framework for VINS

We present an open-sourced visual-inertial research framework which is lever-

aged throughout this thesis and also the broader research community. Termed Open-

VINS, the codebase1 contains an on-manifold sliding window Kalman filter, online

camera intrinsic and extrinsic calibration, camera to inertial temporal calibration, in-

state environmental “SLAM” landmarks with a variety of different representations, a

modular type system which enables prototyping, an extendable visual-inertial simu-

lator to verify trajectory and calibration accuracy along with the consistency of the

estimator, static and dynamic state initialization, a groundtruthing pipeline2 to recover

groundtruth trajectories for evaluation, and finally an evaluation toolbox to evaluate

different metrics to quantify performance. Significant effort has been taken to both doc-

ument the code but also provide theoretic derivations which enable new graduate stu-

dents to get started with visual-inertial estimation with only a minimal amount of linear

systems background needed.3 The proposed OpenVINS is compared against state-of-

the-art open-sourced algorithms, showing its competing estimation performance.

1.3.2 Extending VINS to Higher Level Geometric Primitives

We then focus on how to incorporate higher-level geometric primitives such as

planes within the context of VINS. A novel formalization of geometric planes, termed

the Closest Point (CP) plane representation, is developed to represent planes with

a minimal representation (3 degree of freedom (DoF)) and improved linearity which

makes it suitable for use within simultaneous localization and mapping (SLAM) es-

timators. Within the context of a LiDAR-inertial SLAM system,4 we show that CP

planes can compress large amounts of environmental features into single 3 DoF plane

1 https://github.com/rpng/open vins

2 https://github.com/rpng/vicon2gt

3 https://docs.openvins.com/

4 https://github.com/rpng/lips
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and plane-to-plane constraints can then be leveraged with inertial preintegration [40]

to perform accurate localization. We show that the CP representation can have more

accurate localization performance as compared to the unit quaternion representation

[89] while additionally simplifying the plane-to-plane constraint to simple efficient sub-

traction between transformed CP planes.

The CP representation is then applied to the filter-based OpenVINS monocular-

inertial configuration to estimate environmental planes without requiring additional

sensing modalities, e.g. stereo or depth camera, or a computationally expensive neural

network to provide measurement and detection of such planes. Instead, these planes,

which can be viewed by the camera for significant periods in man-made environments

due to their large spatial presence, are used to constrain sparse point features over

time through a point-on-plane constraint. Particular focus is spent on how to detect,

extract, and track these planes from only monocular images efficiently and how CP

planes are initialized, merged, and marginalized over time. The proposed approach is

evaluated with extensive Monte-Carlo simulations and real-world experiments, includ-

ing an author-collected AR scenario5, and is shown to outperform the point-based VIO

in structured environments. This work is open sourced6 for the benefit of the research

community.

1.3.3 Efficient Schmidt-Kalman Filtering for Persistent and Consistent Lo-

calization

We next focus on how to perform consistent long-term localization which has

been typically plagued by the large amount of additional computational burden re-

quired to continuously track correlations with historical states and environmental fea-

tures. While keeping historical states enables consistent loop-closure through visual

feature matches, they are detrimental to estimator complexity, which is typically O(n3)

5 https://github.com/rpng/ar table dataset

6 https://github.com/rpng/ov plane
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in size of the state, since more historical states are continuously added during environ-

mental exploration and thus computational costs tend to explode over time. To solve

this, we first proposed two estimators which leverage the computational properties of

the Schmidt-Kalman filter (SKF) [177] to reduce the cost of keeping old states and

still maintaining consistency through tracking of the correlations. A novel 2D-to-2D

observation model is leveraged within the context of long-term loop-closures as com-

pared to the more traditional 2D-to-3D model and is shown to also provide significant

reductions in the long-term drift and computational costs. A novel dynamic Schmidt-

ing’ method which allows features to be corrected when re-observed is then proposed

and shown to balance computational efficiency and accuracy.

We then investigate how to leverage these efficient frontends in conjunction with

a secondary thread which can enable re-linearization and thus correction of large loop-

closure through relocalization to previously visited locations. Specifically, we have an

efficient multi-state constraint Kalman filter (MSCKF) [139] Schmidt-Kalman filter

(SKF) [177] frontend which contains a temporal map, e.g., a local map of recently

viewed areas, which is then augmented by marginalized environmental features which

have incorporated loop-closure information through relinearization. A particular fo-

cus is how to leverage these marginal features, which are optimized via a lightweight

relative-pose graph optimization and can be incorporated via loop-closures, in a con-

sistent manner which ensures global consistency and bounded localization errors over

time. The hybrid extension of the MSCKF to map-based localization using different

measurement techniques is investigated through a series of detailed numerical simu-

lation experiments to demonstrate its real-time localization accuracy and efficiency.

To the best of our knowledge, this is the first work to systematically study a hybrid

filter-based estimator which can perform VI-SLAM in a consistent and efficient manner.
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1.3.4 Distributed Cooperative Visual-Inertial Localization via Covariance

Intersection

We then apply the developed loop-closure detection and constraint methodolo-

gies to the multi-robot / multi-user cooperative localization (CL) case. Accurate and

efficient CL that enables multi-user augmented reality (AR) experiences, multi-device

cooperative mapping, and multi-vehicle formation control, is a key barrier to over-

come due to challenges of communication, distributed computation, and complexity of

fusing multi-robot asynchronous measurement constraints. In particular, we focus on

distributed CL VINS which has computational advantages through reducing the state

size that each robot needs to estimate to just their own as compared to concurrent

estimation of all robot states. We build on a consistent estimator distributed esti-

mator design presented by Zhu et al. [226] which uses covariance intersection (CI)

[87]. A novel and non-trivial extension to include persistent environmental “SLAM”

features through two novel measurement constraints and a loop-closure method for

historical locations which limits drift and enables asynchronous common views seen

from other robots’ historical poses to be fused is proposed. As a result, the proposed

distributed CL estimator does not require simultaneous viewing of the same location

due to leveraging of historical common features (e.g., a robot can gain information if

another robot had previously explored the same location), while significantly improving

the localization performance thanks to such common multi-robot measurement infor-

mation and SLAM features. Particular focus is spent on validating the accuracy and

consistency of the proposed CL CI-based VINS, with both Monte-Carlo simulations

and real-world experiments which are directly compared to the more computationally

expensive centralized CL estimator designs.
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Chapter 2

OPENVINS: A RESEARCH PLATFORM FOR VISUAL-INERTIAL
ESTIMATION

2.1 Introduction

In this section, we present the research framework, termed OpenVINS, which

has enabled both the research in this thesis along with many works within the lab and

external to our research group. This codebase has been the foundation of many of the

recent visual-inertial estimation projects in our group at the University of Delaware,

which include multi-camera [38], multi-IMU [41], visual-inertial moving object tracking

[42, 44], Schmidt-based visual-inertial SLAM [59, 65], point-plane and point-line visual-

inertial navigation [208, 209], among others [207, 228, 229]. The flexibility, plentiful

documentation, and state-of-the-art performance are key to allowing this codebase to

provide value to both the work done in this thesis and to others. We summarize the

key functionality of the different components in OpenVINS as follows:

• ov core – Contains 2D image sparse visual feature tracking; linear and Gauss-

Newton feature triangulation methods; visual-inertial simulator for arbitrary

number of cameras and frequencies; and fundamental manifold math operations

and utilities.

• ov init – Both stationary and dynamic initialization [32, 33, 64] which enable

robust and accurate recovery of initial biases, velocity, and gravity direction.

Special care is also taken to recover the initial uncertainty of the state.

• ov eval – Contains trajectory alignment; plotting utilities for trajectory accuracy

and consistency evaluation; Monte-Carlo evaluation of different accuracy metrics;

and utility for recording ROS topics to file.
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• ov msckf – Contains the extendable modular Extended Kalman Filter (EKF)-

based sliding window visual-inertial estimator with on-manifold type system for

flexible state representation. Features include: First-Estimates Jacobains (FEJ)

[82–84], IMU-camera time offset calibration [114], camera intrinsics and extrinsic

online calibration [115], IMU intrinsic calibration [205, 210], standard MSCKF

[139], and 3D SLAM landmarks of different representations [112].

In what follows we describe our generalized modular on-manifold EKF-based estimator

which, in its simplest form, estimates the current pose and velocity of a camera-IMU

pair. We then introduce the implemented features that provide the foundation for re-

searchers to quickly build and extend on. Finally, we evaluate the proposed EKF-based

solution in simulations and then on real-world datasets, demonstrating its competing

performance against other open-sourced algorithms.

2.2 Visual-Inertial Estimation Formulation

The state vector of our visual-inertial system consists of the current inertial

navigation state, a set of c historical IMU pose clones, a set of m environmental land-

marks, and a set of w cameras’ extrinsic and intrinsic parameters. The clones will

be used to update via multi-pose constraints via the Multi-State Constraint Kalman

Filter (MSCKF) [139] methodology, while environmental landmarks, termed “SLAM”

features, allow for direct estimation of features until their tracking is lost. More for-

mally we have the following state:

xk =
[
x>I x>C x>M x>W

CtI

]>
(2.1)

xI =
[
Ik
G q̄
> Gp>Ik

Gv>Ik b>ωk b>ak

]>
(2.2)

xC =
[
Ik−1

G q̄> Gp>Ik−1
· · · Ik−c

G q̄> Gp>Ik−c

]>
(2.3)

xM =
[
Gp>f1

· · · Gp>fm

]>
(2.4)

xW =
[
I
C1
q̄> C1p>I ζ>0 · · · I

Cw
q̄> Cwp>I ζ>w

]>
(2.5)
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where Ik
G q̄ is the unit quaternion parameterizing the rotation R(IkG q̄) = Ik

GR from the

global frame of reference {G} to the IMU local frame {Ik} at time k [186], bω and ba

are the gyroscope and accelerometer biases, and GvIk and GpIk are the velocity and

position of the IMU expressed in the global frame, respectively. The inertial state xI

lies on the manifold defined by the product of the unit quaternions H with the vector

space R12 (i.e. M = H× R12) and has 15 total degrees of freedom (DoF).

For vector variables, the “boxplus” and “boxminus” operations, which map

elements to and from a given manifold [70], equate to simple addition and subtraction

of their vectors. For quaternions, we define the quaternion boxplus operation as:

q̄1 � δθ
∆
=

 δθ2
1

⊗ q̄1 ' q̄2 (2.6)

Note that although we have defined the orientations using the left quaternion error, it

is not limited to this and any on-manifold representation in practice can be used (e.g.,

[199]). A set of c historical stochastic pose clones [170], defined as xTk = [IkG q̄
> Gp>Ik ]

>,

are kept in xC to allow for historical features to be incorporated and to enable feature

triangulation. The map of environmental landmarks xM contains global 3D positions

only for simplicity, while in practice we offer support for different representations (e.g.

inverse MSCKF [139], full inverse depth [24], and anchored 3D position [153], see

Appendix A.6).

The calibration vector xW contains the camera intrinsics ζ, consisting of focal

length, camera center, and distortion parameters, and the camera-IMU extrinsics, i.e.,

the spatial transformation (relative pose) from the IMU to each camera. Since we

consider synchronized camera clocks, we include a single time offset CtI between the

IMU and the camera clock in the calibration vector.

2.2.1 Inertial Propagation

The inertial state xI is propagated forward using incoming IMU measurements

of linear accelerations Iam and angular velocities Iωm based on the following generic
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nonlinear IMU kinematics propagating the state from timestep k − 1 to k [21]:

I
G

˙̄q(t) =
1

2

−bIω(t)×c Iω(t)

−Iω(t)> 0

 It
G q̄ (2.7)

,
1

2
Ω(Iω(t))ItG q̄ (2.8)

GṗI(t) = GvI(t) (2.9)

Gv̇I(t) = It
GR>Ia(t)− Gg (2.10)

ḃg(t) = nwg(t) (2.11)

ḃa(t) = nwa(t) (2.12)

where we have modeled the gyroscope and accelerometer biases as a random walk and

thus their time derivatives are white Gaussian. Note that the above kinematics have

been defined in terms of the true acceleration and angular velocities which can be

computed as a function of the sensor measurements and state. The relation to the

measurements are:

Iω(t) = I
wRDw

(
wωm(t)−Tg

Ia(t)− bg(t)− ng(t)
)

(2.13)

Ia(t) = I
aRDa (aam(t)− ba(t)− na(t)) (2.14)

where we have the following IMU intrinsic parameters: scale/axis correction for gyro-

scope Dw (6 parameters), scale/axis correction for accelerometer Da (6 parameters),

rotation from gyroscope to IMU frame I
wR, rotation from accelerometer to IMU frame

I
aR and gravity sensitivity Tg (9 parameters). To estimate these online, the propaga-

tion of the state and covariance become a function of these parameters and is covered

in detail in [205, 210].

Given the continuous-time Iω(t) and Ia(t), in the time interval t ∈ [tk, tk+1],

and their estimates, i.e. after taking the expectation, Iω̂(t) and Iâ(t), we can define

the solutions to the above IMU kinematics differential equation.

Ik+1

G R = Exp

(
−
∫ tk+1

tk

Iω(tτ ) dτ

)
Ik
GR (2.15)
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, ∆Rk−1,k
Ik
GR =

Ik+1

Ik
R Ik

GR (2.16)

GpIk+1
= GpIk + GvIk∆tk + Ik

GR>
∫ tk+1

tk

∫ s

tk

Ik
Iτ

RIa(tτ ) dτds−
1

2
Gg∆t2k (2.17)

, GpIk + GvIk∆tk + Ik
GR>∆pk−1,k −

1

2
Gg∆t2k (2.18)

GvIk+1
= GvIk + Ik

GR>
∫ tk+1

tk

Ik
Iτ

RIa(tτ ) dτ − Gg∆tk (2.19)

, GvIk + Ik
GR>∆vk−1,k − Gg∆tk (2.20)

bgk+1
= bgk +

∫ tk+1

tk

nwg(tτ ) dτ (2.21)

bak+1
= bak +

∫ tk+1

tk

nwa(tτ ) dτ (2.22)

where ∆tk = tk+1 − tk,
Ik
Iτ

R = Exp(
∫ tτ
tk

Iω(tu) du) see Eq. (2.31), and vectors are

evaluated at their subscript timesteps (e.g., GvIk = GvI(tk)). The biases are corrupted

by random walk noises nwg and nwa that are zero-mean white Gaussians. We have the

following integration components:

∆Rk−1,k ,
Ik+1

Ik
R = Exp

(
−
∫ tk+1

tk

Iω(tτ ) dτ

)
(2.23)

∆pk−1,k ,
∫ tk+1

tk

∫ s

tk

Ik
Iτ

RIa(tτ ) dτds (2.24)

∆vk−1,k ,
∫ tk+1

tk

Ik
Iτ

RIa(tτ ) dτ (2.25)

More generally we have now recovered the following non-linear function:

xk = f(xk−1,
Iam,

Iωm,nk−1) (2.26)

where nk−1 = [n>g n>a n>wg n>wa]
> contains the zero-mean white Gaussian noise of the

IMU measurements along with random walk bias noise. This state estimate is evaluated

at the current estimate:

x̂k|k−1 = f(x̂k−1|k−1,
Iam,

Iωm,0) (2.27)

where ·̂ denotes the estimated value and the subscript k|k − 1 denotes the predicted

estimate at time k given the measurements up to time k − 1.

27



If we linearize this nonlinear model at the current estimate and assume the

measurements are constant over our integration period, we can recover the discrete

propagation equations which can be used to propagate the state uncertainty forward

in time [132, Sec. 2.3-2.4]:

Pk|k−1 = Φk−1Pk−1|k−1Φ
>
k−1 + Gk−1Qk−1G

>
k−1 (2.28)

where Φk−1 and Gk−1 are the state and noise Jacobians and Qk−1 is the continuous

time noise matrix of nk−1. As compared to the 15 DoF inertial state xI which has

an evolution model, see Eq. (2.7)-(2.12), the clones xC , environmental features xM ,

and calibration xW states do not evolve with time and thus the corresponding state

Jacobian entries are identity with zero propagation noise and allow for exploitation of

the sparsity for computational savings. For the xI state we have the following:

Φk|k−1 = (2.29)

Ik
Ik−1

R̂ 03 03 −IkIk−1
R̂Jr(δθ̂)∆tk 03

−1
2

Ik−1

G R̂>bI â(tk−1)∆t2k×c I3 ∆tkI3 03 −1
2

Ik−1

G R̂>∆t2k

−Ik−1

G R̂>bI â(tk−1)∆tk×c 03 I3 03 −Ik−1

G R̂>∆tk

03 03 03 I3 03

03 03 03 03 I3



Gk−1 =



−IkIk−1
R̂Jr(δθ̂)∆tk 03 03 03

03 −1
2

Ik−1

G R̂>∆t2k 03 03

03 −Ik−1

G R̂>∆tk 03 03

03 03 I3 03

03 03 03 I3


(2.30)

where ∆tk = tk − tk−1, Ik
Ik−1

R̂ = Exp(Iω̂(tk−1)∆tk) , and δθ̂ = Iω̂(tk−1)∆tk. The

function Exp(·) is the matrix exponential of SO(3), and Jr is the right Jacobian of

SO(3) and are defined by [5, 23]:

Exp(v) = I +
sin θ

θ
bv×c+

1− cos θ

θ2
bv×c2 (2.31)
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where θ2 = v>v

Jr(φ) = I− 1− cos(‖ φ ‖)
‖ φ ‖2

bφ×c+
‖ φ ‖ − sin(‖ φ ‖)

‖ φ ‖3
bφ×c2 (2.32)

2.2.2 On-Manifold Measurement Update

Consider the following nonlinear measurement function:

zm,k = h(xk) + nm,k (2.33)

where we have the measurement noise nm,k ∼ N (0,Rm,k). For the standard EKF

update, one linearizes the above equation at the current state estimate. In our case, as

in the indirect EKF [186], we linearize Eq. (2.33) with respect to the current zero-mean

error state (i.e. x̃ = x� x̂ ∼ N (0,P)):

zm,k = h(x̂k|k−1 � x̃k|k−1) + nm,k (2.34)

= h(x̂k|k−1) + Hkx̃k|k−1 + nm,k (2.35)

⇒ z̃m,k = Hkx̃k|k−1 + nm,k (2.36)

where Hk is the measurement Jacobian computed as follows:

Hk =
∂h(x̂k|k−1 � x̃k|k−1)

∂x̃k|k−1

∣∣∣∣∣
x̃k|k−1=0

(2.37)

Using this linearized measurement model, we can now perform the following standard

EKF update to ensure the updated states remain on-manifold:

x̂k|k = x̂k|k−1 �Kk(zm,k − h(x̂k|k−1)) (2.38)

Pk|k = Pk|k−1 −KkHkPk|k−1 (2.39)

Kk = Pk|k−1H
>
k (HkPk|k−1H

>
k + Rm,k)

−1 (2.40)

Here we have stressed that we perform an on-manifold update since our orientations are

non-linear and thus we need to map from our linear error-state space to our non-linear

state space. When we perform our linearization, it is important to address issues with

incorrect information gain in unobservable directions (global yaw and position) through
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an observability-aware update. We leverage First Estimates Jacobians (FEJ) [83, 84]

in which the linearization points of all Jacobians use the same linearization point

as the first update for that state variable. This methodology ensures that spurious

information is not gained which could make the estimator overconfident (inconsistent)

and thus inaccurate and less robust.

2.3 Estimator Functionality Improvements

In what follows, we will present the key improvements to the multi-state con-

straint Kalman filter (MSCKF) [139] originally introduced in 2007, and later improved

to include in-state SLAM features in the MSCKF 2.0 [112] which leverages First Es-

timate Jacobians (FEJ) [83, 84] to ensure proper observability properties. We will

present each key improvement and component which has been incorporated within

the OpenVINS framework to provide fundamental functionality, improve accuracy to

match or exceed the existing state-of-the-art, improve robustness to low-cost sensors

or poor calibration, and enable extendability and usability for VINS researchers.

2.3.1 Type-based Index System

At the core of the OpenVINS library is the type-based index system. Inspired

by graph-based optimization frameworks such as GTSAM [28], we abstract away from

the user the need to directly manipulate the covariance and instead provide the tools

to automatically manage the state and its covariance. This offers many benefits such

as reduced implementation time and being less prone to development errors due to

explicit state and covariance access.

Each state variable “type” has internally the location of where it is in the error

state which is automatically updated during initialization, cloning, or marginalization

operations which affect variable ordering. A type is defined by its covariance location,

its current estimate and its error state size. The current value does not have to be a

vector but could be a matrix in the case of an SO(3) rotation representation. The error
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state for all types is a vector and thus a type will need to define the boxplus mapping

between its error state and its manifold representation (i.e. the update function).

class Type {

// Current b e s t e s t i m a t e

Eigen : : MatrixXd va lue ;

// Index o f e r ror s t a t e in covar iance

int i d = −1;

// Dimension o f er ror s t a t e

int s i z e = −1;

// Vector c o r r e c t i o n , how to update

void update ( const Eigen : : VectorXd dx ) ;

} ;

One of the main advantages of this type system is that it reduces the complexity

of adding new features by allowing the user to construct sparse Jacobians. Instead of

constructing a Jacobian for all state elements, the “sparse” Jacobian needs to only

include the state elements that the measurement is a function of. This saves computa-

tion in the cases where a measurement is a function of only a few state elements and

allows for measurement functions to be state agnostic as long as their involved state

variables are present.

2.3.2 State Variable Delayed Initialization

Based on a set of linearized measurement equations, Eq. (2.36), we aim to

optimally compute the initial estimate of a new state variable and its covariance and

correlations with the existing state variables. As a motivating example, we here de-

scribe how to initialize a new SLAM landmark Gpf , whose key logic can be used for any

new state variable and is generalized to any type within the codebase. As in [111] we

first perform QR decomposition (e.g., using computationally efficient in-place Givens
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rotations) to separate the linear system in Eq. (2.36) into two subsystems: (i) one that

depends on the new state (i.e., Gpf ), and (ii) the other that does not.

z̃m,k =
[
Hx Hf

] x̃k

Gp̃f

+ nm,k (2.41)

⇒

z̃m1,k

z̃m2,k

 =

Hx1 Hf1

Hx2 0

 x̃k

Gp̃f

+

nf1

nf2

 (2.42)

where nfi ∼ N (0,Rfi), i ∈ {1, 2}. Note that in the above expression z̃m1,k and

z̃m2,k are orthonormally transformed measurement residuals, not the direct partitions

of z̃m,k. With the top transformed linearized measurement residual z̃m1,k in Eq. (2.42),

we now initialize the state estimate of Gp̂f , its covariance, and correlations to xk [see

Eq. (2.38)] by augmenting the current state and covariance matrix.

Gp̂f = Gp̂f �H−1
f1 z̃m1,k (2.43)

Pxf = −PkH
>
x1H

−>
f1 (2.44)

Pff = H−1
f1 (Hx1PkH

>
x1 + Rf1)H−>f1 (2.45)

It should be noted that a full-rank Hf1 is needed to perform the above initial-

ization, which normally is the case if enough measurements are collected (i.e., delayed

initialization). Note also that to utilize all available measurement information, we also

perform EKF update using the bottom measurement residual z̃m2,k in Eq. (2.42), which

essentially is equivalent to the Multi-State Constraint Kalman Filter (MSCKF) [139]

update with nullspace projection [213]. More details about equivalence and a version

for when Covariance Intersection (CI) is leveraged can be found in Appendix G.

2.3.3 Feature Observation Model via Raw Camera Coordinates

We generalize the landmark measurement model as a series of nested functions

to encompass different feature parameterizations such as 3D position and inverse depth

and so on. Assuming a visual feature that has been tracked over the sliding window
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of stochastic clones [170], we can write the visual-bearing measurements (i.e., pixel

coordinates) as the following series of nested functions:

zm,k = h(xk) + nm,k (2.46)

= hd(zn,k, ζ) + nm,k (2.47)

= hd(hp(
Ckpf ), ζ) + nm,k (2.48)

= hd(hp(ht(
Gpf ,

Ck
G R, GpCk)), ζ) + nm,k (2.49)

where zm,k is the raw uv pixel coordinate; nm,k the raw pixel noise and typically as-

sumed to be zero-mean white Gaussian; zn,k is the normalized undistorted uv measure-

ment; Ckpf is the landmark position in the current camera frame; Gpf is the landmark

position in the global frame and depending on its representation may also be a func-

tion of state elements; and {CkG R, GpCk} denotes the current camera pose (position

and orientation) in the global frame. The measurement functions hd, hp, and ht cor-

respond to the intrinsic distortion, projection, and transformation functions, and the

corresponding measurement Jacobians can be computed through a simple chain rule.

Note that we compute the errors on the raw uv pixels to allow for calibration of the

camera intrinsics ζ and that the function hd can be changed to support any camera

model (e.g., radial-tangential and equidistant). Details of each function can be found

in Appendix A.

2.3.3.1 Camera Observation Model Linearization

Looking at a simplified model where we only estimate the pose and feature

position, we can linearize this non-linear measurement model and obtain the following

residual:

rk = zk − h(x̂Tk ,
Gp̂f ) (2.50)

' HTk x̃Tk + Hfk
Gp̃f + nk (2.51)

where HTk and Hfk are the measurement Jacobians, and x̃Tk and Gp̃f are the error

states for the observation pose xTk = [IkG q̄
> Gp>Ik ]

> at time tk and feature, respectively.
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Throughout this thesis x̂ is used to denote the estimate of a random variable x, while

x̃ = x � x̂ is the error in this estimate. The updated linearization point from a

correction δx is x̂⊕ = x̂� δx.

After sufficient observations of the feature, we can “stack” them to get:

r = HT x̃T1..c + Hf
Gp̃f + nf (2.52)

where the measurement is a function of c clone poses, x̃T1..c = [x̃>T1
· · · x̃>Tc ]

>, corre-

sponding to each observation time the feature was seen, and nf is the stacked noise.

Appendix A contains the complete Jacobians with respect to all feature states necessary

for estimation and online calibration.

2.3.3.2 VIO Features: MSCKF Update

For those features that have lost active track in the current window (termed

VIO features), we perform the standard MSCKF update [139]. In particular, we first

perform BA to triangulate these features for computing the feature Jacobians Hf (see

Eq. (2.52)), and then project rk onto the left nullspace of Hf (i.e., N>Hf = 0) to

yield the measurement residual independent of features:

N>rf = N>HT x̃T1..c + N>Hf
Gp̃f + N>nf (2.53)

⇒ r′f = H′T x̃T1..c + n′f (2.54)

where HT is the stacked measurement Jacobians with respect to the navigation states

in the current sliding window, R′f = N>RfN is the inferred noise covariance [139].

2.3.3.3 SLAM Features: EKF Update

Once the measurement Jacobian and residual are computed, see Eq. (2.52),

we can apply the standard EKF update equations to update the state estimates and

error covariance [132] through the MSCKF projection [139]. For those features that

can be reliably tracked longer than the current sliding window, we will initialize them

into the active state, see Section 2.3.2, and perform EKF updates as in the standard

EKF-based VI-SLAM.
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2.3.4 Online Spatiotemporal and Intrinsic Calibration

We perform online spatiotemporal calibration of the camera-IMU time offset and

extrinsic transformation and camera intrinsics. Looking at the landmark measurement

Eq. (2.49), one can simply take the derivative with respect to the desired variables

that one wishes to calibrate online. In this case the function ht is a function of the

{CI R, CpI} extrinsics that are used to compute the global camera pose {CkG R, GpCk}

given the inertial pose. We also co-estimate the time offset between the camera and

IMU, which can commonly exist in low-cost devices due to sensor latency, clock skew, or

data transmission delays via the method of Li [114]. Consider the time Ct as expressed

in the camera clock is related to the same event in the IMU clock, It, by a time offset

CtI :

It = Ct+ CtI (2.55)

To calibrate the camera’s intrinsic parameters we can see that we can take the

derivative in respect to the intrinsic ζ in hd to perform online calibration. We addition-

ally have support for online calibration of the IMU inertial intrinsic parameters which

are involved during inertial propagation which is the open-sourced implementation of

our work in Yang et al. [205, 210]. As investigated, performing online estimation of

IMU intrinsics typically isn’t recommended due to the large amount of possible degen-

erate motions which can cause poor calibration and thus trajectory estimation. The

details of the measurement Jacobians required for online calibration are detailed in

Appendix A.

2.3.5 Accurate Groundtruth for Evaluation

We have created a groundtruthing pipeline, termed vicon2gt, which enables

the fusion of inertial measurements and an external mocap system (e.g., an OptiTrack

or Vicon) to generate temporally and spatially aligned high fidelity groundtruth trajec-

tories. While a mocap system can directly provide 6 DoF poses, e.g. a frame {B}, to
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Figure 2.1: Sensor frames in the system. The motion capture frame {V } which poses are
captured in and is not gravity aligned along with the motion capture marker body frame {B}
and inertial IMU frame {I} can be seen. Also seen is the gravity vector g which is perfectly
along the z-axis in the global inertial frame {G}.

mocap markers placed on a robotic platform, the rigid extrinsic and temporal calibra-

tion between the mocap markers and the IMU sensor frame are unknown. Additionally,

there can be an unknown global transformation between the VIO global frame {G}

which starts from zero yaw and position, and the arbitrarily placed global frame of

the motion capture system {V }. See Figure 2.1 for an overview of the problem and

the unknown transforms we need to be able to recover concurrently as we estimate the

trajectory of the IMU. Specifically, we estimate the following states:

x =
[
x>I0 · · · x>IN x>J x>G

]>
(2.56)

xIi =
[
Ii
V q̄
> V p>Ii

V v>Ii b>g,i b>a,i

]>
(2.57)

xJ =
[
I
B q̄
> Ip>B

V tI

]>
(2.58)

xG =
[
V
Gθx

V
Gθy

]>
(2.59)

where we are estimating N inertial states at an arbitrary frequency, along with a

calibration state xJ containing the spatial-temporal parameters between the motion

capture and IMU sensors, and the rotation between the motion capture frame and

global inertial frame. Ik
V q̄ is the unit quaternion parameterizing the rotation R(IkV q̄) =
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Ik
V R from the global frame of reference {V } to the IMU local frame {Ik} at time tk

[186], and V vIk and V pIk are the velocity and position of the IMU expressed in the

global frame, respectively. It is important to note here that we are estimating the IMU

states at the true IMU clock time, meaning that the states that occur at time tk are

in the IMU clock frame, Itk, and can be related a time in motion capture clock by:

It = V t+ V tI (2.60)

We additionally define our rotation in xG from the gravity aligned inertial frame to the

motion capture frame using the following roll-pitch rotation:

V
GR = Ry(

V
Gθy)Rx(

V
Gθx) (2.61)

=


cos VGθy 0 sin V

Gθy

0 1 0

− sin V
Gθy 0 cos VGθy




1 0 0

0 cos VGθx − sin V
Gθx

0 sin V
Gθx cos VGθx

 (2.62)

Note that here we are fixing the yaw to be zero since the gravity aligned frame has

arbitrary yaw and thus this rotation is only 2 DoF.

2.3.5.1 Inertial Preintegrated Constraints

Shown in the factor graph in Figure 2.3, each state is constrained through prop-

agation of the IMU using closed-form preintegration [40]. We can define the following

integrations in the mocap frame of reference:

k+1
V R = ∆Rk−1,k

k
V R (2.63)

V pk+1 = V pk + V vk∆T −
1

2
V
GRGg∆T 2 + V

k R∆pk−1,k (2.64)

V vk+1 = V vk − V
GRGg∆T + V

k R∆vk−1,k (2.65)

During preintegration, the terms ∆Rk−1,k, ∆pk−1,k, and ∆vk−1,k are only computed

once, e.g. pre-integrated, and linearized at the current bias estimate b̄w and b̄a. This
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results in the following measurement residual after the bias relinearization

rI(x) =



2vec
(
k+1
V q̄ ⊗ k

V q̄
−1 ⊗ k+1

k
˘̄q−1 ⊗ q̄(∆bw)

)
k
V R
(
V pk+1 − V pk − V vk∆T + 1

2
V
GRGg∆T 2

)
−∆pk,k+1 − ∂∆p

∂ba

∣∣∣
b̄a

∆ba − ∂∆p
∂bw

∣∣∣
b̄w

∆bw


 k

V R
(
V vk+1 − V vk + V

GRGg∆T
)

−∆vk,k+1 − ∂∆v
∂ba

∣∣∣
b̄a

∆ba − ∂∆v
∂bw

∣∣∣
b̄w

∆bw


bw,k+1 − bw,k

ba,k+1 − ba,k


where ∆bw := bw(k) − b̄w and ∆ba := ba(k) − b̄a are the differences between the

true biases and the current bias estimate used as the linearization point. We have

also dropped the sensor frame {I} have only specified the time index and used the

quaternion orientation notation.

We can now linearize this non-linear measurement constraint and recover Jaco-

bians needed for graph optimization. We refer the reader to the continuous preinte-

gration technical report for the preintegration Jacobians [39]. There is an additional

Jacobian which is needed since this measurement is now a function of the two angles

which rotate the gravity vector into the motion capture frame. This can be found by

directly taking the derivative in respect to the rotation matrix:

∂rI(x)

∂[VGθx
V
Gθy]

=
[
02×3

(
1
2
k
V R∆T 2Hz

)> (
k
V R∆THz

)>
02×3 02×3

]>
(2.66)

where we define the derivative in respect to V
GRGg as (see Eq. (2.62)):

Hz = 9.81


− sin V

Gθy sin V
Gθx cos VGθy cos VGθx

− cos VGθx 0

− cos VGθy sin V
Gθx − sin V

Gθy cos VGθx

 (2.67)
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Figure 2.2: Example interpolation problem where two bounding motion capture poses {B0}
and {B1}. The motion capture pose is first interpolated to the pose time creating frame {Bi},
then the rigid extrinsic transformation can transform it into the IMU sensor frame {Ii}.

2.3.5.2 Asynchronous 6 DoF Pose Factor

Our mocap provides pose estimates at an arbitrary rate which can be different

than the groundtruth rate we wish to estimate and recover. Thus, we consider it as

a sensor that is operating asynchronously from our states, and we need to define how

we can relate it to the states we are estimating. To do so, we propose an efficient

and novel method to synchronous the poses to the ones estimated in the state without

requiring any additional states to be estimated which is key to reducing the O(n3) cost

of graph optimization. The key idea, shown in Figure 2.2, is that we can take two

mocap poses which bound a pose we are estimating and can interpolate between these

two to recover the pose at the exact same time as the state that we are estimating.

More general versions of this problem are presented in our early conference publication

on asynchronous sensor fusion [57]. We show that this can be done in a rigorous manner

and that both the uncertainty of the interpolated pose and spatiotemporal calibration

between the two sensors can be properly estimated.

As shown in Figure 2.2, we construct a measurement by calculating an artificial

pose {Bi} which should occur at the state time. This can then be related to our state

through the extrinsic transformation between the motion capture marker frame and

the IMU sensor frame. This means that this measurement function is only a function

of the state it is interpolated to and the calibration. We are estimating the state

xIi which has occurred at time Iti in the IMU clock frame. We can first calculate
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a synthetic measurement which is of the motion capture marker frame at this time

instance through the following:

{BiV R̆, V p̆Bi} = g
(
{B0
V R, V pB0 ,P0}, {B1

V R, V pB1 ,P1}, V tI
)

(2.68)

This function g(·) is not yet our measurement function to our state, but instead is

transforming two mocap measurements into a new measurement at the desired state

time in the IMU clock frame. Specifically, it is defined as:

Bi
V R̆ = Exp

(
λ Log(B1

V RB0
V R>)

)
B0
V R (2.69)

V p̆Bi = (1− λ)V pB0 + λV pB1 (2.70)

λ =
(V ti − V tB0)

(V tB1 − V tB0)
=

(Iti − V tI − V tB0)

(V tB1 − V tB0)
(2.71)

where we have the bounding poses {B0} and {B1} which were collected at time V tB0

and V tB1 in the motion capture clock frame, and Log(·) is the SO(3) matrix logarithm

[23]. We wish to interpolate to the state time Iti, thus we calculate the time in the

motion capture clock as V ti = Iti − V tI . The measurement covariance is propagated

through the following covariance propagation:

Pi = HuP1,2Hu
> (2.72)

where P1,2 is the joint covariance matrix from the bounding poses, and θ̃ and p̃ are the

error states of each angle and position measurement, respectively. The full covariance

propagation is detailed in Appendix B.

Having calculated now the measurement {BiV R̆, V p̆Bi} and its measurement noise

Pi, we can formulate the measurement function which relates this measurement to our

state estimates through our spatial calibration parameters:

{BiV R, V pBi} = h
(
{IiV R, V pIi}, {IBR, IpB}

)
+ npose (2.73)

Bi
V R = I

BR>IiV R + nori (2.74)

V pBi = V pIi + Ii
V R>IpB + npos (2.75)
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xI1 P12 xI2 P23 xI3 P34 xI4

V1 V2 V3xJ

xG

Figure 2.3: Example of a factor graph that our system created. States that will be estimated
are denoted in circles and measurements are denoted in squares. Note that we differentiate
asynchronous factors with dashed outlines.

From which we have the following residual:

rV (x) =

 Log
(
I
BRBi

V RBi
V R̆>

)
V pIi + Ii

V R>IpB − V p̆Bi

+ npose (2.76)

The linearized measurement model is defined in Appendix B.

2.3.5.3 Non-linear Problem Formulation

As shown in Figure 2.3, we have two key factors: (i) inertial preintegration

between sequential states and (ii) interpolated pose factors. The specific optimization

problem we optimize via the GTSAM [28] library is as follows:

x̂ = argmin
x

[∑
N−1

∣∣∣∣rIk (xIk−1
,xIk ,xG

)∣∣∣∣2
Pk−1,k

+
∑
N

||rV k (xIk ,xJ)||2Pi

]
(2.77)

2.3.5.4 Experimental Validation of Groundtruth

We first validate in simulation using our simulator, see Section 2.3.7, where a

200 Hz IMU, 20 Hz camera, and 100 Hz 6 DoF motion capture system was simulated.

For each simulation, the system started with identity spatial transforms and a time

offset value of zero. A random motion capture to IMU to marker body orientation

σ = 0.1 and position σ = 0.2, and time offset σ = 0.05 (we used the same distributions

for all 3 vector dimensions) is generated for each Monte-Carlo run. We additionally

select a random V
GR with σ = 0.1π ≈ 10◦ and simulate the system such that the
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Table 2.1: Average absolute trajectory error (degrees / meters) over 10 Monte-Carlo runs.
Each column is the motion capture orientation noises (deg), while each row is a different
position motion capture noise (m).

0.057 0.286 0.573 2.864 5.730

0.001 0.020 / 0.001 0.106 / 0.007 0.300 / 0.021 0.464 / 0.045 0.441 / 0.045
0.005 0.037 / 0.002 0.157 / 0.009 0.318 / 0.020 0.466 / 0.045 0.441 / 0.045
0.010 0.115 / 0.006 0.211 / 0.012 0.348 / 0.024 0.462 / 0.045 0.440 / 0.045
0.050 0.051 / 0.012 0.363 / 0.024 0.409 / 0.029 0.409 / 0.039 0.421 / 0.043
0.100 0.050 / 0.022 0.371 / 0.029 0.424 / 0.032 0.362 / 0.035 0.391 / 0.040

Figure 2.4: Example generated trajectories on the EuRoC MAV dataset.

Table 2.2: Average absolute trajectory error (degrees / meters) compared to the provided
groundtruth of the EuRoC MAV dataset. Position and yaw alignment were performed.

V1 01 V1 02 V1 03 V2 01 V2 02 V2 03

Ori. (deg) 5.789 1.969 2.269 5.779 0.853 0.791
Std. Ori. (deg) 0.161 0.170 0.144 0.978 0.406 0.279

Pos. (m) 0.036 0.009 0.006 0.068 0.015 0.018
Std. Pos. (m) 0.013 0.004 0.003 0.022 0.007 0.009
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B-spline trajectory is in the fixed inertial frame (thus all groundtruths from multiple

different motion capture frame transforms are the same). As per standard practice,

the inertial measurement readings were corrupted using the random walk biases and

corresponding white noises, while the motion capture poses were corrupted using an

additive white noise. We observed that there was typically a small position offset

between the groundtruth and optimized trajectory caused by errors in the marker to

IMU transformation which can be due to the trajectory not fully exciting all axes

enough to make these parameters observable. Thus as compared to not performing

alignment, we perform position and yaw alignment between the simulated groundtruth

and optimized trajectories.

Shown in Table 2.1, we can see that as both orientation and position errors

increase, the orientation error plateaus at around half a degree even under 6 degrees,

and 10cm position error. Position errors increase as motion capture measurements

become noisier, but impressively never go above 5cm event with 10cm noise levels.

This confirms that the system can reconstruct the trajectory in high noise level cases

where the noise of the motion capture system and IMU sensor are known. Depending

on the level of accuracy required, being conservative in the estimates might prove useful

to ensure proper recovery.

Some example recovered trajectories from optimizing the IMU and raw motion

capture messages in the EuRoC MAV datasets [14] bag files can be seen in Figure 2.4.

Shown in Table 2.2, we compare the absolute trajectory error after position and yaw

alignment of the generated groundtruth to that provided by the dataset authors. This

dataset provided groundtruth has been time aligned to take into account the motion

capture to IMU clocks and optimized the IMU sensor frame, temporal time offset, and

spacial transform between the groundtruth and inertial frame. It is interesting that

the V1 01 and V2 01 runs have large position and orientation errors suggesting that

likely the dataset’s groundtruth might have issues. We have found that for the V1 01

dataset, the orientation and bias estimates of the groundtruth are poor when compared

to the output of a visual-inertial estimator (relative to the other datasets).
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2.3.6 State Initialization

Next, we overview how we initialize our estimator. Since we are using a filter-

based recursive estimator it is key to have a sufficiently accurate initial guess of the

state parameters x0 to kickstart the estimator and prevent divergence.

2.3.6.1 Static State Initialization

The simplest method requires that the camera-IMU pair are stationary, and

thus we know that GvI0 = 0. We can recover the gravity direction and biases via:

I0a∗ =
1

N

∑
Ia(ti) (2.78)

I0g = 9.81 (Ia∗/||Ia∗||) (2.79)

I0ba = I0a∗ − I0g (2.80)

I0bg =
1

N

∑
Iω(ti) (2.81)

where we have used a known gravity magnitude, and can use I0g to recover the initial

roll and pitch of I0GR and arbitrarily assign the yaw along with global position to zero.

2.3.6.2 Dynamic State Initialization

More interestingly, we wish to recover the initial state when we have non-zero

velocity, which given image measurements should be observable. One of the key as-

sumptions is that we have reasonably accurate biases which will allow us to integrate

the IMU over the short initialization window (typically 1-2 seconds). As we will show,

this is crucial as if we know the relative orientation, a linear problem which allows for

direct recovery of the velocity and gravity direction can be created.

Relative Inertial Integration: The minimal state we wish to recover is [32, 33]:

x =
[
I0p>f1

. . . I0p>fM
I0v>I0

I0g>
]>

(2.82)

Integrating Eq. (2.15)-(2.19) from t0 to tk in the first frame IMU {I0} frame of reference

will result in the following:

Ik
I0

R , ∆R0,k (2.83)
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I0pIk ,
I0vI0∆Tk −

1

2
I0g∆T 2

k + ∆p0,k (2.84)

I0vIk ,
I0vI0 − I0g∆Tk + ∆v0,k (2.85)

where ∆Tk = (tk− t0) is the time span for integration. These can be found by rotating

the orientation and velocity with I0
GR and computing the relative position change I0pIk

to define a relative IMU integration in the fixed {I0} frame:

I0pIk+1
= I0

GR
(
GpIk+1

− GpI0
)

(2.86)

= I0
GR

(
GpIk + GvIk∆tk −

1

2
Gg∆T 2 + Ik

GR>∆pk−1,k − GpI0

)
(2.87)

= I0
GR(GpIk − GpI0) + I0

GRGvIk∆tk −
1

2
I0
GRGg∆T 2 + I0

GRIk
GR>∆pk−1,k (2.88)

= I0pIk + I0vIk∆tk −
1

2
I0g∆tk

2 + Ik
I0

R>∆pk−1,k (2.89)

If we then integrate from time t0 we can arrive at our relative integration equation:

I0pIk+1
= I0pI0 + I0vI0∆T − 1

2
I0g∆T 2 + I0

I0
R>p0,k (2.90)

, I0vI0∆T − 1

2
I0g∆T 2 + ∆p0,k (2.91)

where ∆Tk = (tk− t0) is the time span for integration, and we have used that I0pI0 = 0

and I0
I0

R = I.

Linear Normalized Bearing Observation: Assuming a calibrated perspective camera,

the bearing measurement of the ith feature at timestep tk can be related to the state

by the following:

zi,k := Λ(Ckpfi) + ni (2.92)

Ckpfi = C
I RIk

I0
R(I0pfi − I0pIk) + CpI (2.93)

where Λ([x y z]>) = [x/z y/z]> is the camera perspective projection model, zi,k =

[ui,k, vi,k]
> is the normalized feature bearing measurement computed through the in-

verse of Eq. (2.47), along with its white Gaussian noise ni ∼ N (0,Ri), and {CI R, CpI}
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are the known camera-IMU transformation. This perspective projection can be re-

written as the following linear constraint [33]:1 0 −ui,k
0 1 −vi,k

 Ckpfi , Γi,k
Ckpfi =

0

0

 (2.94)

Linear Visual-Inertial System: We can then substitute Eq. (2.84) and (2.93) to give:

Γi,k

(
C
I RIk

I0
R
(
I0pfi − I0pIk

)
+ CpI

)
= 02 Eq. (2.93) (2.95)

Γi,k

(
C
I RIk

I0
∆R

(
I0pfi − I0vI0∆T +

1

2
I0g∆T 2 −∆p0,k

)
+ CpI

)
= 02 Eq. (2.84)

(2.96)

Γi,k
C
I RIk

I0
∆R︸ ︷︷ ︸

Υi,k

(
I0pfi − I0vI0∆T +

1

2
I0g∆T 2

)
=
(
Γi,k

C
I RIk

I0
∆R∆p0,k − Γi,k

CpI

)
(2.97)

For a single integration period (e.g. time t0 to tk) we will have the following linear

system for our M environmental features:


Υ0,k 0 03 −Υ0,k∆T

1
2
Υ0,k∆T

2

0
. . . 0

...
...

03 0 ΥM,k −ΥM,k∆T
1
2
ΥM,k∆T

2


︸ ︷︷ ︸

Ak



I0pf0

...

I0pfM
I0vI0
I0g


=


(
Υ0,k∆p0,k − Γ0,k

CpI
)

...(
ΥM,k∆pM,k − ΓM,k

CpI
)


︸ ︷︷ ︸
bk

This system can then be created for each sequential frame resulting in a stacked system.

This system can be solved through a constrained linear least-squares which can remove

the need to recover the scale of I0g. Specifically we solve the following using Lagrange

multiple method [32, 33]:

minimize ‖Ax− b‖2 =

∥∥∥∥∥∥
[
A1 A2

]x1

I0g

− b

∥∥∥∥∥∥
2

(2.98)

subject to
∥∥I0g∥∥

2
= g = 9.81 (2.99)
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Velocity Refinement and Covariance Recovery: After solving the linear system we then

wish to recover the initial inertial state xI for use in estimation. Before doing so we

will recover each frame’s pose and velocity and perform a non-linear refinement to

increase the accuracy of the initial velocity along with enabling the recovery of the

covariance through inversion of the information matrix. We use inertial propagation

we can recover the inertial state at each time as:
Ik
I0

R

I0pIk
I0vIk

 =


Ik+1

I0
∆R

I0vI0∆T − 1
2
I0g∆T 2 + 0αk+1

I0vI0 − I0g∆T + 0βk+1

 (2.100)

Where I0g and I0vI0 have been recovered from our constrained least-squares and ∆T

is from time t0 to tk. These state estimates can then be rotated into a gravity aligned

frame after recovering the roll and pitch from I0g and setting the yaw to be zero to get

I0
GR. This can then be applied to transform such that gravity is now Gg = [0 0 9.81]>:

Ik
GR

GpIk
GvIk

 =


Ik
I0

R I0
GR

I0
GR>I0pIk
I0
GR>I0vIk

 (2.101)

Gpfi = I0
GR>I0pfi ∀i (2.102)

These initial states are then refined through non-linear refinement optimization:

x̂ = argmin
x

[∑
N

∣∣∣∣rIk (xIk−1
,xIk

)∣∣∣∣2
Pk−1,k

+
∑
M

||rfj (x)||2Ri
+ ||x0 � xlin||2P0

]
(2.103)

where rIk is a preintegrated inertial factor [39, 40] from time tk−1 to tk, rfj is the visual

feature reprojection cost from Eq. (2.49), and the third term is a prior factor which

constrains the 4 DoF unobservable directions with a very large prior along with the

gyroscope and accelerometer biases which are assumed to have known accuracy.

2.3.7 Extendable Simulator with Continue-time Representation

At the center of the simulator is an SE(3) B-spline which allows for the cal-

culation of the pose, velocity, and accelerations at any given timestep along a given
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Figure 2.5: Illustration of the B-spline interpolation to a pose G
IS

T which is bounded by four
control poses which are separated by a constant time.

trajectory. We consider a series of temporally uniformly distributed “control point”

poses, the pose {S} at a given timestep ts can be interpolated by:1

G
IsT(u(ts)) =

GIsR GpIs

0 1

 (2.104)

= G
i−1T A0 A1 A2 (2.105)

where we have the following intermediates:

Aj = Exp
(
Bj(u(t)) i−1+j

i+j Ω
)

(2.106)

i−1
i Ω = Log

(
G
i−1T

−1 G
i T
)

(2.107)

B0(u(t)) =
1

3!
(5 + 3u− 3u2 + u3) (2.108)

B1(u(t)) =
1

3!
(1 + 3u+ 3u2 − 2u3) (2.109)

B2(u(t)) =
1

3!
(u3) (2.110)

where u(ts) = (ts − ti)/(ti+1 − ti) and Bj(u(t)) are our spline interpolation constants,

and the frame notations are shown in Figure 2.5. Equation (2.105) can be interpreted

as compounding the fraction portions of the bounding poses to the first SE(3) pose

G
i−1T. The analytical derivative of this function can then be found to enable recovery

of velocity and acceleration (see Appendix C)

1 Some background on B-splines can be found in the works by Patron-Perez et al.
[152], Mueggler et al. [142], and these notes [56].
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The only needed input into the simulator is a pose trajectory which we uniformly

sample to construct control points for the B-spline. To obtain the true measurements

from our B-spline we can do:

Iω(t) = Vee
(
G
I R(u(t))>GI Ṙ(u(t))

)
(2.111)

Ia(t) = G
I R(u(t))>Gp̈I(u(t)) (2.112)

where Vee(·) returns the vector portion of the skew-symmetric matrix. These are then

corrupted using the random walk biases and corresponding white noises.

For feature observations, we first generate environmental landmarks along the

trajectory at a fixed interval to ensure an average number of camera observations can

be projected into synthetic camera frames during simulation. We generate landmarks’

visual measurements by projecting them into the current pose provided by the spline,

and then ensure that the 2D observations are within the field of view, in front, and

close in distance to the camera. Pixel noise can be directly added to the true pixel

values.

2.4 Visual-Inertial Odometry Simulation Results

With the proposed visual-inertial simulator, we evaluate the proposed Open-

VINS with a 10Hz monocular camera and 400Hz IMU, a window size of 11, a maxi-

mum of 100 feature tracks per frame, and a maximum of 50 SLAM landmarks kept in

the state, along with VIO feature tracks that are processed by the MSCKF update.

We inject one pixel noise and the IMU noise characteristics of an ADIS16448 MEMS

IMU. To simulate bad initial calibration values, we randomly initialize the calibration

values using the prior distribution values of the estimator. This ensures that dur-

ing the Monte-Carlo simulation we have both different measurement noises and initial

calibration values for each run.

As summarized in Table 2.3, the average Absolute Trajectory Error (ATE) [221]

and Normalized Estimation Error Squared (NEES) [4] for each different scenario shows

that when performing online calibration, estimation accuracy does not degrade if we
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Figure 2.6: Estimated calibration parameter errors (blue-solid) and 3σ bounds (red-dashed)
for a representative run. Note that we only plot the first sixty seconds of the dataset since
the calibration parameters since they converge quickly.
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Figure 2.7: Global IMU pose errors (blue-solid) and 3σ bounds (red-dashed) for a represen-
tative run of the proposed method with SLAM landmarks and online calibration.

Table 2.3: Average ATE and NEES over twenty runs with true or bad calibration, with and
without online calibration.

ATE (deg) ATE (m) Ori. NEES Pos. NEES

true w/ calib 0.212 0.134 2.203 1.880
true w/o calib 0.200 0.128 2.265 1.909
bad w/ calib 0.218 0.139 2.235 2.007
bad w/o calib 5.432 508.719 9.159 1045.174

are given the true calibration; while in the case that we have bad initial guesses, the

estimator remains consistent and is able to estimate with reasonable accuracy. A

representative run with uncertainty bounds is shown in Figure 2.7. When calibration

is disabled and a bad initial guess is used, the NEES becomes large due to not modeling

the uncertainty that these calibration parameters have, and in many cases, the estimate

diverges. We also plot the first ten and sixty seconds of all calibration parameters of a

representative run in Figure 2.6, showing that these parameters rapidly converge from

their initially poor guesses.
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Table 2.4: Ten runs mean absolute trajectory error (ATE) for each algorithm in units of
degree/meters. Note that V2 03 dataset is excluded due the inability for some algorithms to
run on it. Green denotes the best, while blue is second best.

V1 01 easy V1 02 medium V1 03 difficult V2 01 easy V2 02 medium Average

mono ov slam 0.699 / 0.058 1.675 / 0.076 2.542 / 0.063 0.773 / 0.124 1.538 / 0.074 1.445 / 0.079
mono ov vio 0.642 / 0.076 1.766 / 0.096 2.391 / 0.344 1.164 / 0.121 1.248 / 0.106 1.442 / 0.148
mono okvis 0.823 / 0.090 2.082 / 0.146 4.122 / 0.222 0.826 / 0.117 1.704 / 0.197 1.911 / 0.154

mono rovioli 2.249 / 0.153 1.635 / 0.131 3.253 / 0.158 1.455 / 0.106 1.678 / 0.153 2.054 / 0.140
mono rvio 0.994 / 0.094 2.288 / 0.129 1.757 / 0.147 1.735 / 0.144 1.690 / 0.233 1.693 / 0.149

mono vinsfusion vio 1.199 / 0.064 3.542 / 0.103 5.934 / 0.202 1.585 / 0.073 2.370 / 0.079 2.926 / 0.104

stereo ov slam 0.856 / 0.061 1.813 / 0.047 2.764 / 0.059 1.037 / 0.056 1.292 / 0.047 1.552 / 0.054
stereo ov vio 0.905 / 0.061 1.767 / 0.056 2.339 / 0.057 1.106 / 0.053 1.151 / 0.048 1.454 / 0.055
stereo basalt 0.654 / 0.035 2.067 / 0.059 2.017 / 0.085 0.981 / 0.046 0.888 / 0.059 1.321 / 0.057
stereo iceba 0.909 / 0.059 2.574 / 0.120 3.206 / 0.137 1.819 / 0.128 1.212 / 0.116 1.944 / 0.112
stereo okvis 0.603 / 0.039 1.963 / 0.079 4.117 / 0.122 0.834 / 0.075 1.201 / 0.092 1.744 / 0.081

stereo smsckf 1.108 / 0.086 2.147 / 0.121 3.918 / 0.198 1.181 / 0.083 2.142 / 0.164 2.099 / 0.130
stereo vinsfusion vio 1.073 / 0.054 2.695 / 0.089 3.643 / 0.132 2.499 / 0.071 2.006 / 0.074 2.383 / 0.084

Table 2.5: Relative pose error (RPE) for different segment lengths for each algorithm variation
over all datasets in units of degree/meters. Note that V2 03 dataset is excluded due the
inability for some algorithms to run on it.

8m 16m 24m 32m 40m 48m

mono ov slam 0.661 / 0.074 0.802 / 0.086 0.979 / 0.097 1.061 / 0.105 1.145 / 0.120 1.289 / 0.122
mono ov vio 0.826 / 0.094 1.039 / 0.106 1.215 / 0.111 1.283 / 0.132 1.342 / 0.151 1.425 / 0.184
mono okvis 0.662 / 0.107 0.870 / 0.161 1.031 / 0.190 1.225 / 0.213 1.384 / 0.240 1.603 / 0.251

mono rovioli 1.136 / 0.095 1.585 / 0.135 1.847 / 0.184 2.078 / 0.226 2.218 / 0.263 2.402 / 0.295
mono rvio 0.705 / 0.130 0.902 / 0.160 1.029 / 0.183 1.074 / 0.213 0.991 / 0.227 1.077 / 0.232

mono vinsfusion vio 0.940 / 0.070 1.298 / 0.103 1.680 / 0.118 1.822 / 0.146 1.833 / 0.153 1.860 / 0.171

stereo ov slam 0.685 / 0.069 0.876 / 0.080 1.064 / 0.087 1.169 / 0.087 1.275 / 0.098 1.488 / 0.105
stereo ov vio 0.722 / 0.068 0.892 / 0.077 1.089 / 0.087 1.218 / 0.088 1.342 / 0.101 1.489 / 0.106
stereo basalt 0.538 / 0.063 0.576 / 0.070 0.649 / 0.078 0.715 / 0.086 0.647 / 0.097 0.758 / 0.111
stereo iceba 0.955 / 0.096 1.227 / 0.114 1.415 / 0.120 1.658 / 0.152 1.856 / 0.173 1.803 / 0.180
stereo okvis 0.611 / 0.066 0.772 / 0.089 0.916 / 0.103 1.089 / 0.119 1.173 / 0.136 1.404 / 0.141

stereo smsckf 1.084 / 0.098 1.462 / 0.136 1.578 / 0.159 1.667 / 0.187 1.901 / 0.200 2.134 / 0.217
stereo vinsfusion vio 0.946 / 0.057 1.357 / 0.079 1.721 / 0.097 1.928 / 0.111 1.935 / 0.125 1.805 / 0.132
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2.5 Real-World Evaluations and Comparison to State-of-the-Art

We evaluate the proposed visual-inertial estimator OpenVINS with and without

SLAM landmarks on the Vicon room scenarios from the EurocMav dataset [14] which

provides both 20Hz stereo images, 200Hz ADIS16448 MEMS IMU measurements, and

optimized groundtruth trajectories. It should be noted that we have recalculated the

V1 01 easy groundtruth using Section 2.3.5 due to the original having inaccurate ori-

entation values and have provided this corrected groundtruth trajectory to the commu-

nity on our documentation website. All methods were run with the configuration files

from their open-sourced repositories with each algorithm being run ten times on each

dataset to compensate for some randomness inherent to the visual frontends. In this

benchmarking test, we evaluate the following state-of-the-art visual-inertial estimation

algorithms:

OKVIS [109] – Keyframe-based fixed-lag smoother which optimizes arbitrarily

spaced keyframe poses connected with inertial measurement factors and envi-

ronmental landmarks. Fixed window size was enforced to ensure computational

feasibility with a focus on selective marginalization to allow for problem sparsity.

VINS-Fusion VIO [161] – Extension of the original VINS-Mono [160] sliding

optimization-based method that leverages IMU preintegration which is then

loosely coupled with a secondary pose-graph optimization. VINS-Fusion extends

the original codebase to support stereo cameras.

Basalt VIO [190] – Stereo keyframe-based fix-lag smoother with custom feature

tracking frontend with a focus on extracting relevant information from the VIO

for later offline visual-inertial mapping.

R-VIO [78] – Robocentric MSCKF-based algorithm which estimates in a local

frame and updates the global frame through a composition step. The direction

of gravity is also estimated within the filter.
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ROVIO [7] – We use the ROVIO implementation within maplab [178], which is

a monocular iterative EKF-based approach that performs minimization on the

direct image intensity patches allowing for tracking of non-corner features such

as high gradient lines.

ICE-BA [119] – Stereo incremental bundle adjustment (BA) method which op-

timizes both a local siding window and global optimization problem in parallel.

They exploited the sparseness of their formulation and introduced a relative

marginalization procedure.

S-MSCKF [182] – An open-sourced implementation of original MSCKF [139]

paper with stereo feature tracking and a focus on high-speed motion scenarios.

We evaluate only the VIO portion of these codebases (i.e., not the non-real-time back-

end pose graph thread output of VINS-Fusion [161] and visual-inertial mapping of

Basalt [190]), as the focus is the visual-inertial odometry performance.

Table 2.4 shows the average ATE of all methods for each dataset. It is clear

that the addition of SLAM landmarks in our OpenVINS greatly reduces the drift in

the monocular case, while it has a smaller impact on the stereo performance; and more

importantly, OpenVINS can perform competitively to other methods. We additionally

compared the Relative Pose Error (RPE) [221] of all methods over all datasets. Shown

in Table 2.5, our monocular system clearly outperforms the current open-sourced code-

bases, with our stereo system being able to perform second to Basalt. In terms of

computational cost, we found that Basalt outperformed all other algorithms, with our

proposed method being limited by the visual-frontend implementation from OpenCV

[149] and SLAM feature update equally. On the first EurocMav dataset we could pro-

cess at 2.7x/4.3x and 1.2x/1.9x real-time for our monocular SLAM/VIO, and stereo

SLAM/VIO, respectively, on an Intel(R) Xeon(R) CPU E3-1505M v6 @ 3.00GHz pro-

cessor in single threaded execution.
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2.6 Summary

In this chapter, we have presented a foundational framework that achieves state-

of-the-art performance in an efficient, consistent, and robust manner, but also contains

a significant amount of extensions which enables its practical use as both a platform

for performing future research but also deployment onto real robotic systems. We first

covered the basic visual-inertial framework followed by the key extensions which build

OpenVINS. This includes the novel type-based covariance management system, state

variable delayed initialization, complete feature observation model which incorporates

the camera intrinsic and distortion parameters, concurrent spatiotemporal calibration

of camera intrinsic, extrinsic, and time offset, accurate groundtruth generation through

mocap IMU fusion, stationary and dynamic state initialization, flexible visual-inertial

and simulator with continuous-time trajectory. Through simulation, the ability to

perform robust and accurate calibration along with consistent trajectory estimation

was shown, and real-world experiments demonstrated the ability to perform state-of-

the-art visual-inertial estimation.
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Chapter 3

EXTENDING VINS TO HIGHER LEVEL GEOMETRIC PRIMITIVES

3.1 Introduction

We next focus on how to incorporate higher-level geometric primitives such as

planes within the context of VINS. First, we present the Closest Point (CP) plane

representation and its use as a method for measurement compression to reduce the

complexity within a LiDAR-inertial system. The novel CP plane representation is

shown to have very appealing properties of being a minimal representation size (3

DoF) and improved linearity as compared to the quaternion representation [89]. While

it does have a singularity when the plane intersects its frame of reference, we argue

this will not be the case if we actively observe the plane since this would coincide

with the sensor itself being inside the plane. We additionally demonstrate the ability

to “compress” all points on a given plane to a single CP plane along with recovering

its uncertainty to enable probabilistic fusion with an IMU. This compressed repre-

sentation and the resulting plane-to-plane measurement model reduces the number of

measurement residuals typically needed if using traditional point-on-plane constraints

which can cause a large computational burden within a non-linear optimization which

relinearizes each residual for the millions of LiDAR points. A LiDAR-inertial simula-

tor is developed the validate the proposed CP plane compression method along with

the accuracy of the CP representation versus the existing state-of-the-art. We finally

demonstrate the system on a small-scale real-world dataset.

We will then explore the CP plane’s use within the filter-based monocular-

inertial estimator OpenVINS as a regularity to enable a significant number of loop-

closures due to the large spatial nature of environmental planes in man-made environ-

ments. Specifically, environmental CP planes are both detected and tracked through
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Figure 3.1: A visual representation of the
closest point on the plane. Also shown is
an example of a local plane parameter LΠ
that is well defined, while the global plane
representation GΠ is ill-defined.
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Figure 3.2: Pictorial view of a closest point
plane representation seen in the local {L}
frame which can be transformed into its an-
chor frame {A} and vice versa.

a novel algorithm which only leverages the monocular image feed without an active

depth sensor or expensive neural network. Special care is taken to estimate these

planes concurrently within the state in a consistent manner. Sparse 3D points are

then regularized to these estimated planes via a point-on-plane measurement model

and are shown to provide accuracy gains with only a minimal computational cost in-

crease. Detailed simulations and real-world experiments on both existing datasets and

a self-collected AR dataset show the impact of leveraging this regularization.

3.2 Closest Point Plane Representation

The “Closest Point (CP)” representation can be described as a 3D point that

resides on the plane and is the closest to the current frame’s origin. The benefit of

this representation is that it is already in its minimal representation and is singularity

free if special care is taken to select the frame of reference it is defined from. By

representing the plane as a single 3D point, we also have a simple additive error model

when updating the parameter during optimization. This CP representation can be

described using the Hesse normal vector Gn and distance scalar Gd:

GΠ = Gn Gd (3.1)Gn

Gd

 =

GΠ/
∥∥GΠ

∥∥∥∥GΠ
∥∥
 (3.2)
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It is important to point out that without special care, this representation still

has a singularity when the value of Gd approaches zero. Any plane GΠ that intersects

our frame of reference ({G} in this case) will be represented as the same zero vector

regardless of the plane’s orientation since the closest point on that plane is at the

origin. Nevertheless, we argue that this singularity is well suited in the case of plane

estimation using range-based sensors (e.g., LiDAR and RGBD cameras) since planes

extracted from these sensors will not be ill-defined if they are represented in the frame

they are extracted from. The singularity in practice would only arise if we transform

a local CP plane, LΠ, into a frame where the plane intersects its origin (see Figure

3.1). It was also noted in [218] that planes extracted from range-based sensors that are

close to intersecting the sensor frame should be considered “unreliable” if found and

discarded.

3.2.1 Anchored Plane-to-Plane Constraint

To overcome the aforementioned singularity issue of the CP representation, we

parameterize the plane in the first observation frame, guaranteeing that the distance

to the plane will be non-zero (from here forward this will be denoted the “anchor”

frame/state). As seen in Figure 3.2, the transform of the plane representation from

one frame to another is not a direct 3D point transformation, and instead requires the

calculation of the CP in the new frame. Using the Hesse plane representation we can

map a plane represented in the anchor frame {A} into the local frame {L} as:Ln

Ld

 =

 L
AR 0

−Ap>L 1

An

Ad

 (3.3)

where L
AR is the relative rotation between the local and anchor LiDAR frames, ApL is

the position of the local LiDAR frame seen from the anchor LiDAR frame.

The transform represents the rotation of the anchor plane normal vector into

the local frame, and the subtraction of the distance between the two frames projected
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onto the anchor plane normal. Using the definition of the CP representation (3.1), we

can use the above {An, Ad} relation to obtain:

LΠ(x) =
(
L
ARAn

)(
Ad− Ap>L

An
)

(3.4)

For a given plane measurement, LΠ̂, we have the following residual for use in graph

optimization (see Eq. (3.12)):

rΠ(x) = LΠ(x)− LΠ̂ (3.5)

The Jacobians needed for graph optimization can be found in Appendix D.1.

3.2.2 Point-to-Plane Measurement Compression

To get the local CP measurement, we fit planes to the incoming point clouds

from the LiDAR sensor. To find subsets of the unordered point cloud that correspond

to planes, RANSAC or other plane segmentation methods can be used. We model

each point measurement Lpmi as a true measurement Lpi being corrupted by some

zero mean Gaussian noise:

Lpmi = Lpi + np, np ∼ N (0,Rd) (3.6)

We look to first compress the extracted subset of points into a local CP primitive and

matching covariance that can be used in optimization. We can start by formulating a

weighted least squared optimization problem where we seek to minimize the point-to-

plane distances between extracted points and the local CP measurement LΠ:

LΠ∗ = argmin
LΠ

∑
i

∥∥∥∥ LΠ>

‖LΠ‖
Lpmi − ‖LΠ‖

∥∥∥∥2

W−1
i

(3.7)

where Wi is the inverse variance of the noise that corrupts the ith measurement. In

practice, we also introduce a robust Huber loss to minimize the effect of outliers during

optimization (see [37]). We minimize the above cost function using the Gauss-Newton

method of iterative linearization of the residual about the current best estimate. For-

mally, we solve for the correction, LΠ̃, to our linearization point LΠ̂:

LΠ̃ = −

(∑
i

J>i Wi Ji

)−1(∑
i

J>i Wi ri(
LΠ̂)

)
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Figure 3.3: Pictorial view an example trajectory and measurements that are included in the
proposed LIPS optimization. Two planes are being estimated in different anchor poses. In
the case of X1Π1, it was first seen from the X1 state so it will be estimated in the {X1}
frame of reference while X2Π2 will be estimated in the {X2} frame of reference.

where we have the following:

Ji =
Lp>mi

‖LΠ̂‖
−
(
Lp>mi

LΠ̂
) LΠ̂>

‖LΠ̂‖3
−

LΠ̂>

‖LΠ̂‖
(3.8)

Wi =

(
LΠ̂>

||LΠ̂||
Rd

LΠ̂

||LΠ̂||

)−1

(3.9)

Additionally, we can calculate the covariance matrix of the final local CP LΠ̂ as the

following:

PΠ =

(∑
i

J>i Wi Ji

)−1

(3.10)

In summary, we compress each of the extracted subsets of the point cloud into local

CP plane, LΠ̂, representations, which are then directly used to construct plane factors.

We found that using a robust Huber loss function on the plane factors led to lower

sensitivity to poor plane measurement compression performance.

3.3 LiDAR-Inertial 3D Plane SLAM (LIPS)

In the proposed LiDAR-Inertial 3D Plane SLAM (LIPS) the total state to be

estimated, x, consists of the m historical IMU states and k planar primitives:

x =
[
x>I1 · · · x>IN

AΠ>1 · · · AΠ>M

]>
(3.11)
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where xIk is the state of the IMU at timestep tk and AΠj refers to the jth plane, which

is represented in the first LiDAR frame it was observed from {A}. To perform this

estimation, we first determine the continuous IMU preintegration factors [40], and 3D

plane factors from LiDAR measurements (see anchored CP in Section 3.2.1), thereby

building a factor graph for optimization. In particular, planes are first extracted from

the point cloud and then compressed into the CP representation (see Section 3.2.2).

Figure 3.3 illustrates the overall LIPS system. These measurements are added to the

graph and optimized using the iSAM2 [90] implementation available in the GTSAM [28]

nonlinear optimization library. Note that, while not used in our small-scale experiments

(see Section 4.3.4), an advantage of the relative information provided by the IMU

preintegration is the ability to perform LiDAR cloud unwarping during high-speed

maneuvers. The final cost function of the LIPS system can be described as:

x̂ = argmin
x

[∑
N

∣∣∣∣rIk (xIk−1
,xIk

)∣∣∣∣2
Pk−1,k

+
∑
M

||rΠj (x)||2PΠj

]
(3.12)

where rIk(xIk−1
,xIk) and rΠj (x) are the zero mean residuals associated with the con-

tinuous preintegration and anchored CP planes measurements, respectively. While,

Pk−1,k and PΠj are the covariances of the continuous preintegration and anchor CP

plane measurements, respectively.

3.3.1 LiDAR-Inertial Simulator

To evaluate the feasibility of the proposed system, a custom LiDAR IMU sim-

ulator was developed.1 A 2D floorplan was created and extruded vertically to create

a Manhattan world environment (we note, for clarity, that the CP representation can

handle arbitrary plane orientations). A 3D B-Spline is leveraged to recover groundtruth

poses and IMU measurements (see Figure 3.5 for the generated trajectory). At a given

LiDAR sensing frequency, rays were generated using the intrinsic LiDAR sensor model

defined by the angular resolution and vertical zenith angles. Generated rays are then

intersected with all planes in the environment and all ray-plane intersections are found.

1 https://github.com/rpng/lips
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Table 3.1: Realistic parameters used in simulation.

Simulation Parameter Value

Gyroscope Noise Density 0.005 rad/s
√
Hz

Gyroscope Random Walk 4.0e-06 rad/s2
√
Hz

Accelerometer Noise Density 0.01 m/s2
√
Hz

Accelerometer Random Walk 2.0e-04 m/s3
√
Hz

LiDAR Point Deviation 1 and 3 cm
LiDAR Angular Resolution 0.25°

LiDAR Zenith Angles 3.2°,0.0°,-3.2°,-6.4°,-9.5°,-12.5°,-15.4°,-18.3°
Rotation LiDAR to IMU [-1,0,0;0,1,0;0,0,-1]
Position IMU in LiDAR [0;0.04;-0.06] m

Global Gravity [0,0,9.81] m/s2

LiDAR / IMU Sensor Rate 5 / 800 Hz

The final step performs invalidation of intersections that should not be generated due

to occlusions by enforcing that each ray should only hit the plane that is closest to the

LiDAR frame.

The simulation parameters shown in Table 3.1 are modeled after a Quanergy M8

sensor with an ADIS16448 IMU rigidly attached. Following the conventional inertial

model, IMU measurements have additive discrete bias and white noise terms corrupting

the true value of each measurement axis. The noise corrupting the generated 3D LiDAR

points is modeled as an additive white noise to each measurement axis.

3.3.2 Monte-Carlo Simulations

A total of 80 Monte-Carlo simulations of the LIPS system were performed at

varying LiDAR noise values, whose results are shown in Figure 3.4 and Table 3.2.

The proposed CP representation and anchor plane factors were able to localize in the

planar environment with high accuracy at different levels of LiDAR sensor noise. The

simulations were done in real-time with the plane correspondences known and solved

using iSAM2. The large non-zero orientation error towards the beginning is due to the

sensors remaining stationary for a period after initialization with only a small number

of faraway planes constraining the orientation.
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Figure 3.4: RMSE results from 80 Monte-Carlo simulations showing the achievable accuracy
of the proposed LIPS system running in real-time. We show RMSE results for both CP and
quaternion representations.

The beginning of the simulated trajectory has limited amounts of loop-closures

due to the entering and leaving of rooms causing the estimation error to increase as

one would normally see in odometry systems (see Figure 3.5). After 300 seconds the

trajectory re-enters the long hallway and returns towards the starting position re-

observing previously seen sections of the hallway. As seen in Figure 3.4, loop-closures

with previous planes rapidly decrease the estimator error towards zero.

3.3.3 Plane Representation Comparison

To evaluate the effect of using the CP representation, we compare against the

state-of-the-art that leverages the quaternion and its minimal error state [89]. We

compressed the sets of point clouds into the quaternion representation using the same

methodology used for CP, in which we perform a minimization on the point-to-plane

distances. We implemented the “relative quaternion” factor proposed by Kaess, which
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Figure 3.5: Generated 180 meter long simulation trajectory through a 3D environment. The
original 2D floor plan (bottom) has been extruded, and a spline was fitted to control points
to generate a complete trajectory. The trajectory starts in the top left corner and weaves in
and out of rooms with varying heights from the floor before finally re-entering the hallway
and returning back to the starting location.

Table 3.2: Average RMSE over 80 Monte-Carlo simulations at different LiDAR noise values.

Closest Point (CP) Quaternion [89]
Units m deg m deg

1 cm 0.005 0.027 0.016 0.081
3 cm 0.012 0.057 0.033 0.126

is directly comparable to our “anchored” CP representation (whose analytical Jaco-

bians can be found in Appendix D.2). As shown in Table 3.2, the CP representation

yielded improved accuracy over its quaternion counterpart. While the results presented

here were generated using the iSAM2 solver, we found that during full batch optimiza-

tion the quaternion representation converged slower compared to CP. Our conjecture

for these results is that the CP-based measurement model has a better linear Gaussian

approximation than the quaternion parametrization, and thus provides better numer-

ical performance.
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Figure 3.6: Experimental environment that the proposed localization operated in (left) and
reconstructed depth map of the planar surfaces (right).
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Figure 3.7: 3D trajectory of the sensor during the experiment. Total path length was 30
meters with the difference between the starting and end position being 1.5cm. The green
square and red diamond denote the start and end of the trajectory, respectively.
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3.3.4 Real-World Experiments

To further validate that the proposed LIPS system can be realized on physical

sensors, the issue of plane correspondences needed to be addressed. While there have

been works on matching planes in 3D space [76, 184], a simple Mahalanobis-distance

test between incoming local CPs and existing planes was sufficient for our small scale

experiments. Point clouds were first processed offline using RANSAC plane segmen-

tation, available in the Point Cloud Library (PCL) [172], to find planar subsets. The

measurement compression and estimator were able to run in real-time, but for real-

world applications the RANSAC plane extraction will need to be substituted or have

its execution time decreased to reach real-time performance.

In this test, planar objects were placed around the LiDAR sensor to allow for

easy RANSAC extraction, to avoid degenerate motions [211], and to ensure that the

LiDAR was fully constrained in all degrees of freedom (see Figure 3.6). An eight

channel Quanergy M8 LiDAR operating at 10Hz was used with a Microstrain 3DM-

GX3-25 IMU attached to the bottom of the LiDAR operating at 500Hz. We manually

estimated the LiDAR to IMU extrinsic transformation but this could easily be added to

the factor graph for online estimation. To evaluate the estimation drift, the sensor unit

was moved in front of the planar surfaces and returned to the same starting location.

As seen in Figure 3.7, after a 30 meter trajectory distance, the difference between the

start and end poses was 1.5 cm corresponding to 0.05% error over the trajectory length.

3.4 Monocular Visual-Inertial Odometry with Planar Regularities

The state-of-the-art filter-based monocular VINS method OpenVINS directly

relies on sparse point features in part due to their efficiency, robustness, and preva-

lence. However, additional information through high-level structural regularities such

as planes that are common to man-made environments can be exploited to further con-

strain motion. Generally, planes can be observed by a camera for significant periods of

time due to their large spatial presence and thus, are amenable for long-term naviga-

tion. We present an efficient and robust monocular -based plane detection algorithm,
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which does not require additional sensing modalities such as a stereo or depth camera

as commonly seen in the literature, while enabling real-time regularization of point

features to environmental planes. These long-lived planes are maintained in the state

vector, while shorter ones are marginalized after use for efficiency. Planar regularities

via a point-on-plane constraint are applied to both in-state SLAM features and out-

of-state MSCKF features, thus fully exploiting the environmental plane information to

improve VIO performance. To the best of our knowledge, this is the first time that

a monocular-VIO estimator, termed ov plane, is able to rigorously enforce planar

regularities within the MSCKF framework. An overview of the proposed approach is

shown in Algorithm 1.

At time tk, the system state xk consists of the current navigation states xIk , his-

torical IMU pose clones xC , and a subset of 3D environmental (SLAM) point features,

xf , and (SLAM) plane features, xπ:

xk =
[
x>Ik x>C x>f x>π

]>
(3.13)

xC =
[
x>Tk . . . x>Tk−c

]>
(3.14)

xf =
[
Gp>f1

. . . Gp>fg

]>
(3.15)

xπ =
[
GΠ>1 . . . GΠ>h

]>
(3.16)

where we have the current inertial state xIk , a collection of SLAM features Gpfi , his-

torical MSCKF clones xTi = [IiGq̄
> Gp>Ii ]

>, and estimated CP planes xπ. We represent

each plane, GΠ, in the global frame with the minimal error state closest point (CP)

representation (see Section 3.2). Note that we have dropped any calibration states

OpenVINS additionally supports here for presentation clarity.

3.4.1 Regularization-Constrained Measurement

At the core of the proposed ov plane system are the planar regularities. In

the following, we explain how to perform MSCKF updates with planar regularities,

while addressing practical challenges, which include efficient point-feature updates con-

strained by (in-state and out-of-state) planes, and robust initialization of plane features
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Algorithm 1 ov plane
Propagation:

• Propagate the state vector and covariance with inertial readings [see Section 5.2.1]

Feature Tracking:

• Extract visual features from the image, then perform sparse KLT tracking and outlier
rejection.

• Formulate a 2D Delaunay triangle mesh, detect, and match planes [Section 3.4.7.1]

State Management:

• Initialize SLAM point and plane features into the state if sufficient observations /
features [Section 3.4.3]

• Merge planes if needed [Section 3.4.4]

• Marginalize SLAM point and plane features from the state when tracking is lost

Update:

• Update non-plane points [Eq. (2.52), (2.54)]

• Update MSCKF plane (out-of-state)

– Recover points and plane, then jointly refine their estimates [Section 3.4.2]

– Nullspace project Hπ pre-update [Eq. (3.27), (3.29)]

• Update SLAM plane (in-state)

– SLAM points directly update planes [Eq. (3.21)]

– MSCKF points are projected onto their Hf nullspace before update [Eq. (3.24)]
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that are augmented into the state. For clarity, we refer the reader to Section 3.4.7.1

for the proposed real-time extraction and robust matching of planes from sparse visual

points.

The proposed VIO system enforces planar regularities through point-on-plane

constraints. Consider a point feature Gpf that lies on the plane GΠ, we have:

zd =
(
Gp>f

Gn− Gd
)

+ σd (3.17)

where σd is the noise that softens the constraint and should be zero in the ideal case

[181]. We linearized Eq. (3.17) to get:

z̃d = Hd
f
Gp̃f + Hd

π
GΠ̃ + σd (3.18)

We then stack the point feature bearing observation model, Eq. (2.52), and point-on-

plane constraint, Eq. (3.18):z̃c

z̃d

 =

Hc
T

0

 x̃C +

Hc
f

Hd
f

 Gp̃f +

 0

Hd
π

 GΠ̃ +

nc

σd

 (3.19)

⇒ z̃ = HT x̃C + Hf
Gp̃f + Hπ

GΠ̃ + n (3.20)

= Hxx̃k + Hπ
GΠ̃ + n (3.21)

where HT , Hf , and Hπ are the Jacobians for the IMU poses, point feature, and plane

feature, respectively; Hx = [HT Hf ] and x̃k = [x̃>C x̃>f ]>; and n ∼ N (0, I) denotes the

measurement noise after whitening.

3.4.2 Plane Recovery and Non-Linear Refinement

To enforce point-on-plane constraint, Eq. (3.18), we first robustly recover the

initial guess for the plane by performing RANSAC [50] on a set of co-planar point

features (details on how we extract co-planar sets are in Section 3.4.7.1 and Algorithm

2). A plane estimate can be solved from at least three points with the following linear

system: [
· · · Gpf,i · · ·

]>
π =

[
· · · 1 · · ·

]>
(3.22)

69



After obtaining π, the plane can be recovered by Gn = π/||π|| and Gd = 1/||π||.

The RANSAC inlier set is selected based on the point-to-plane distance threshold, see

Eq. (3.17), with the best-recovered plane having the most inliers and smallest average

point-to-plane distance.

If a sufficient number of inliers are found, we perform a joint refinement of the

point features and plane with fixed camera poses. SLAM points that lie on the plane

are fixed during optimization but are included to further improve the plane estimate

through their point-on-plane constraints. The non-linear optimization problem is for-

mulated using Eq. (2.52) and (3.17) and is solved using ceres-solver [1] that takes

0.5-1.5 milliseconds (ms).

3.4.3 Plane Feature Initialization

We wish to initialize long-tracked planes into states, which offer dependable

regularization information and constrain a large number of co-planar feature points.

For an MSCKF planar point feature, in analogy to MSCKF feature marginalization,

we project Eq. (3.20) onto the the left nullspace of Hf (i.e., N>Hf = 0) to get a

residual function for plane GΠ that is independent to the point feature:

N>z̃ = N>HT x̃C + N>Hπ
GΠ̃ + N>n (3.23)

⇒ z̃∗ = H∗xx̃k + H∗π
GΠ̃ + n∗ (3.24)

For a SLAM point feature, Eq. (3.21) can be directly used.

After collecting co-planar MSCKF [Eq. (3.24)] and SLAM [Eq. (3.21)] point

feature measurements, we stack them into the following linear system:

MSCKF :

SLAM :

z̃∗

z̃

 =

H∗x

Hx

 x̃k +

H∗π

Hπ

 GΠ̃ +

n∗

n

 (3.25)

where z̃∗ and z̃ represent the MSCKF and SLAM point feature measurement residuals,

respectively. We then leverage the delayed initialization from Section 2.3.2 to initialize

GΠ into the state.
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3.4.4 Merging Common Plane

Planes are initialized into the state as soon as there are sufficient observations,

and they are continually refined with new measurements. Over time, multiple planes

may merge into a single common plane to reduce redundancy in the state. If more

than one planes reside in the state, a pair-wise state constraint update is performed

to enforce equality, then followed by the marginalization of all but one plane. For

example, plane GΠ1 and GΠ2 have:

zp =
(
GΠ2 − GΠ1

)
+ np (3.26)

where np is the small noise that softens the constraint [181] (we used 1cm throughout

the experiments). We are able to explicitly detect when we should check if two planes

should be merged in the state since during feature tracking we can find this information.

If a feature which has a unique plane id matches to a plane with an older plane id,

then we will convert all points for the current plane to share the same plane id as the

old plane. In addition to performing a conservative chi-squared check with the above

constraint equation, we additionally check that the normal of the two planes are within

1 degree of each other. Both of these checks ensure that incorrect feature matching

does not degrade the estimator’s performance.

3.4.5 Planar Point Feature Update

Given the planar point feature linearized measurement function, Eq. (3.19),

we will explain in detail how to process measurements with in-state or out-of-state

features. We then consider the following update methods:

• SLAM Plane + SLAM Point: Standard EKF update

• SLAM Plane + MSCKF Point: Remove the point feature dependency through

nullspace projection [see Eq. (3.23)].

• MSCKF Plane + SLAM Point: Remove the plane feature dependency by:

N>π z̃A = N>πHT x̃T + N>πHf
Gp̃f + N>πn (3.27)
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Table 3.3: Simulation parameters and prior standard deviations that perturbations of mea-
surements were drawn from.

Parameter Value Parameter Value

Gyro. White Noise 1.6968e-04 Gyro. Rand. Walk 1.9393e-05
Accel. White Noise 2.0000e-3 Accel. Rand. Walk 3.0000e-3

Cam Freq. (Hz) 10 IMU Freq. (Hz) 400
Num. Clones 11 Total Planes 6

Avg. Feats on Plane 150 Max SLAM Pts 15

where Nπ is the left nullspace of the stacked Hπ. This requires more than 3

planar point features.

• MSCKF Plane + MSCKF Point: Remove the plane and point feature depen-

dency by:

z̃ = HT x̃T +
[
Hf Hπ

]Gp̃f

GΠ̃

+ n (3.28)

⇒ N>fπz̃ = N>fπHT x̃T + N>fπn (3.29)

where Nfπ is the left nullspace of [Hf Hπ]. Observing a feature more than three

times is necessary.

3.4.6 Monte-Carlo Simulations

The proposed ov plane is built as an extension to OpenVINS. We generate a

room surrounding the simulation trajectory and visual points lying on the planes, see

Figure 3.8. Data associations between points and planes are assumed to be known.

Table 5.1 contains the key sensor frequencies, sensor properties, and noise parameters

used in the simulation. Errors are reported using the Normalized Estimation Error

Squared (NEES), Relative Pose Error (RPE), and Absolute Trajectory Error (ATE)

metrics throughout the different experiments (see [221] and [4]).

Results for a 20 run Monte-Carlo are shown in Table 3.4 with different estimator

configurations. All algorithms remain consistent as their NEES values are close to

three. The M-PT & M-PL, which adds MSCKF planes, has little improvement over
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Table 3.4: Average 20 run RPE and NEES for different algorithm configurations. Units are in
degrees / cm. A constraint noise of σd = 0.001 was used. M corresponds to MSCKF features
(out-of-state), S for SLAM features (in-state), PT for point features, and PL represents plane
features.

Algorithm 60m 80m 100m 120m NEES(3)

M-PT 0.37 / 4.3 0.44 / 5.0 0.50 / 5.6 0.55 / 6.2 3.39 / 1.75
M-PT & M-PL 0.37 / 4.3 0.43 / 4.9 0.48 / 5.5 0.53 / 6.1 3.34 / 1.72

M-PT & MS-PL 0.36 / 3.6 0.42 / 4.1 0.48 / 4.6 0.53 / 5.1 3.99 / 1.44

MS-PT 0.30 / 3.6 0.35 / 4.1 0.40 / 4.6 0.43 / 5.1 3.45 / 1.63
MS-PT & M-PL 0.29 / 3.5 0.33 / 4.0 0.37 / 4.5 0.41 / 4.9 3.09 / 1.44

MS-PT & MS-PL 0.29 / 2.9 0.35 / 3.3 0.39 / 3.7 0.42 / 4.1 3.38 / 1.20

the baseline M-PT system. We attribute this to the MSCKF plane track length only

being that of the sliding window size and the regularity does not improve MSCKF point

linearizations by much. But, if the planes with sufficient observations are inserted into

the state vector, M-PT & MS-PL, then a clear performance gain can be seen for all

trajectory lengths. Within the simulation, the ceiling and floor can be tracked over

significant portions of the trajectory allowing for improved feature triangulation and

leveraging of the structural regularity information.

Next, we investigate the impact of co-estimating SLAM points and planes. The

baseline MS-PT is more accurate than the M-PT as expected, but it is interesting to

see that the M-PT & MS-PL is able to perform near the level of accuracy with only

estimating, at maximum, six environmental planes alongside MSCKF point features.

Again the MSCKF plane, MS-PT & M-PL, has little impact on accuracy over the

point-only MS-PT, while the addition of SLAM plane estimation in MS-PT & MS-PL

has the overall best accuracy. These simulation results demonstrate the improved VIO

performance with planar regularities for both in-state SLAM and out-of-state MSCKF

point features.

3.4.7 Real-World Experiments

We evaluate the proposed system on the Vicon room scenarios from the EuRoC

MAV dataset [14] which provides 20Hz stereo images, 200Hz ADIS16448 MEMS IMU
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measurements, and optimized groundtruth trajectories. We do not evaluate the ma-

chine hall scenarios due to their cluttered environment and lack of planar structures.

An additional AR table dataset was collected as an example scenario in which a user

walks around a central table.2 An Intel Realsense D4553 with 30Hz RGB-D (depth was

not used) and 400Hz BMI055 IMU along with 100Hz OptiTrack poses were recorded

in 1-2 minute segments. The groundtruth was recovered using the vicon2gt utility

(see Section 2.3.5 and [61]). We extract 200 sparse point features and keep a maximum

of 15 SLAM point features in MS-PL.4 Two additional state-of-the-art visual-inertial

systems, VINS-Fusion [161] and OKVIS [110], are evaluated in addition to OpenVINS

[60], MS-PT, and the proposed ov plane extensions.5 All methods are run without

loop-closure, with a monocular camera and IMU as input, and with spatial-temporal

calibration if supported.

3.4.7.1 Plane Detection and Tracking Performance

Details of the plane extraction are summarized in Algorithm 2, and an example

extraction with recovered normals can be seen in the bottom of Figure 3.8. From

a high level, we first perform sparse temporal point feature tracking which provides

frame-to-frame matching knowledge. The 3D position of point features are recovered

efficiently in the global frame by incrementing their information at each timestep. We

then recover a sparse 3D geometric mesh of the environment which is used to recover

per-feature normals. A pairwise comparison with a series of heuristics is used to finally

cluster points into common planes.

2
https://github.com/rpng/ar_table_dataset

3
https://www.intelrealsense.com/depth-camera-d455/

4 All computational results were performed in a single thread on an Intel(R) Xeon(R)
E3-1505Mv6 @ 3.00GHz.

5 Note that we have tried to reproduce the results of [164–166] for a fair comparison,
but were unable to achieve sufficient accuracy on their 2019 v4.0 code release. The
latest main branch no longer supports the use of structural regularities.
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Figure 3.8: EuRoC MAV [14] with estimated planes shown as meshes (not all in the state
vector, top left). Simulation environment (top, right) has a 1.2km trajectory in a 15.2 × 9.5
× 1.7m room (points are colored by plane). Bottom row shows V1 01 sparse tracking mesh
with normals (left), and extracted planes (right).
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Algorithm 2 Plane Detection and Tracking
Sparse Point Features:

• FAST [167] detection with KLT optical flow [121]

• Robustified with 8-point RANSAC

• Provides frame-to-frame plane tracking

Point Feature Preprocessing:

• Point features are incrementally triangulated into 3D if sufficient observations

• Delaunay triangulation of valid features to determine spatial relationships [2, 3, 217]

• Each triangle’s normal is computed using its three points:
Gvi = normalize(Gpi − Gp0)
Gnj = normalize(

⌊
Gv2×

⌋
Gv1)

Vertex Normals:

• Vertex normals of connected triangles are collected

• Compute angle variance and max angle difference between normals
θ = acosd(Gn>i

Gnj)

• If either is above a threshold, reject this vertex as being on the “edge” of two planes

• Else average normal is computed and vertex is valid

Vertex Matching Heuristics:

• For each valid vertex, i, compare its neighbors

• Normal difference: acosd(Gn>i
Gnj) < ∆θ

• Point-to-plane distance: Gn>i
Gpj − Gdi < ∆dz

• Avg. distance di of point Gpi to N closest points [15] passes plane Z-test:
(di − d̄)/σd < z

Plane Merging / ID Management:

• For all vertexes matched, select the smallest (oldest) plane id and assign it to all

• If no feature has a plane id (from the previous frame or match), then assign a new id
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Table 3.5: Tracking statistics and time to perform plane tracking (i.e., it does not include
sparse point tracking). Statistics include: features per plane, average plane per frame, average
plane tracking length, and active planes in the state per frame.

Dataset Feat. / PL PL / Frame Track Len. PL Active Time (ms)

V1 01 19.6 ± 13.3 2.9 ± 1.3 53.4 ± 74.0 0.9 ± 0.7 3.3 ± 0.7
V1 02 13.7 ± 10.9 1.7 ± 1.3 20.0 ± 26.8 0.3 ± 0.5 2.5 ± 0.8
V1 03 10.1 ± 9.4 0.7 ± 1.0 24.9 ± 26.0 0.0 ± 0.2 2.0 ± 0.7
V2 01 8.0 ± 5.0 1.4 ± 1.3 39.9 ± 43.1 0.1 ± 0.3 2.5 ± 0.6
V2 02 9.5 ± 8.1 1.0 ± 1.1 23.3 ± 22.8 0.0 ± 0.1 2.1 ± 0.6
V2 03 6.3 ± 1.8 0.2 ± 0.4 14.4 ± 15.0 0.0 ± 0.0 1.4 ± 0.6

table 01 27.3 ± 13.1 2.7 ± 1.1 61.1 ± 227.6 1.1 ± 0.5 3.5 ± 0.7
table 02 82.0 ± 58.7 2.2 ± 1.3 49.1 ± 249.2 1.2 ± 0.6 4.1 ± 0.9
table 03 33.9 ± 21.3 3.0 ± 1.2 88.5 ± 337.4 1.5 ± 0.6 4.0 ± 0.7
table 04 35.3 ± 23.1 2.1 ± 0.9 68.6 ± 428.0 0.9 ± 0.4 4.2 ± 1.3
table 05 38.6 ± 27.6 2.5 ± 1.0 119.2 ± 327.2 1.2 ± 0.7 3.5 ± 0.6
table 06 43.5 ± 30.5 2.0 ± 0.9 69.3 ± 131.6 1.1 ± 0.8 3.2 ± 0.8
table 07 16.6 ± 8.2 2.8 ± 0.9 106.8 ± 163.8 0.3 ± 0.5 3.0 ± 0.6
table 08 20.7 ± 13.5 1.8 ± 1.0 54.1 ± 260.1 0.6 ± 0.5 2.7 ± 0.6

We ran the proposed plane tracker on a series of datasets and summarized its

statistics in Table 3.5. In datasets with high dynamic motions, it can be challenging to

extract planes because of poor sparse point feature tracking and dynamic movement

preventing sufficient observations for feature triangulation. In particular, the V1 03,

V2 02, and V2 03 datasets have very dynamic motions which are not amendable for

uniform point feature extraction and a large number of sufficiently observed planar

features. It can also be noticed that these datasets have a very low number of features

per plane, limiting the number of possible SLAM planes (and on some datasets no

planes are used in an update). The additional computational cost for plane detection

and matching is around 2-4ms, which is similar to sparse point feature tracking (around

3-4ms).

On the self-collected AR table datasets, we observed that due to the larger

planar surfaces and longer view time, planes can be sufficiently tracked for long periods

of time with a high number of features per plane. This is amendable for leveraging

structural regularities. In addition, it is not possible to take advantage of environmental
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Table 3.6: EuRoC MAV ATE (degree / cm) along with average timing for the V1 01 easy
dataset. σd = 0.01 was used.

Algorithm V1 01 V1 02 V1 03 V2 01 V2 02 V2 03 Time (ms)

M-PT 0.83 / 8.6 1.57 / 9.1 2.50 / 15.5 1.73 / 12.1 1.34 / 9.4 1.61 / 15.6 8.3 ± 1.7
M-PT & M-PL 0.82 / 8.6 1.58 / 9.2 2.45 / 15.3 1.73 / 12.1 1.22 / 9.7 1.61 / 15.6 12.2 ± 2.7

M-PT & MS-PL 0.75 / 7.6 1.55 / 9.0 2.50 / 15.5 1.73 / 12.1 1.28 / 8.8 1.61 / 15.6 12.4 ± 2.7

MS-PT 1.32 / 8.4 1.58 / 7.0 2.20 / 12.2 0.80 / 11.3 1.96 / 8.3 1.77 / 16.9 9.0 ± 2.0
MS-PT & M-PL 0.61 / 5.3 1.58 / 7.5 2.32 / 12.5 0.89 / 12.5 1.93 / 7.4 1.77 / 16.9 13.9 ± 3.8

MS-PT & MS-PL 0.75 / 6.9 1.55 / 6.9 2.41 / 12.5 0.82 / 10.8 1.40 / 6.8 1.77 / 16.9 13.8 ± 3.4

VINS-Fusion [161] 1.24 / 5.8 2.61 / 11.5 3.61 / 20.5 1.99 / 8.0 3.13 / 8.7 3.54 / 19.7 31.9 ± 12.3*
OKVIS [110] 0.72 / 8.3 2.01 / 14.5 10.47 / 107.4 0.94 / 13.4 1.17 / 19.1 2.37 / 23.3 59.9 ± 31.6*

* Timing for VINS-Fusion [161] and OKVIS [110] only reports their optimization time (no feature tracking).

white walls since no visual point features are extracted to facilitate plane detection.

Thus extraction of planes remains limited to regions with sufficient texture.

3.4.7.2 EuRoC MAV Indoor Dataset Trajectory Accuracy

Table 3.6 shows the average ATE over each dataset for different configurations.

Looking first at M-PT, on the V1 01 dataset there is a clear advantage to including

SLAM plane features in the state (see Figure 3.8 for extracted planes). The use of

MSCKF planes seems to show the same performance without planes, mirroring the

simulation results. For most datasets with limited plane extraction, see Table 3.5

planes per frame, there is very little improvement over point-based VIO. In general,

the OpenVINS-based systems demonstrate superior computational efficiency and out-

perform other state-of-the-art methods.

When SLAM point features are included, MS-PT, the performance gains be-

tween point-based and plane-aided become smaller. There can even be cases where the

use of planes can hurt performance, which we equate to SLAM point features being

more sensitive to incorrect data associations due to their length of time in the state.

The system is able to perform well above the real-time threshold of 50ms, with the

increase in computation mainly coming from plane detection and matching.
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Table 3.7: Self-collected AR table ATE (degree / cm) and average timing for the table 01
dataset. σd = 0.01 was used.

Algorithm table 01 table 02 table 03 table 04 table 05 table 06 table 07 table 08 Time (ms)

M-PT 0.45 / 6.8 0.85 / 2.4 1.37 / 5.6 0.83 / 7.5 0.78 / 5.0 0.66 / 4.9 0.94 / 4.8 2.00 / 12.5 8.7 ± 1.7
M-PT & M-PL 0.52 / 6.5 0.91 / 2.5 1.44 / 5.9 0.87 / 7.1 0.76 / 4.9 0.67 / 5.9 0.85 / 4.7 2.02 / 12.8 13.3 ± 3.2
M-PT & MS-PL 0.67 / 4.6 0.72 / 2.0 0.96 / 3.0 0.75 / 3.2 0.62 / 4.0 0.75 / 4.4 0.92 / 4.2 1.88 / 9.2 13.9 ± 2.9

MS-PT 1.15 / 5.7 1.79 / 4.1 2.41 / 6.9 1.28 / 5.7 0.56 / 2.7 0.78 / 3.6 1.00 / 4.8 0.68 / 11.2 9.4 ± 2.0
MS-PT & M-PL 1.32 / 5.5 0.89 / 2.5 1.03 / 4.5 1.10 / 4.7 1.01 / 4.4 1.81 / 6.0 1.06 / 4.6 1.29 / 11.2 15.0 ± 3.9

MS-PT & MS-PL 1.25 / 5.1 0.65 / 2.3 1.05 / 4.6 0.79 / 5.0 0.70 / 2.6 1.29 / 4.5 1.12 / 5.1 0.82 / 6.8 14.7 ± 3.2

VINS-Fusion [161] 1.62 / 5.8 1.32 / 3.0 1.47 / 7.6 1.75 / 5.6 1.12 / 3.4 0.98 / 5.3 1.67 / 9.3 5.03 / 23.3 35.6 ± 17.0*
OKVIS [110] 2.48 / 9.0 2.01 / 7.7 3.94 / 15.3 2.05 / 16.2 0.77 / 24.5 0.74 / 10.2 2.07 / 13.8 1.54 / 19.8 85.5 ± 32.6*

* Timing for VINS-Fusion [161] and OKVIS [110] only reports their optimization time (no feature tracking).

3.4.7.3 AR Table Dataset Trajectory Accuracy

The ATE for the self-collected AR table dataset is shown in Table 3.7. Looking

at M-PT, it is clear that there is a significant improvement of 1-3cm of accuracy when

planar regularities are used. The table or floor planes are typically tracked over large

segments of the trajectory, see Table 3.5 average track length, and thus provide a long-

term loop-closure for all points. The planes’ large spatial volume also allows for more

accurate feature triangulation, possibly reducing linearization errors. When SLAM

point features are added, there is still a gain of accuracy on most datasets, but there

are a few where planar constraints can hurt performance. We additionally see that

the use of MSCKF plane features has little impact both in real-world experiments and

simulations thus we do not recommend their use as a regularization source.

3.5 Summary

In this thrust, we have presented the Closest Point (CP) plane representation

and its application to an optimization-based LiDAR-inertial system and filter-based

monocular VIO system. This novel plane representation was shown to have the desir-

able properties of being a minimal representation with simple vector difference residuals

when performing plane-to-plane constraints. Additionally, a method for compressing

point-on-plane constraints into this CP representation was developed which allowed for

efficient estimation with only a single residual per-plane per-LiDAR scan. The CP rep-

resentation, within the context of a LiDAR-inertial system, was shown to outperform
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the existing minimal plane representation.

We then presented a method for performing planar regularization to sparse

3D points to environmental planes and showed that this provided benefits to VIO

performance. A novel detection, extraction, and tracking method was developed to

remove the need for an active depth sensor or expensive neural network. This was

shown to both enable plane tracking, but also was efficient in nature. Finally, this

planar regularity extension of OpenVINS, termed ov plane, was evaluated on two

real-world datasets including a self-collected AR demonstration, and showed clear gains

in performance when long-lived planar features were available.
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Chapter 4

EFFICIENT, CONSISTENT, AND PERSISTENT FILTER-BASED
VISUAL-INERTIAL MAPPING

4.1 Introduction

As compared to the previously mentioned plane-aided structural VIO, we now

focus on the goal of bounding trajectory drift by performing persistent filter-based

VI-SLAM. It holds great potential to enable centimeter-accuracy positioning of VI-

SLAM on smart phones, micro air vehicles (MAVs), augmented or virtual realtity

(VR) to enable unique abilities and experiences. We additionally focus on how we can

do this consistency and also provide an uncertainty metric, e.g. a covariance, of our

current VI-SLAM state estimation while still remaining computationally efficient. At

the core we leveraged the previously mentioned OpenVINS framework and extend it

to incorporate historical states. We will show that a naive extension to keep additional

historical states to loop-closure to, which bounds trajectory drift, is detrimental for

estimator complexity due to the typically O(n3) cost in terms of the size of the state.

To solve this, we proposed a methodology which leverages the Schmidt-Kalman filter

(SKF) [177] to reduce the cost of maintaining these old states while still tracking the

correlations enabling consistent estimation. We first present a system which builds

and keeps a point-feature map and leverages 2D-to-3D loop-closure map constraints.

We show that it can both simultaneously build the map and leverage it to bound the

long-term drift in both simulation and real-world datasets. We then present a second

system which instead keeps track of historical poses and leverages a 2D-to-2D loop-

closure constraint between these historical poses and features tracked in the current

sliding window. We show that this method is both able to constraint the long-term

drift, but also achieve high efficiency.
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Having presented two different methods for leveraging the SKF, we then focused

on comparing and contrasting each of these in terms of their complexity, memory, and

accuracy. The problem is simplified to the prior map-based estimator where the map

and the features (or keyframes) mean and uncertainties are provided a priori. We

additionally investigate a series of different inconsistent methods typically used in the

literature which do not estimate the correlation with the prior map and simply perform

inflation of the measurement noise to compensate. Armed with the insight that the SKF

can enable consistent performance with high accuracy in small workspaces, the 2D-to-

2D model can reduce complexity at a reduction in loop-closure constraint strength,

and the inflation methods can be relatively invariant to their inflation parameters if

the map covariance is known, we then focused on how to leverage the best of each. We

finally look at how to scale the system to a larger scale multi-room.

As compared to the previously developed filter-based system, we next proposed

coupling the filter-based system with a non-linear backend which supports relineariza-

tion which can correct for large map inconsistencies after loop-closure. To the best

of our knowledge this is the first work to systematically study a hybrid filter-based

estimator in conjunction with a lightweight relative-pose graph optimization which

can perform relinearization in a consistent manner resulting in a map which can be

directly leveraged through the inflation-based measurement model. Additionally, we

present a novel method termed “dynamic Schmidt’ing” which enables moving the map

state from the SKF state into the EKF during loop-closures re-observations to allow

for their estimates to improve and uncertainties to decrease as compared to just fix-

ing the estimates. This is shown to have a large accuracy improvement with very

little computational cost penalty. The hybrid extension of the MSCKF to map-based

localization using different techniques is investigated through a series of detailed nu-

merical simulation experiments to demonstrate its real-time localization accuracy and

efficiency.
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4.2 Estimation Background

We now present some key background on the SKF and the common VIO mea-

surement equations which will then be related to the map-based update in the later

sections. A detailed complexity analysis is presented in Appendix E and our technical

report [58] for all EKF operations, and shows that all are linear in terms of the number

of map points.

4.2.1 Schmidt-Kalman State and Covariance Propagation

Consider the standard EKF which jointly estimates both the active and map

states at timestep tk−1.

xk−1 =

xAk−1

xSk−1

 , Pk =

PAAk−1
PASk−1

PSAk−1
PSSk−1

 (4.1)

The propagated state xk can be directly computed while the covariance can be propa-

gated forward in time via the following equations:

Pk|k−1 =

Φk−1PAAk−1|k−1
Φ>k−1 Φk−1PASk−1|k−1

PSAk−1|k−1
Φ>k−1 PSSk−1|k−1

+

Qk−1 0

0 0

 (4.2)

where one can see that the most computational expensive Φk−1PASk−1|k−1
will be linear

in complexity in terms of xM since the map states do not evolve with time.

4.2.2 Schmidt-Kalman State and Covariance Update

Given a non-linear measurement model Eq. (2.52), we will now consider how

to perform an update given this stacked feature observation. We have the following

linear system which is a function of the active and map state.

rf ' HAk x̃Ak + HSk x̃Sk + nf (4.3)

where the measurement noise is nf ∼ N (0,Rf ). This gives the Kalman gain as follows:

Kk =

KAk

KMk

 =

PAAk|k−1
H>Ak + PASk|k−1

H>Sk

PSAk|k−1
H>Ak + PSSk|k−1

H>Sk

S−1
k (4.4)
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where Hk = [HAk HSk ] and Sk = HkPkH
>
k + Rf is the measurement residual inno-

vation. We can thus define the following standard EKF mean and covariance update

equations:

x̂Ak|k = x̂Ak|k−1
+ KAkrf (4.5)

x̂Sk|k = x̂Sk|k−1
+ KSkrf (4.6)

Pk|k = Pk|k−1 −


KAkSkK

>
Ak

KAkHk

PASk|k−1

PSSk|k−1


PASk|k−1

PSSk|k−1

>Hk
>K>Ak KSkSkK

>
Sk

 (4.7)

We note that this process is O(x2) complexity in terms of the map if the number of

measurements is far smaller than the state size (i.e., Sk
−1 is cheap) due to the covariance

update multiplication KSkSkK
>
Sk

, which is undesirable since the size of the map can

grow unbounded.

We now look at a consistent alternative Schmidt-Kalman filter (SKF) [177]

update which has been successfully used (along with different variations) to reduce the

update complexity for map-based localization [34, 59, 65, 79, 93]. Using the same state

definition as in Eq. (4.1), we set KSk = 0 and get the following update equations (see

Eq. (4.6) and (4.7)):

x̂Ak|k = x̂Ak|k−1
+ KAkrf (4.8)

x̂Sk|k = x̂Sk|k−1
(4.9)

Pk|k = Pk|k−1 −


KAkSkK

>
Ak

KAkHk

PASk|k−1

PSSk|k−1


PASk|k−1

PSSk|k−1

>Hk
>K>Ak 0

 (4.10)

This process is O(x) and its memory requirements for landmark-based and keyframe

based maps are O((3m)2) and O((6n)2), respectively. This is due to only updating the
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cross-covariance terms. We note that this is a consistent approximation which ensures

that the filter is never more confident than the original EKF (see [34]). Where we define

consistency as an estimator is consistent when its errors are zero-mean (unbiased) and

the covariance matrix is equal to that reported by the estimator [4, Section 5.4].

4.3 SEVIS-3D: Schmidt-EKF based VI-SLAM with 3D Points

It is known that the EKF update of state estimates and covariance has quadratic

complexity in terms of the number of map features [155], making naive implementations

of VI-SLAM too expensive to run in real-time. Leveraging the SKF [177], we propose

a novel Schmidt-EKF for VI-SLAM with 3D map points (SEVIS-3D) algorithm which

mitigates this quadratic complexity. The key idea is to selectively treat 3D map features

as nuisance parameters in the state vector [i.e., Schmidt map state xS Eq. (4.1)] whose

mean and covariance will no longer be updated, while their cross-correlations with the

active state xA (e.g., current pose, calibration, etc.) are still utilized and updated. The

specific state we estimate is:

xk =
[
x>I x>C x>M | Gp>f1

· · · Gp>fM

]>
=:
[
x>A x>S

]>
(4.11)

xA =
[
x>I x>C x>M

]>
(4.12)

Note we have omitted calibration states, see the OpenVINS state in Section 2.2 for the

full definition of xA.

In what follows we primarily focus on the loop-closure details and update

method for monocular images, which is at the core of our SEVIS-3D, but the ap-

proach is easily extendable to stereo systems. As the camera-IMU sensor pair moves

through the environment, features are tracked using descriptor-based tracking. FAST

features are first detected [168] and ORB descriptors [171] are extracted for each. The

OpenCV [149] “BruteForce-Hamming” KNN descriptor matcher is used to find cor-

respondences, after which we perform both a ratio test between the top two returns

to ensure valid matches and 8-point RANSAC to reject any additional outliers. Once

visual tracks are found, three types of tracked features are used to efficiently update
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state estimates and covariance: (i) VIO features that are opportunistic and can only

be tracked for a short period of time, (ii) SLAM features that are more stable than

the above one and can be tracked beyond the current sliding window, and (iii) map

features that are the matured and informative SLAM features which are kept in the

Schmidt state for an indefinite period of time.

4.3.1 Loop-Closure to Historical 3D Points

To overcome the data association challenge, given 3D positions of map features

already included in the state vector, one straightforward approach might be through

3D-to-2D projection (i.e., projecting the 3D map feature onto the current frame) to

find the correspondence of current visual measurements to the mapped feature, which

is often used in the literature (e.g., [34, 126]). However, in a typical SLAM scenario,

estimating a map of 3D point features and matching them to current features is often

sparse; for example, we found that it was common for a multi-floor indoor environment

with up to 600 map features to only have about 10 features that can successfully project

back into the active frame. Moreover, if there is any non-negligible drift in the state

estimates (which is inevitable in practice), then projected features are likely to not

correspond to the same spatial area as the current image is observing, thus preventing

the utilization of map information to reduce navigation errors.

For these reasons, we advocate 2D-to-2D matching for data association with

the aid of “keyframes” that observe previous areas in the environment, due to its

ability to provide high quality estimates and not be affected by estimation drift. Each

keyframe contains a subset of the extracted features that correspond to map features

in the state vector, and thus, if we match active feature tracks to previous keyframes

we can find the correspondence between the newly tracked features and the previously

mapped features that reside in our state. Specifically, we first query the keyframe

database to retrieve the closest keyframe to the current frame. To this end, different

place recognition approaches such as DBoW2 [53] and CALC [136] can be used to

find the best candidate. After retrieval, we perform an additional geometric check by
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Figure 4.1: Illustration of the proposed keyframe-aided 2D-to-2D matching for data asso-
ciation from a 2D observation to a 3D point map feature. Assuming a cloned frame {C2}
matches to a keyframe {K1} with all actively tracked features, and among these positive
matches, one feature (red) corresponds to a map feature, the measurements in {C2} and
{C1} will be used to update the active state by performing Schmidt-EKF update.

ensuring that the fundamental matrix can be calculated between the current frame and

the proposed keyframe match, which we found provided extremely good matches to

the best keyframe in the database. After retrieving a matching keyframe, we perform

descriptor-based matching from features in the current frame to the keyframe with all

extracted features from both frames followed by 8-point RANSAC to reject outliers. We

now have the correspondence between the current frame feature tracks and keyframe

map features. Figure 4.1 visualizes this process.

4.3.2 Map with 3D Features: Schmidt-EKF Update

As SLAM features are inserted into xM they would typically remain until they

have lost track. As compared to this, they will instead be moved to the Schmidt state

xS as nuisance parameters. The main steps of the proposed SEVIS-3D are outlined in

Algorithm 3. Having matched a current set of feature observations to a historical map

feature, we can then apply the Schmidt-Kalman update from Section 4.2 which will

efficiently update our state. This update is identical to the SLAM feature update, but

the position of the feature and its marginal uncertainty will not be updated. The cross-

correlations will be updated such that the estimator remains consistent, thus balancing

the trade-off of being unable to refine historical features with improved accuracy and

robustness through consistent estimation.

87



Algorithm 3 Schimdt-EKF Visual-Inertial SLAM with 3D Points (SEVIS-3D)

Propagation: Propagate the IMU navigation state estimate x̂Ik|k−1
based on (2.26),

the active state’s covariance PAAk|k−1
and cross-correlation PASk|k−1

based on (4.2).
Update: For an incoming image,

• Perform stochastic cloning [170] of current state.
• Track features into the newest frame.
• Perform keyframe-aided 2D-to-2D matching to find map feature correspon-

dences:
– Query keyframe database for a keyframe visually similar to the current

frame.
– Match currently active features to the features in the keyframe.
– Associate those active features with mapped features in the keyframe.

• Perform MSCKF update for VIO features (i.e., those that have lost their tracks)
as in Section 2.3.3.2.

• Initialize new SLAM features if needed and perform EKF update.
• Perform Schmidt-EKF update for map features as in Section 4.2.2.

Management of Features and Keyframes:
• Active SLAM features that have lost track are moved to the Schmidt state or

marginalized out.
• Marginalize the oldest cloned pose from the sliding window state.
• Marginalize map features if exceeding the maximum map size.
• Insert a new keyframe into the database if we have many map features in the

current view.
• Remove keyframes without map features in view.
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(a) Orientation RSSE (b) Position RSSE

Figure 4.2: Monte-Carlo simulation averaged RSSE of pose (position and orientation) esti-
mates for the three considered VIO and VI-SLAM algorithms.

4.3.3 Monte-Carlo Simulation Results

To validate the back-end estimation engine of the proposed SEVIS-3D, we first

perform Monte-Carlo simulations of visual-inertial SLAM with known measurement-

feature correspondences, where a monocular-visual-inertial sensor platform is moving

on a circular trajectory within a cylinder arena observing a series of environmental

features. The simulation parameters are listed in Table 4.1.

In particular, we compare three VINS algorithms to reveal the benefits of the

proposed SEVIS-3D: (i) The baseline VIO approach consists of the MSCKF augmented

with 6 SLAM features (see [113]). These SLAM features are explicitly marginalized

when they leave the field of view. (ii) The baseline SLAM method uses the same

MSCKF window but is augmented with 90 SLAM features. Different from the above

VIO, in this case the SLAM features are never marginalized so that they can be used

for (implicit) loop-closures. (iii) The proposed SEVIS algorithm, which consists of the

same MSCKF window and 6 SLAM features as in the baseline VIO, is augmented with

a bank of 90 map features that are modeled as nuisance parameters. When the SLAM
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Table 4.1: Monte-Carlo Simulation Parameters for SEVIS-3D

Parameter Value Units

IMU Angle Random Walk Coeff. 0.4 deg/
√

Hr

IMU Rate Random Walk Coeff. 0.02 deg/sec/
√

Hr

IMU Velocity Random Walk Coeff. 0.03 m/sec/
√

Hr

IMU Acceleration Random Walk Coeff. 0.25 milli-G/
√

Hr
IMU Sample Rate 100 Hz

Image Processing Rate 5 Hz
Feature Point Error 1σ 0.17 deg

Number of MSCKF Poses 15
Approximate Loop Period 32 sec

features leave the field of view, they are moved into the Schmidt states, becoming the

map features as described in Algorithm 3.

The average root sum squared error (RSSE) performance of 50 Monte-Carlo

simulation runs are shown in Figure 4.2. As expected, the baseline VIO accumulates

drift in both orientation and position over time while the baseline SLAM provides

bounded error performance without long-term drift. It is interesting to point out that

the position RSSE oscillates slightly depending on the location relative to the initial

loop closure. This is because the EKF has limited ability to correct these errors as

it cannot re-linearize past measurements unlike optimization-based approaches [188].

More importantly, it is clear that the proposed SEVIS algorithm also does not accu-

mulate long-term drift, although it is slightly less accurate than the baseline SLAM.

However, this degradation in accuracy is a small price to pay considering that the

SEVIS-3D is of linear computational complexity with respect to the number of map

features, while the baseline SLAM has quadratic complexity.

4.3.4 Real-World Experimental Results

We further evaluated the baseline MSCKF-based VIO (without map features),

the baseline full VI-SLAM, and the proposed SEVIS-3D on real-world datasets. In

what follows, we first examine the estimator accuracy and computational overhead,
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Table 4.2: Relative trajectory error for different segment lengths along with the overall
absolute trajectory error. Values were computed using [221].

Dist. Base. VIO Base. SLAM SEVIS-3D VINS-Mono

123m 0.383 0.102 0.111 0.184
247m 0.645 0.099 0.108 0.238
370m 0.874 0.104 0.123 0.325
494m 1.023 0.095 0.121 0.381
618m 1.173 0.107 0.139 0.425

ATE 0.779 0.121 0.128 0.323

after which the systems are evaluated on a challenging nighttime multi-floor dataset,

showing that the proposed SEVIS-3D can robustly be extended to realistic applications.

4.3.4.1 Vicon Loops Dataset

We first validated the proposed system on the Vicon loops dataset [109] that

spans 1.2km in a single room over a 13 minute collection period. A hand-held VI-

sensor [148] provides grayscale stereo image pairs and inertial information, while full

6DoF groundtruth is captured using a Vicon motion tracking system at 200 Hz. The

maximum number of map features was set to 600 points to ensure real-time performance

over the entire trajectory with images inserted into the query keyframe database at

0.5 Hz and a max of 5 SLAM features in the active state at a time. The results

presented show three different configurations: (i) the baseline VIO augmented with 5

SLAM features, (ii) the baseline VI-SLAM with 600 SLAM/map features, and (iii) the

proposed SEVIS-3D with 600 map features that leverages the Schmidt formulation for

computational gains.

We evaluated the proposed method using two different error metrics: Absolute

Trajectory Error (ATE) and Relative Error (RE). We point the reader to [221] for de-

tailed definitions of these error metrics. Alongside our baseline and proposed methods,

we additionally evaluated VINS-Mono [159, 160] to provide a comparison to a current

state-of-the-art method that leverages loop closure information. Shown in Table 4.2

and Figure 4.4, the proposed SEVIS-3D is able to localize with high accuracy and
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Figure 4.3: Trajectory of the baseline VIO, baseline SLAM with map features, proposed
SEVIS-3D with Schmidt covariance update, and VINS-Mono [159, 160]. Clearly the inclusion
of map features has limited the drift and allows for high accuracy.
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Figure 4.4: Boxplot of the relative trajectory error statistics. The middle box spans the first
and third quartiles, while the whiskers are the upper and lower limits. Plot is best seen in
color.
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seen. Plot is best seen in color.
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Figure 4.6: Selected views during the night multi-floor trajectory show the high noise, poor
lighting conditions, and motion blur that greatly challenge visual feature tracking.

perform on the level of the full baseline VI-SLAM system. Looking at the RE it is

clear that the inclusion of map features prevents long-term drift and offers a greater

accuracy shown by the almost constant RE as the trajectory segment length grows.

The proposed SEVIS-3D provides a computationally feasible filter that has similar ac-

curacy as full baseline VI-SLAM with competitive performance to that of VINS-Mono

(although the VINS-Mono leverages batch optimization).

The primary advantage of the proposed SEVIS-3D algorithm over full-covariance

SLAM is a decrease in computational complexity. The practical utility of this is evident

in the run times of the different algorithms. As shown in Figure 4.5, we evaluated the

three systems and collected timing statistics of our implementation.1 The proposed

SEVIS-3D is able to remain real-time (20 Hz camera means we need to be under 0.05

seconds total computation), while the full VI-SLAM method with 600 map features,

has update spikes that reach magnitudes greater than four times the computational

limit. This is due to the full covariance update being of order O(n2). Note that there

is an additional overhead in the propagation stage as the symmetry of the covariance

matrix needs to be enforced for the entire matrix instead of just the active elements to

ensure numerical stability.

4.3.4.2 Nighttime Multi-Floor Dataset

We further challenged the proposed system on a difficult indoor nighttime multi-

floor dataset, which has multiple challenges including low light environments, long

1 Single thread on an Intel(R) Xeon(R) E3-1505Mv6 @ 3.00GHz
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exposure times, and low contrast images with motion blur unsuitable for proper fea-

ture extraction (see Figure 4.6). If features can be extracted, the resulting descriptor

matching is poor due to the high noise and small gradients, and as compared to the

Vicon Loops Dataset, more outliers are used during the update, causing large estimator

jumps and incorrect corrections. We stress that the proposed SEVIS-3D can recover in

these scenarios due to keyframe-aided 2D-to-2D matches which are invariant to poor

estimator performance or drift and map feature updates correct and prevent incorrect

drift.

A Realsense ZR300 sensor2 was used to collect 20 minutes of grayscaled monocu-

lar fisheye images with inertial readings, with the 1.5km trajectory spanning two floors.

We additionally performed online calibration of the camera to IMU extrinsic to further

refine the transform provided by the manufacturer’s driver. A max of 700 map points

allowed for sufficient coverage of the mapping area, keyframes were inserted into the

query database at 4Hz to ensure sufficient coverage of all map features, and 2 SLAM

features in the active state at a time. The trajectory generated by the baseline VIO

and the proposed SEVIS-3D are shown in Figure 4.7. Clearly, the inclusion of map

features prevents long-term drift experienced by the baseline VIO which exhibits large

errors in both the yaw and z-axis direction. Since no groundtruth was available for this

dataset, as a common practice, we computed the start-end error of the trajectory which

should ideally be equal to zero as the sensor platform was returned to the starting lo-

cation. The baseline VIO had an error of 4.67m (0.31% of trajectory distance) while

the proposed SEVIS-3D had an error of only 0.37m (0.02% of trajectory distance).

4.4 SEVIS-2D: Schmidt-EKF based VI-SLAM with 2D Observations

Next we will propose a novel Schmidt-EKF for VI-SLAM which leveraged 2D

observations (SEVIS-2D) between active features and historical keyframes. As com-

pared to keeping raw 3D points as in SEVIS-3D, here we look to try to reduce the

2 https://software.intel.com/en-us/realsense/zr300

96

https://software.intel.com/en-us/realsense/zr300


state size required to represent features by instead recording a keyframe with multi-

ple feature observations which can each be leveraged. Specifically, we keep track of

historical keyframes of our MSCKF stochastic clones which we can later perform loop-

closure to get 2D-to-2D observation constraints to actively tracked features and include

these additional measurements to indirectly constrain the state through the historical

keyframes. To the best of the author’s knowledge, this is the first time this type of

indirect loop-closure has been leveraged to limit long-term estimation drift, while also

improving computational efficiency through reduction of the state size. Consider the

case that we continuously include the keyframe poses where loop closure events can be

detected, into the state vector:

xk =
[
x>I x>C x>M | x>K1

· · · x>Kn

]>
=:
[
x>A x>S

]>
(4.13)

xA =
[
x>I x>C x>M

]>
(4.14)

where xKi = [IiGq̄
> Gp>Ii ]

> is the i-th keyframe pose.

As keyframes are added over the trajectory length, the size of states that need

to be estimated would grow over time, threatening the real-time VINS performance,

although it grows much slower than adding keypoint features into the state vector. One

approach that prevents the need to estimate the keyframes at later times, is to simply

assume that keyframe poses are “true” and ignore the uncertainty associated with

these estimates, which would cause an overconfident (inconsistent) filter. In contrast,

we leverage the SKF to allow for efficient estimation while still tracking the uncertainty

of all keyframes in the states.

Specifically, we carefully retain by stochastic cloning [170] a set of keyframe

poses where loop-closures are likely to occur in the state vector (4.14) and consistently

track their correlations with other state variables. We implicitly enforce loop closure

constraints by adding additional observations from historical keyframe poses to actively

tracked features in the sliding window of the MSCKF. It is important to note that

this does not require estimating the 3D feature position, since these observations are

only a function of the poses in the sliding window and the historical keyframes once
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processed through the MSCKF update. This leads to substantial computational savings

in additional gains from leveraging the SKF update, as the number of keyframes over

a trajectory is typically much smaller than the number of features seen from those

frames.

4.4.1 Visual Tracking and Loop Closing Methodology

As the IMU-camera sensor platform navigates in the environment, the sliding

window sequentially shifts forward as a new image arrives. As in the standard MSCKF

VIO (see Section 2.3.3.2), KLT-based visual tracking is employed to build feature

tracks in the current sliding window. However, instead of marginalizing the old cloned

camera poses as in the standard MSCKF, we select certain clones to be keyframes

retained in the state vector for loop closure. While different heuristics may be used

to select new keyframes, for example, based on the image parallax [160] or feature

tracking quality [109], in this work, for proof-of-concept purposes, we simply add new

keyframes at a fixed time interval. Once a cloned pose is chosen to be a keyframe,

its corresponding state becomes part of the keyframe state [see (4.14)], whose cross-

correlations (instead of autocovariance) will be updated at future times. This can be

justified by the fact that when cloned poses reach the end of the sliding window and

are selected as keyframes, their estimates are often accurate and can be assumed to

have reached their steady states with matured but non-zero uncertainty, which will be

properly and efficiently tracked in our estimator, instead of being naively assumed to

be perfect with zero uncertainty, e.g., as in [160].

To perform keyframe-based loop closing, we leverage the state-of-the-art DBoW2

method [53] for finding loop closure candidates. When a new keyframe is inserted, the

DBoW2 database is updated with the new keyframe image by extracting 300 FAST

features [168] along with their ORB descriptors [171]. To detect loop-closures with the

current camera image, we query the DBoW2 database to retrieve the top keyframes

that are visually similar to it. After retrieval, a geometric check of the top candidate
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Figure 4.8: An example of feature matches between the current frame (left) and the keyframe
(right). Active feature tracks are seen in red on the current image and their matches to the
keyframe are visualized with blue correspondence lines.

fC3g fC2g

fC1g
fK1g

Figure 4.9: Illustration a keyframe-based loop closure scenario where an active feature tracked
over three clones has matched to a keyframe {K1}. An additional feature measurement from
the keyframe (blue) is added to the feature track such that an implicit loop closure constraint
(by viewing the same scene) is formed and can be utilized in the EKF update.

keyframe from the database is performed by ensuring that the fundamental matrix can

be calculated between the query image and candidate keyframe (see Figure 4.8).

Once a loop closure keyframe has been determined, we then incorporate the

feature matches between the actively tracked features in the sliding window and those

in the keyframe. For example, as illustrated in Figure 4.9, if a frame {C3} is detected as

matching a keyframe {K1}, then all extracted features in {C3} will try to match with

features extracted in {K1}. Specifically, when an actively tracked feature is matched

to a keyframe feature, we add the additional keyframe observation to the feature track.

Special care has to be taken that an active feature can only match to a keyframe

once; that is, one feature measurement can only be involved in one feature track, in
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order to prevent the reuse of information and thus ensure consistency. Note that for

computational savings, the current image is only matched to a single keyframe while

this can be easily modified to allow for more loop closure keyframes. We thus use

the additional observations from the loop closure keyframe along with feature tracks

from the current window to perform an MSCKF update once the active feature has

lost track or reaches sliding window size. As explained in the following section, we

update the active state estimate xA, its covariance, and the cross-correlations between

the active state and keyframe state xS.

4.4.2 Map with Keyframes: Schmidt-EKF Update

Once feature tracks including both active feature measurements and (if any) loop

closure constraints are ready for processing in the current sliding window, we perform

an SKF update within the MSCKF framework. The main steps of the proposed SEVIS-

2D approach are outlined in Algorithm 4. Specifically, as in the standard MSCKF, we

first perform BA with all the feature measurements in the current window to triangulate

the 3D feature positions Gpf to linearize the measurement model in respect to all active

clones xC and any historical keyframe poses xK . For a given feature we perform linear

marginalization of its position (i.e., null space operation) [211], and partition the active

and Schmidt states as follows:

rf ' Hxx̃k|k−1 + Hf
Gp̃f + nf (4.15)

' H1...cx̃C + HKx̃K + Hf
Gp̃f + nf (4.16)

We can then perform the MSCKF nullspace projection to remove the feature:

N>rf ' N>H1...cx̃C + N>HKx̃K + N>nf (4.17)

r′f ' H′Ak x̃Ak|k−1
+ H′Kk x̃Sk|k−1

+ n′f (4.18)

where the residual is r′f = N>rf , active clone Jacobian is H′Ak = N>H1...c, Schmidt’ed

keyframe Jacobian is H′Kk = N>HK , and projected noise n′f = N>nf . We can then

perform an SKF update with the above linear system, resulting in state corrections for

the active state and cross-correlations with the map.
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Algorithm 4 Schmidt-EKF for VI-SLAM which Leveraged 2D Keyframe Observations
(SEVIS-2D)

Require: Initial state estimate and covariance
1: loop
2: Propagate the state to the current image time.
3: Track features from the previous image into the current one.
4: Query the keyframe database for a loop closure and if there is a match, ac-

tive features are appended with additional measurements from the loop closure
keyframe.

5: Features that can be used for updates are collected and processed.
6: Oldest pose in the sliding window is either marginalized out or added to the

keyframe state (nuisance parameters).
7: end loop

Table 4.3: RMSE position errors averaged over 10 runs of the Vicon loops dataset (units
are in meters). SEVIS-2D (full) denotes running the proposed SEVIS-2D but allowing the
covariance and keyframe estimates to update.

MSCKF SEVIS-2D (full) SEVIS-2D VINS-Mono [160]

Monocular 1.626 0.113 0.122 0.527
Stereo 1.555 0.093 0.172 -

4.4.3 Real-World Experimental Results

To validate the proposed SEVIS-2D, we have performed real-world experiments

on different sensor platforms. In the following, we present two sets of results with

hand-held sensors, demonstrating that the proposed approach achieves significantly

better accuracy than the standard MSCKF (without loop-closures) while only incurring

marginal computational overhead.

4.4.3.1 Vicon Loops Dataset

We first test our VINS system on the Vicon loops dataset [109]. In this test, we

select loop closure keyframes at a fixed rate of one every two seconds. For the results

presented below, we have developed and validated both stereo and monocular (i.e.,

using only one of the stereo cameras) VINS algorithms. In particular, the estimators

compared are (i) the standard MSCKF without loop-closures [139], (ii) the proposed
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Figure 4.10: The estimated trajectories of the proposed SEVIS-2D, standard MSCKF [139],
and VINS-Mono [159, 160]. Both monocular and stereo VINS results are presented. In
particular, it is clear from the z-axis results (bottom) that the proposed approach is able to
achieve bounded-error performance while the standard MSCKF has errors growing over time.
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Figure 4.11: The CPU run time of the different components and the total execution time
(bottom). The breakdown of the proposed monocular SEVIS-2D (top) and that of the SEVIS-
2D with full covariance updates (middle).
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Figure 4.12: The trajectories of the standard MSCKF [139] (blue), proposed SEVIS-2D with
loop-closures (black), and VINS-Mono [159, 160] (magenta). Clearly, without loop-closures,
the standard MSCKF accumulates significant errors.
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SEVIS-2D with full covariance update for the keyframes, (iii) the proposed SEVIS-

2D and (iv) the open sourced VINS-Mono [159, 160]. The performance metrics used

include (i) the root mean squared error (RMSE) that measures the estimation accuracy

and (ii) the CPU run time that quantifies the computational cost.

Table 4.3 shows the RMSE values averaged over 10 runs (in order to consider the

repeatability of the algorithms). Trajectories were aligned to the groundtruth using

the first two minutes. Figure 4.10 depicts the estimated trajectories, which clearly

shows that the information provided by the loop closure measurements significantly

limits the drift of the proposed approach over time. Of the two MSCKF systems that

utilize the loop closure constraints, the system that updates the full state estimate and

covariance, as expected, achieves a slightly better performance; while the proposed

SEVIS-2D closely follows it in accuracy but with a significant computational saving.

Specifically, Figure 4.11 shows the CPU run time for a single representative run of

the monocular VINS on the dataset.3 As expected, the proposed SEVIS-2D (top)

has only linear growth in the time it takes to perform an EKF update, while the

standard MSCKF with full loop closure update (middle) shows quadratic growth in

the computation time in both propagation and update. The proposed approach even

stays below the real-time threshold of 0.05 sec (camera frame rate is 20Hz), processing

400 keyframes in real-time towards the end of the trajectory. In contrast, the VINS-

Mono pose optimization backend (non-real-time thread) takes upwards of 2 seconds

by the end of the trajectory, which significantly delays the inclusion of loop closure

information in the current state estimate.

4.4.3.2 Nighttime Multi-Floor Dataset

We further conducted a multi-floor indoor experiment at the University of

Delaware (UD) Spencer Lab. Keyframes were inserted every 0.75 seconds, with a

maximum of 886 keyframes in total, with 26% of all features containing at least one

3 Single thread on an Intel(R) Xeon(R) E3-1505Mv6 @ 3.00GHz
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keyframe feature observation during update. Figure 4.12 shows the estimated tra-

jectories of the standard MSCKF, proposed monocular SEVIS-2D, and VINS-Mono.

Clearly, the proposed method was able to localize with minimal drift over the trajectory

while the standard MSCKF drifted significantly. As ground truth was not available

for this dataset, we returned to the starting location and evaluated the start-end error

to be 3.58m (0.2%), 0.64m (0.04%), 0.26m (0.02%), and 0.16m (0.01%) for the stan-

dard MSCKF, the proposed SEVIS-2D, SEVIS-2D with full covariance update, and

VINS-Mono (with non-real-time optimization thread). Qualitatively, the trajectory of

the proposed method is on par with that of VINS-Mono, while only requiring a single

thread for real-time estimation.

4.5 SEVIS-PRIOR: Numerical Comparison of Loop-closure Constraints

and Estimators

Next, the natural question is which of the two presented methodologies provides

better performance in terms of accuracy and computational cost. Additionally, it is

interesting to see how inconsistent methodologies which do not track correlations with

the map perform. To simplify the problem and allow insight into the specific loop-

closure constraint and estimator designs, we look at the case where an a priori map

has been provided as compared to the previously presented methods which perform

simultaneous localization and mapping. Specifically, we can define the following state

of the system:

xk =
[
x>A x>F x>K

]>
(4.19)

xF =
[
Gp>f1

· · · Gp>fm

]>
(4.20)

xK =
[
x>K1

· · · x>Kn

]>
(4.21)

where we either have a map of features xF or keyframes xK in addition to the Open-

VINS active state xA. For 2D-to-3D point loop-closures we will have the standard

feature update equation:

r = HT x̃T1..c + Hfi
Gp̃fi + n (4.22)
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where Gpfi ∈ xF . When we have 2D-to-2D loop-closures via a historical keyframe

observation will will have the following linear system after nullspace projection to

remove the feature:

N>r = N>HT x̃T1..c + N>HTk x̃Tk + N>Hf
Gp̃f + N>n (4.23)

⇒ r′ = H′T x̃T1..c + H′Tk x̃Tk + n′ (4.24)

where n′ = N>n with covariance R′ = N>RN.

4.5.1 Methods for Prior Map Updates

We now detail the different methods and techniques which enable the efficient

incorporation of global information.

4.5.1.1 Extended Kalman Filter

We first begin with the standard EKF which jointly estimates all variables. The

equations for propagation and update are presented in Section 4.2. The memory re-

quirements for landmark-based and keyframe-based maps are O((3m)2) and O((6n)2),

respectively.

4.5.1.2 Linear Schmidt-Kalman Filter

A consistent alternative to the standard EKF is the Schmidt-Kalman filter

(SKF) [177]. This has been successfully used (along with different variations) to reduce

the update complexity for map-based localization [34, 59, 65, 79, 93]. The equations

for propagation and update are presented in Section 4.2. This process is O(x) and its

memory requirements for landmark-based and keyframe-based maps are O((3m)2) and

O((6n)2), respectively. This is due to only updating the cross-covariance terms.

4.5.1.3 Noise Inflation - Measurement

Another method for incorporating global information is to not explicitly esti-

mate the map states (landmarks or keyframes). The downside is that this prevents the

modeling of the correlation between the state and the map and thus is inconsistent.
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Specifically, in Eq. (2.50) and (4.24) we treat the feature position and keyframe pose

as known, and thus their Jacobians, Hfi and H′Tk , become zero.

Naively the simplest way to solve this inconsistency due to an overconfident

measurement is to inflate the measurement noise. For landmark-based or keyframe-

based maps we can simply inflate the measurement observation noise as:

R = (γσpix)
2I (4.25)

The key advantage of this method is that the computational cost is now constant O(1)

since only the inertial state, sliding window, and temporal SLAM map are tracked. The

memory requirement for both landmark and keyframe-based maps is O(0). This can

have profound impacts on large maps and thus giving up the guarantee of consistency

for this computational advantage is very alluring.

4.5.1.4 Noise Inflation - Marginal Covariance Inflation

Many works have leveraged the marginal covariance of the prior map to both

reduce the complexity and memory requirements of the system (e.g., [126]). The main

advantage is that this allows for each landmark or keyframe to have different levels of

uncertainty and the use of its Jacobian to map the additional error to the observed

measurement. More concretely we have the following modified measurement noise

for landmark-based and keyframe-based prior maps respectively [see Eq. (2.50) and

(4.24)]:

R = µHfiPffiH
>
fi

+ σ2
pixI (4.26)

R = µH′TkPTTkH
′>
Tk

+ σ2
pixI (4.27)

where Pffi and PTTk are the 3x3 and 6x6 prior landmark and keyframe covariances,

respectively. This process also ensures the computational cost is also now constant

O(1), with memory requirements of O(9m) and O(36n), respectively.
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Table 4.4: Simulation parameters and priors that perturbations of measurements and initial
states were drawn from.

Parameter Value Parameter Value

Pixel Proj. (px) 1 Num. Camera 1
IMU Freq. (hz) 400 Cam Freq. (hz) 10

Avg. Feats 15 Num. SLAM 10
Num. Clones 11 Feat. Rep. GLOBAL

Gyro. White Noise 1.6968e-04 Gyro. Rand. Walk 1.9393e-05
Accel. White Noise 2.0000e-03 Accel. Rand. Walk 3.0000e-03

Prior Key. Ori. (deg) 1.0 Prior Key. Pos. (cm) 6
Prior Feat. Pos. (cm) 12 % Feat. Lost Btw Key. 75

Max Dist. Btw Key. (m) 1 Max Deg. Btw Key. (deg) 15
Map PTS 210 Map KF 86

4.5.1.5 Noise Inflation - Alpha Beta Inflation

The final noise inflation variation investigated is the one presented in [174],

which incorporates not only inflation due to the marginal prior map covariance but

also the current state covariance (originally adopted by NASA’s Apollo program [6] and

used to “intentionally slow adaptation in linearized estimation problems”). Specifically,

we have the following:

R = αHfiPffiH
>
fi

+ βHTPH>T + σ2
pixI (4.28)

R = αH′TkPTTkH
′>
Tk

+ βH′TPH′>T + σ2
pixI (4.29)

This process is constant O(1) in terms of computational cost, with memory require-

ments of O(9m) and O(36n) for landmark and keyframe-based maps. We normally

“whitten” the linearized measurement function with the now dense noise to regain an

identity noise covariance form.

4.5.2 Numerical Study

To investigate and compare the different methods for global measurement in-

clusion we simulated a realistic indoor single room dataset which is approximately 15

minutes long and 1.2km in length (see Figure 4.13). We employ the OpenVINS simula-

tor to generate realistic visual-bearing and inertial measurements from the trajectory
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Figure 4.13: Simulated 1.2km hand-held Room trajectory, axes are in units of meters. Every
other keyframe is shown to increase clarity. Feature depths (purple) are between 5 and 7
meters.
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Figure 4.14: Relation between state size (number of variables) and the average number of
features observed for both landmark-based (PTS) and keyframe-based (KF) maps in the
Room dataset. Different maximum keyframe distance thresholds are also plotted.
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generated by an existing VINS. Simulation parameters used are documented in Ta-

ble 4.4, while details on how the prior map is generated are specified in the following

section. First-estimates Jacobians (FEJ) [83, 84] were used to improve the estimator

consistency as the use of environmental landmarks is known to introduce inconsistent

information gains. For metrics we report the Absolute Trajectory Error (ATE), Nor-

malized Estimation Error Squared (NEES), and Relative Pose Error (RPE) throughout

the different experiments (see [221] and [4]). NEES’s magnitude should match the 3

DoF orientation and position state sizes.

Feature matching to historical keyframes to gain additional feature observations

was simulated by selecting the closest keyframe and using groundtruth labels, while

for map features the groundtruth labels were directly used (thus perfect matching). In

real-world experiments, where incorrect feature associations are prevalent, chi-squared

thresholding can be leveraged before updating to reject outliers. Additional simulation

results for different trajectories and noise perturbations can be found in the companion

technical report [63].

4.5.2.1 Prior Map Generation

We now describe the procedure for how we generate a prior map of environmental

landmarks and keyframes (e.g., Figure 4.13). Starting at the beginning of the trajectory

we move the camera forward in time at a rate of 4 Hz. At each timestep we project the

current landmark map into the camera frame and if the number of seen features falls

below our average feature tracking amount we generate new features. This is repeated

until the end of the trajectory is reached and our prior landmark map is complete after

applying perturbations.

To generate the keyframe map, we repeat this procedure. Specifically at each

timestep the current camera must be near an existing keyframe and share a sufficient

percentage of common overlapping features; otherwise, a new keyframe is created.

After generating our keyframes, we project the landmark map into each to generate

bearing observations, and both the keyframe poses and observations are perturbed.
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Table 4.5: Average ATE and NEES over 5 Room dataset runs for different map priors and
algorithms.

Prior Algo. ATE (deg / m) NEES (3)

V
IO - - 2.603 / 0.271 3.524 / 1.591

2
D

-t
o-

2
D

0.5◦, 3cm
EKF 0.324 / 0.090 2.933 / 3.327
SKF 0.374 / 0.099 2.758 / 3.248

1.0◦, 6cm
EKF 0.442 / 0.105 3.236 / 3.698
SKF 0.518 / 0.130 2.806 / 3.466

3.0◦, 12cm
EKF 0.629 / 0.127 4.353 / 5.335
SKF 0.941 / 0.167 3.009 / 3.585

2
D

-t
o-

3D

3cm
EKF 0.051 / 0.010 5.975 / 6.586
SKF 0.064 / 0.021 2.898 / 3.188

6cm
EKF 0.068 / 0.014 8.224 / 9.292
SKF 0.087 / 0.036 2.863 / 3.210

12cm
EKF 0.079 / 0.015 9.321 / 9.472
SKF 0.122 / 0.065 2.761 / 3.175

Shown in Figure 4.14, we perform a small study on how the prior map state

size changes with the average number of feature tracks. Landmark-based maps have a

state of 3m, where m is the number of landmarks, and keyframe-based maps have 6n,

where n is the number of keyframes. The landmark map has a very linear relationship

with the average number of tracked features and grows to a very large size, which is

expected. We additionally show three keyframe prior maps with different maximum

distances between generated keyframes. For the keyframe-based maps there is a clear

advantage in state size, as the average number of tracked features increases since more

features just increase the number of observations in all keyframes. For the rest of the

experiments we select a keyframe distance of 1 meter since the state size is close to

the size of a point-based map when using 15 average features, and thus this advantage

won’t be shown.

112



Table 4.6: Average ATE and NEES over 5 Room runs for different inflation values.

γ ATE (deg / m) NEES (3) µ ATE (deg / m) NEES (3) α,β ATE (deg / m) NEES (3)

V
IO - 2.381 / 0.267 3.522 / 1.590 - 2.381 / 0.267 3.522 / 1.590 - 2.381 / 0.267 3.522 / 1.590

2D
-t

o-
2
D

1 * / * * / * 1 0.853 / 0.187 4.219 / 6.928 1,1 0.883 / 0.187 3.796 / 6.070
5 0.737 / 0.219 5.197 / 17.377 5 0.846 / 0.182 3.124 / 3.198 5,2 0.810 / 0.182 2.826 / 2.916
10 0.931 / 0.181 3.960 / 6.099 10 0.787 / 0.180 2.699 / 2.385 10,5 0.899 / 0.192 2.688 / 2.275
20 0.886 / 0.184 2.949 / 3.557 20 0.822 / 0.185 2.574 / 1.893 20,5 0.928 / 0.193 2.650 / 1.867

2D
-t

o-
3
D

1 * / * * / * 1 0.132 / 0.045 12.438 / 18.407 1,1 0.131 / 0.045 12.184 / 17.957
5 0.178 / 0.055 17.185 / 27.854 5 0.110 / 0.040 4.387 / 4.537 5,2 0.110 / 0.040 4.323 / 4.442
10 0.163 / 0.054 7.584 / 10.841 10 0.109 / 0.041 3.308 / 2.731 10,5 0.109 / 0.041 3.233 / 2.611
20 0.156 / 0.057 3.861 / 3.795 20 0.111 / 0.043 2.761 / 1.743 20,5 0.112 / 0.043 2.726 / 1.688

Table 4.7: Average RPE over the Room dataset for different prior map types and algorithms.
Units are in degrees and meters. Additionally the NEES and total time to process each image
is reported.

Algo. 40m 80m 120m 160m 200m 240m NEES (ori / pos) Time (ms)

V
IO - 0.373 / 0.088 0.536 / 0.119 0.636 / 0.141 0.717 / 0.163 0.811 / 0.175 0.888 / 0.187 3.228 / 3.796 0.8 ± 0.3

2
D

-t
o
-2

D

EKF 0.225 / 0.091 0.323 / 0.111 0.372 / 0.120 0.402 / 0.121 0.424 / 0.122 0.394 / 0.125 3.298 / 4.311 3.6 ± 1.8
SKF 0.260 / 0.097 0.339 / 0.129 0.415 / 0.146 0.448 / 0.155 0.492 / 0.167 0.542 / 0.171 3.074 / 3.596 1.4 ± 0.7

Inf. Meas. 0.276 / 0.099 0.353 / 0.134 0.449 / 0.152 0.518 / 0.163 0.531 / 0.173 0.562 / 0.180 3.016 / 3.647 0.9 ± 0.3
Inf. Marg. 0.265 / 0.091 0.350 / 0.122 0.447 / 0.142 0.520 / 0.156 0.560 / 0.169 0.613 / 0.175 2.795 / 2.784 0.9 ± 0.3

Inf. αβ 0.269 / 0.091 0.353 / 0.122 0.456 / 0.142 0.546 / 0.156 0.599 / 0.168 0.656 / 0.173 2.781 / 2.689 0.9 ± 0.3

2D
-t

o-
3D

EKF 0.041 / 0.009 0.041 / 0.009 0.041 / 0.009 0.041 / 0.009 0.041 / 0.009 0.041 / 0.009 9.612 / 7.792 5.8 ± 1.1
SKF 0.090 / 0.040 0.092 / 0.038 0.091 / 0.040 0.090 / 0.038 0.092 / 0.039 0.091 / 0.039 3.051 / 2.963 1.4 ± 0.2

Inf. Meas. 0.125 / 0.068 0.139 / 0.065 0.141 / 0.067 0.141 / 0.064 0.142 / 0.066 0.136 / 0.065 3.663 / 3.528 0.6 ± 0.1
Inf. Marg. 0.102 / 0.046 0.103 / 0.045 0.102 / 0.046 0.098 / 0.044 0.103 / 0.046 0.100 / 0.045 3.201 / 2.546 0.6 ± 0.1

Inf. αβ 0.102 / 0.047 0.103 / 0.046 0.102 / 0.047 0.098 / 0.045 0.103 / 0.046 0.100 / 0.046 3.126 / 2.437 0.6 ± 0.1
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4.5.2.2 Map Prior Noise Sensitivity

A natural question is how will the “best” estimator perform with different prior

map noises. We first investigate this using the standard EKF and SKF to see how the

accuracy is affected by the quality and uncertainty levels of the prior map. Shown in Ta-

ble 4.5, we report the VIO, which doesn’t leverage any prior map, the landmark-based

2D-to-3D map, and the keyframe-based 2D-to-2D map. The simulator parameters used

are reported in Table 4.4.

First, we can see that all the prior map methods are able to outperform the

odometry VIO method. Additionally, even at large noise levels of 12cm, both the

landmark and keyframe methods are still able to gain in both orientation and position

accuracy. Additionally, we can see that the 2D-to-3D methods greatly outperform

the 2D-to-2D method. This makes sense since the 2D-to-2D indirectly constrains the

current pose of the system through additional feature observations, while the 2D-to-

3D directly constrains all observations for a feature. It is also interesting to note that

while the EKF 2D-to-3D has very good levels of accuracy the NEES increases with

noise. We conjecture this is due to FEJ, which can introduce linearization errors at

high noise levels (the SKF hides this due to its naturally conservative covariance, see

[22] for a discussion). Given these results we pick our priors used during the rest of

the simulations, Table 4.4, as 12cm for the landmark-based map and 1 degree and 6

centimeters for the keyframe-based map with 1 pixel observation noise.

4.5.2.3 Inflation Tuning Sensitivity

A downside of the inflation methods is that their inflation multipliers need to

be tuned. The results reported in Table 4.6 look to answer if they are sensitive to

their value and determine what the optimal is. We can first see that the measurement-

based inflation, γ, requires the largest amount of inflation levels to reach consistent

estimation, and with an inflation value of 1 the estimator quickly diverged since it is

equivalent to treating the feature position as true. The amount of inflation when using

the marginal covariance µ, alpha α, and beta β inflation does not have that large of
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Figure 4.15: Runtime in milliseconds for both propagation and update without (VIO) and
with both landmark-based (PTS) and keyframe-based (KF) maps for the Room dataset.
Keyframe-based maps are reported for different max keyframe distances.

an effect on accuracy which is ideal. Additionally, there seems to be little difference

between the two. We can therefore recommend inflating using the marginal or alpha

beta covariance with a conservative (one order) multiplier (this does not guarantee

consistency). It is also important to note that while these two methods do have some

invariance to different prior map noises, the measurement inflation parameter γ highly

depends on the prior map quality. We select an inflation of γ = 20, µ = 10, α = 10,

and β = 5 for the rest of the experiments.

4.5.2.4 Map and Algorithm Comparison

We now look to compare the different prior map types and methods that in-

corporate global information. We report the results in Table 4.7. In general, we see

that the 2D-to-3D landmark-based methods are able to achieve an order of magnitude

better accuracy across all variants, with near constant error as the RPE segments grow

in length. The 2D-to-2D method is able to halve the orientation error, but the position

error has marginal improvements when compared to that of the 2D-to-3D method. The
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majority of improvements are at longer trajectory lengths of 200-240m as compared

to the shorter segments. This is likely due to the fact that it takes many historical

2D-to-2D observations to improve the state as compared to the “strong” constraint a

3D position of the feature in the 2D-to-3D method provides.

We additionally report on the right of Table 4.7 and in Figure 4.15 each method’s

average timing. The EKF takes the most time, the SKF second, and the inflation

methods all around the same.4 In Figure 4.15, we additionally show the computational

cost as we increase the average number of features and for different keyframe distance

thresholds. The 2D-to-2D (KF) methods have a near constant offset from the VIO time

as the number of average features only marginally increases the computational cost due

to more measurements. This is a clear advantage when the number of tracked features

is large. The 2D-to-3D (PTS) method quickly increases an order of magnitude slower

than VIO, which is expected as the state size dramatically grows (see Figure 4.14).

The inflation methods (INF) for both landmark and keyframe prior maps perform as

efficiently as VIO due to their near constant run-time and constant state vector size.

4.5.3 Findings and Discussions

In summary, we have investigated through simulation the: relation between

state size and the average number of features, achievable accuracy given different map

priors, sensitivity of inflation methods to their tuning parameters, and how all methods

compare in terms of accuracy, consistency, and computational cost for both 2D-to-3D

landmark and 2D-to-2D keyframe maps. We showed that even at extremely high noise

levels, in general, the 2D-to-3D maps outperform the 2D-to-2D methods in accuracy.

Keyframe maps have a computational advantage due to their state size when using a

large number of features. The marginal and alpha beta covariance inflation methods

are relatively invariant to their inflation parameters making them ideal for large en-

vironmental maps where EKF and SKF estimators become prohibitively expensive or

4 All timings were run on an Intel(R) Xeon(R) CPU E3-1505M v6 @ 3.00GHz processor
in single threaded execution.
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the loss of consistency guarantees is acceptable.

Finally, we evaluated all methods against each other and make the following

general recommendations: (1) the SKF should be used for small workspaces to ensure

consistency and achieve high accuracy levels with low computational cost, (2) keyframe-

based maps can be leveraged to reduce the computational cost while still reducing drift,

(3) for large environments and map sizes, inflation methods can practically be leveraged

with conservative inflation values.

4.6 SEVIS: Balancing Performance via Dynamic Schmidt’ing, Accuracy,

Consistency, and Relinearization

Finally we look to address the long-standing issue of the above filter’s ability

to perform relinearization. While this does not affect the case when a prior map is

being leveraged, when performing VI-SLAM odometry errors from significant periods

of exploration can build up and corrupt the incrementally built SKF maps. To ad-

dress this, here we propose a hybrid estimator which looks to combine this lightweight

filter-based SEVIS with a secondary non-linear optimization which can perform re-

linearization and correct to ensure global consistency when a large loop closure is

found. As compared to existing works which have leveraged a secondary thread to

reduce the complexity of SLAM [92, 119, 159, 160], or treat the built map as true

[100, 126, 127, 138, 141, 146, 192], we wish to still perform as consistent of estimation

while balancing this computational complexity.

A system diagram and graphical overview of the proposed system are shown

in Figure 4.16 and 4.17, respectively. At the core, we have a real-time filter-based

frontend that slowly appends environmental features into a temporal map around it.

Additionally, a novel “dynamic Schmidt’ing”, Section 4.6.1.1, methodology is proposed

which enables features to continuously be refined when re-observed but otherwise fixed

to reduce the computational burden. This naturally allows for accuracy gains with

minimal computational cost since the whole map isn’t visible at each timestep. When
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Figure 4.16: Overview of frontend odometry with a sliding window of clones and backend
which maintains a sparse keyframe pose graph. The backend contains relative factors (cyan)
computed relative to the last added keyframe {K0}. Loop-closure between keyframes uses
place recognition feature correspondences’ from which the relative transformation and un-
certainty can be found using PnP. The optimized keyframe states can then be leveraged to
provide an optimized sparse feature map which can be directly leveraged by the real-time
frontend odometry.

features have become lost they are retained for a period of time during which re-

detection of them through place recognition can allow for future feature observations

to update these historical points. This temporal map contains a mixture of features

which have a correlation with the current frontend state and are being updated (e.g.,

via EKF update), ones which track the correlation but do not get updated (e.g., via

SKF update), and ones which correlations are dropped and leverages the marginal

covariance of the feature optimized by the backend (MARG).

The backend is a non-real-time thread which optimizes a relative pose graph

containing relative optometry between sequential keyframes, and PnP loop-closure rel-

atives which reduces the long-term VIO drift. A particular focus is paid to each relative

factor to recover the odometry uncertainty in a consistent manner, Section 4.6.2.1, and

quantify the PnP uncertainty, Section 4.6.2.2. The backend enables relinearization,

and additionally allows for refined uncertainties of all keyframes to be recovered. The

uncertainty of each keyframe is then used to recover the uncertainty of anchored fea-

tures, which are not optimized to significantly reduce complexity, in the global frame

which the frontend can directly leverage, Section 4.6.2.3.
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Figure 4.17: System diagram overview of the proposed real-time frontend (green) and con-
sistent relative pose graph backend (blue). The data passed is: (1) IMU readings are both
used to propagate the frontend state forward and recover consistent relative pose factors, (2)
features are temporally tracked, (3) feature track measurements are provided to the back-
end, (4) feature descriptors are extracted and place recognition is performed to historical
keyframes, (5) new features are merged with old features if matched, (6) relative PnP and
its uncertainty is recovered, (7) relative keyframe odometry and uncertainty is recovered, (8)
optimized keyframe poses and their uncertainties are used to update the map features, (9)
the filter frontend is able to leverage optimized map features consistently, (10) low-latency
and high frequency pose is provided to downstream applications.

Remarks: This hybrid combination of EKF, SKF, MARG, and backend opti-

mization selects the strengths of each. The EKF and SKF allow for accurate estimation

which tracks the correlations between inertial and map states preventing the need to in-

troduce inflation. The use of “dynamic Schmidt’ing” additionally ensures that features,

which have tracked correlations, gain maximum information and accuracy. MARG fea-

tures are leveraged as a trade-off between accuracy and consistency with the frontend

and enable using the drift-free estimates from the backend optimization process which

supports relinearization and incorporates additional long-term loop-closures.

As compared to previous works [16, 92, 160] which either hand-tuned their

secondary pose graph uncertainties, consider a uniformly weighted graph, or do not

provide updated feature estimates and uncertainties to the frontend estimator, we

leverage the uncertainty of relative odometry poses and modeling of PnP uncertainty to

facilitate feedback of a optimized map to the lightweight odometry frontend. Our hybrid

frontend additionally enables further accuracy by allowing for recent loop-closures to

119



a temporal map without employing approximations which can hurt consistency. As

compared to the works closest to the proposed, [140, 174], we focus on providing low-

latency estimates and additionally argue that the use of the computationally cheaper

relative pose graph, as compared to full visual-inertial optimization, enables long-term

estimation on more resource-constrained devices. We additionally, focus on not making

assumptions, such as conditioning on the camera pose states in [174] when recovering

the marginal feature uncertainties or in the design of our system architecture.

4.6.1 Frontend - SEVIS-3D with Dynamic Schmidt’ing

We build off MSCKF-based VIO [112, 139] and its extension to SEVIS-3D,

Section 4.3 which incorporates prior landmark map via the SKF. Specifically, we can

define the following state of the system:

xk =
[
x>A x>S

]>
(4.30)

xA =
[
x>Ik x>C x>M x>F

]>
(4.31)

xM =
[
Gp>f1

· · · Gp>fm

]>
(4.32)

where:

xIk =
[
Ik
G q̄
> b>ωk

Gv>Ik b>ak
Gp>Ik

]>
(4.33)

xC =
[
x>Tk−1

· · · x>Tk−c

]>
(4.34)

xL =
[
Gp>f1

· · · Gp>fd

]>
(4.35)

xTi =
[
Ii
Gq̄
> Gp>Ii

]>
(4.36)

where we define the “active” state xA and a temporal map of m historical features xF

for which we can loop-close to.

As compared to SEVIS-3D, some of these features will be out-of-state features

for which only their marginal covariance will be tracked and updated through marginal

inflation from Section 4.5.1.4. While we lose the guarantee of consistency and instead

rely on the invariance of the inflation parameter, these features will be optimized in
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Figure 4.18: Example covariance reordering between an un-Schmidt’ed and Schmidt’ed state
element. The two elements (green and red) are able to efficiently swap places through the
use of a temporary variable. No covariance resizes or state reordering needs to be performed.

the secondary background thread and their uncertainties updated to properly capture

the uncertainty of the prior map. A perspective is that the secondary thread performs

optimization of a prior map of features which are uncorrelated with the current state

due to the length of time which has passed and whose uncertainty is recovered to

capture the true errors in such an optimized prior map.

4.6.1.1 Dynamic Schmidt’ing via State Re-Ordering

A novel contribution is the use of dynamic Schmidt’ing of state elements allowing

for information gain and optimization of observed map features. Map features which

have been observed in the latest frame and have measurements that will be used for

the update are un-Schmidt’ed and updated though the standard EKF Eq. (4.7). When

map features are no longer observed, they are re-Schmidt’ed to improve the estimator’s

computational efficiency.

As shown in Figure 4.18, this is achieved through an efficient pair-wise swapping
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between an un-Schmidt’ed which was previously observed, and Schmidt’ed map feature

which has been recently re-observed. This efficient process enables a small local map of

features to be updated (only a small subset of map features are observed in the current

frame), while the correlations with other map features to still be tracked for future use

through the efficient SKF update step. Specific details and full analysis can be found

in Appendix E.5.

4.6.2 Backend – Secondary Optimization

Many long-term visual-inertial localization systems leverage the high frequency

frontend and non-real-time backend design philosophy which prevents the computa-

tional complexity of the frontend from growing over time (it remains a small sliding

window odometry) and allows for the backend to perform re-linearization and costly

non-real-time graph optimization [10, 16, 92, 146, 159, 160]. The downside is that

states corrected with global loop-closure information are either treated as true or are

not leveraged by the frontend odometry to improve performance and limit drift, thus

causing information to only flow from the frontend to the backend (e.g., a decoupled

paradigm, Appendix F.3). We present a different method for secondary backend opti-

mization which focuses on accurately modeling of relative pose uncertainties to enable

feedback to the frontend estimator in a consistent manner.

To reduce the complexity and redundancies of the secondary pose graph, we

perform keyframing. Keyframes are inserted based on a series of heuristics including:

fixed frequency, max orientation and distance between, and a minimum number of com-

mon features. Specifically we minimize the keyframe pose set K that are constrained

by the relative pose set M:

argmin
xTi∈K

∑
(i,j)∈M

∣∣∣∣∣∣ rij(xTi ,xTj)
∣∣∣∣∣∣2

Pr,ij
(4.37)

where Pr,ij is the relative 6 DoF uncertainty of the relative pose measurement. We can

perform iterative optimization by linearizing at the current state estimates.(∑
H>P−1

r,ijH
)
δx =

∑
H>P−1

r,ijrij (4.38)
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Figure 4.19: Measurements between the two keyframes are used to recover the relative in-
formation from T0 to T2. All inertial states and features are transformed into the T0 frame,
which allows for its pose to be fixed. All states besides the last pose are then marginalized
to recover the relative marginal information.

The relative measurement residual cost and its Jacobian in respect to its two poses are

defined as:

rij(xTi ,xTj) =

 −log(
Ij
GRIi

GR>)

Ij
GR(GpIi − GpIj)

 (4.39)

Hij =

−IjIiR 03 I3 03

03
Ij
GR

⌊
IjpIi×

⌋
−IjGR

 (4.40)

The gauge freedom of a relative pose graph is 6 DoF, which can be addressed by

fixing the first pose of the system. Alternatively, optimization of just a 4 DoF graph

could be performed to take into account the observability of roll and pitch in VINS

[160], but this introduces further errors due to treating the roll and pitch of the platform

as true with zero error. We optimize using Ceres Solver [1]. Another key advantage

to not estimating features, which can lose rank under insufficient observations, is we

directly leverage the sparse QR covariance recovery method within Ceres as compared

to a dense SVD which is prohibitively expensive.

4.6.2.1 Frontend Odometry Relative Recovery

Each keyframe is connected with a relative odometry factor based on the fron-

tend relative clone estimates. These factors thus contain the visual and inertial in-

formation used to update the frontend state, and we drop the correlations between

the frontend estimates and backend relative measurements. To construct a relative,

123



the two global poses from the last added keyframe, xT1 , and to-be-added keyframe,

xTN ∈ xC , need to be transformed into {IN} relative frame. IN
I1

R

I1pIN

 =

 IN
G RI1

GR>

I1
GR(GpIN − GpI1)

 (4.41)

We now wish to compute the uncertainty of this relative transformation. One

could directly leverage the covariance estimated by the frontend, but as shown in the

later Section 4.6.3.3 simulation experiments, this directly leads to the backend becom-

ing overconfident due to the non-independent nature of sequential relative poses. De-

tails on how this marginal covariance could be recovered from the frontend covariance

is explained in Appendix F.2. This method additionally would couple the frontend to

the backend probabilistically and the sequential relative pose factors, which are highly

correlated, can cause the backend keyframes to be overconfident. An alternative is to

leverage a NFR [133, 190] method which enforces consistency [43, 81, 193]. While these

methods can work, they solve an additional optimization problem, increasing computa-

tion, and we found their covariances to be overly conservative (they do not necessarily

“tightly” bound the true uncertainty causing degradation of backend accuracy).

To address the aforementioned issues, we finally converged on leveraging a

mythology similar in spirit to C-KLAM [147]. C-KLAM decouples sequential marginal

information between keyframes by dropping common feature correspondences (loss of

information) to retain sparsity in their optimization. Importantly, the dropping of in-

formation remains consistent in nature. To apply this to our problem, we first collect

all IMU and feature observations between the two desired keyframes, thus causing a

drop of information as features are considered independent from observations outside

of these two keyframes (see Figure 4.19). Next, the frontend state estimates are trans-

formed into the first keyframe frame of reference such the last inertial state is the

desired relative pose between the two keyframes and the first pose at xrT1
can be fixed
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since it is a known identity. Specifically, the i’th inertial state is:

xrIi =



Ii
I1
q̄

I1pIi
I1vIi

bg,i

ba,i


=



Ii
Gq̄ ⊗

I1
G q̄
−1

I1
GR(GpIi − GpI1)

I1
GRGvIi

bg,i

ba,i


(4.42)

and the gravity required for relative preintegration [40] and j’th feature are:

I1g = I1
GRGg (4.43)

I1pfj = I1
GR(Gpfj − GpI1) (4.44)

Then a classical batch-MLE visual-inertial problem is formulated using the in-

ertial and feature observations:

C =
N∑
i=1

1

2

∣∣∣∣∣∣xrIi+1
� f(xrIi ,

I1g, ak,ωk)
∣∣∣∣∣∣2

Qi

+
∑

zi,j∈Z1:N

1

2

∣∣∣∣∣∣zij � h(xrIi ,
I1pfj)

∣∣∣∣∣∣2
Rij

(4.45)

where the set Z1:N denotes all measurements that occurred between the two keyframes.

The information hessian of this problem is then recovered after linearization and

marginalization of states are performed.

A =

ANN ANX

AXN AXX

 (4.46)

where we have denoted all other states as the “X” sub-script and the desired xrTN =

[INI1 q̄
> I1p>IN ]> as “N”. The block-diagonal structure of the environmental features is

leverage to efficiently marginalize them [66], which is followed by the marginalization

of all states (including the relative velocity and biases at {I1}) besides the last frame’s

pose xrTN .

P−1
r,1N := Ar,1N = ANN −ANXA−1

XXAXN (4.47)

This recovered marginal information can now be directly used to weight the relative

transformation, see Eq. (4.37), between each keyframe.
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Figure 4.20: Frames involved in the PnP problem. The camera {C} to keyframe {K} pose is
recovered through PnP. We wish to have the uncertainty between the keyframe and inertial
frame {I} which is rigidly connected to the camera.

4.6.2.2 PnP-based Relative Loop-closures

When keyframes are added to the secondary pose graph, their loop-closure in-

formation with prior keyframes is leveraged (e.g., DBoW2 [53], CALC [136, 137], or

placeless [125] could be leveraged, see [180]). Given a match between the current

keyframe and a historical keyframe, we wish to construct a relative pose measurement

between the two and also recover the uncertainty of this relative transformation. To

find the relative transform we use RANSAC Lambda twist PnP solver [156] which

allows for recovery of the relative pose between the historical keyframe 3d feature

pointcloud and the matched feature 2d coordinates of the newest keyframe (one could

leverage an uncertainty aware PnP [191]).

Now we can derive how to recover the uncertainty of this PnP transformation.

This process is similar in mythology to the closed-form recovery of 3D ICP covariance

[157]. The frame of references involved are overview in Figure 4.20. We wish to recover

the uncertainty of the keyframe to inertial frame transformation using the inlier set of

features. There are two sources of error: (1) the feature observations from {C} and

(2) the 3d position of the features in the keyframe. We can define these as:

zk = h(IKR, IpK ,
Kpf ) + nk (4.48)

Kpf,m = Kpf + np (4.49)

The uncertainty of the feature in the keyframe, np ∼ N (0,Rp), is provided by the

frontend if the feature is a SLAM feature or can be set to a fixed inflation value
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otherwise (e.g., 0.5cm position noise). The visual feature measurement model is defined

similarly to Eq. (2.49) as follows:

zk = Λ(Cpf ) + nk (4.50)

Cpf = C
I RI

KRKpf + C
I RIpK + CpI (4.51)

We can formulate a weighted minimization problem as:

argmin
(IKR,IpK ,Kpf )

∑∣∣∣∣ zk − h(IKR, IpK ,
Kpf )

∣∣∣∣2
σ2
pixI2

+
∣∣∣∣ Kpf,m − Kpf

∣∣∣∣2
Rp

(4.52)

The uncertainty of the state transform after marginalization of the feature Kpf can be

shown to be the following:

Pr,KI =
(∑

H>x
(
σ2
pixI + HfRpH

>
f

)−1
Hx

)−1

(4.53)

where we have defined the following Jacobians:

Hx = Hπ

[
C
I R

⌊
I
KRKpf×

⌋
C
I R
]

Hf = Hπ
C
I RI

KR , Hπ =
1

z

1 0 −x/z

0 1 −y/z


This derivation is specific to the single-view problem. This uncertainty was verified in

simulation to be consistent in nature. After the covariance of the PnP transform is

recovered, the factor is appended to the relative pose graph and optimized.

4.6.2.3 Frontend Feedback

Marginalized features are not estimated to reduce the complexity of the estima-

tion problem. To allow for corrections in the keyframe states to improve the feature

map, we anchor features in their closest keyframe state. One can argue that the esti-

mate of the feature in a keyframe should have sufficient accuracy as compared to their

global estimate which can be biased by odometry drift. To recover the current best

estimate for a feature anchored in the keyframe {K} we can do the following:

Gpf,opt = K
GR>opt

Kpf,vio + GpK,opt (4.54)
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To recover the uncertainty of the 3D features, we leverage a marginal estimate of the

feature in the last seen keyframe Pf,A computed by the frontend before marginalization

of the feature from the state. This uncertainty, along with the uncertainty of the

keyframe in the secondary graph can then the approximately propagated as:

Pf,G ' Hf,GA

PKK 06×3

03×6 Pf,A

H>f,GA (4.55)

Hf,GA =
[
−KGR>opt

⌊
Kpf,vio×

⌋
I3

K
GR>opt

]
The covariance of the optimized keyframes, PKK , can be recovered using Ceres Solver

[1] and is the most costly part of the secondary optimization process.

Remarks: We contrast this against the methods by Mourikis and Roumelio-

tis [140] and Sartipi et al. [174] which perform a full VI-BLS which optimizes both

keyframes and feature estimates. This optimization problem quickly grows to become

computationally infeasible, especially with a large amount of features. Sartipi et al.

[174] address this by optimizing a sub-section of the trajectory and fixing it after the

computational cost exceeds 6 seconds, but then requires trajectory segments to be

aligned introducing errors. Additionally, to reduce the complexity of recovering the

covariance of environmental features, they treat the observing camera pose as true and

recover the conditional uncertainty of the feature given its pose, possibly introducing

large errors if the poses are not sufficiently accurate.

The proposed relative pose graph is more computationally efficient (can be

solved through sparse methods due to being well-constrained and is smaller in size)

compared to VI-BLS, and additionally recovers the uncertainty of the keyframe pose,

which is then leveraged to recover the uncertainty of the feature in the global. As

shown in the later experiments, Section 4.6.3, this backend is both consistent and effi-

cient and enables the reconstruction of a consistent sparse point map online. While we

allow or pose graph to grow over time due to its efficiency, in the future we will investi-

gate approaches which perform marginalization and sparsification on this relative pose

graph to bound its complexity [17, 30, 85], but the main focus of this manuscript is
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Table 4.8: Simulation parameters and prior standard deviations that perturbations of mea-
surements were drawn from.

Parameter Value Parameter Value

Gyro. White Noise 1.6968e-04 Gyro. Rand. Walk 1.9393e-05
Accel. White Noise 2.0000e-3 Accel. Rand. Walk 3.0000e-3

Avg. Feats 40 Avg. Feats Map 20
Num. SLAM 15 Camera Noise (px) 1

Cam Freq. (hz) 10 IMU Freq. (hz) 400
KF Max Dist (m) 1.0 KF Max Ori (deg) 50.0

KF Com. Feat. (%) 50.0 Inflation µ 500
Num. Clones 11 Feat. Rep. GLOBAL

Figure 4.21: Small-scale long-term Room trajectory (left) and two floor Spencer lab trajec-
tory (right). Both were generated from a visual-inertial odometry method, and thus provide
realistic hand-held motion. The Room dataset has 669 map points, is 748 meters in length,
and has an average velocity of 1.37 m/s. The Spencer dataset has 2093 map points, is 1612
meters in length, and has an average velocity of 1.35 m/s.

to investigate how feedback can be leveraged. This can be done since marginalization

and sparsification can be done consistently [43, 81, 193].

4.6.3 Simulation Results

We performed a series of detailed simulations to validate the design decisions

of the proposed system. We employ the OpenVINS simulator to generate realistic

visual-bearing and inertial measurements from the real-world trajectory generated by

an existing VINS (see Figure 4.21). We consider two trajectories, one small-scale,

the other a much larger multi-floor dataset, to contrast the inherited odometry drift
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which can affect the consistency of the inflation-based measurement update, see Sec-

tion 4.5.1.4, and thus motivating the need to leverage secondary optimization to ensure

global consistency of the estimator. Simulation parameters used are documented in Ta-

ble 4.8. First-estimates Jacobians (FEJ) [83, 84] were used to improve the estimator

consistency as the use of environmental landmarks is known to introduce inconsistent

information gains. For metrics we report the Absolute Trajectory Error (ATE), Nor-

malized Estimation Error Squared (NEES), and Relative Pose Error (RPE) through-

out the different experiments (see [221] and [4]). NEES’s magnitude should match

the 3 DoF orientation and position state sizes. All timings were run on an Intel(R)

Xeon(R) CPU E3-1505M v6 @ 3.00GHz processor with single-threaded frontend esti-

mation. The backend optimization was optimized using Ceres Solver [1] with a max

of 6 threads. Place recognition (loop-closure) to historical keyframes through feature

matching was simulated by selecting the closest keyframe and finding correspondences

using groundtruth labels (thus perfect matching). Note that a subset of the active

feature tracks, see Table 4.8, are considered map points to ensure that there are always

non-map features available.

In simulation we compare against two different baselines: a Covariance Intersec-

tion (CI)-based frontend, and decoupled backend thread which does not perform any

feedback of information to the frontend when used. The details of the CI-based EKF is

discussed in Appendix F.1, while the decoupled backend is described in Appendix F.3.

The CI method was hand-tuned to have a weight of w0 = 0.993 for the non-map states

while the map states were equally distributed with the remaining weight such that all

weights together sum to one. The CI feature map is not updated by the frontend and

remains fixed.

4.6.3.1 Experiment 1: Impact of Dynamic Schmidt’ing

The first investigation is how the proposed dynamic Schmidt’ing can impact

the estimation performance and map quality. To isolate the impact of this process

from the incremental map-building SLAM problem, we provide the map a priori to
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the estimator with known uncertainty bounds. If the estimator performs dynamic

Schmidt’ing then the prior map can be improved, otherwise its mean and uncertainty

will remain fixed through the standard SKF methodology. Details on how the simulated

map was generated can be found in Section 4.5 and technical report [62, 63]. From a

high level, a series of keyframes are generated with a random set of features, from which

the feature bearing and depth are perturbed from the given feature distribution. The

feature means and covariance are then transformed into the global frame and provided

as a global map with uncertainty to the estimator.

The results have been tabulated in Table 4.9 for different prior map noise levels.

First we can see that the EKF method which optimizes the map is able to have the

most accurate trajectory and map. Additionally, we can see that all methods are able

to outperform the VIO method which does not leverage any loop-closure information.

As the maps get more uncertain, the accuracy of methods which do not allow for the

map to be updated are hurt significantly as compared to ones that do. We can conclude

that the trajectory accuracy performance of the methods which do not improve the

given a priori map (e.g. Fixed-SKF, CI, Inf. Marg) is limited by the quality of the

map. EKF and Dynamic-SKF-based methods are able to improve the trajectory and

map accuracy but have a very small increase in trajectory error which we equate to

poor linearization points leveraged via FEJ (over ∼ 20cm of linearization errors are

likely introduced just from the features) [22].

It can be seen that the use of dynamic Schmidt’ing has improved performance

which can nearly reach the level of full EKF state estimation. The accuracy doesn’t

reach the EKF exactly, as features are only un-Schmidt’ed when observed, thus correla-

tions from other feature updates will not be able to correct feature estimates when they

are not observed. We can also see that for the proposed hybrid method SKF+Marg.

the inclusion of more SKF features at 25% has a clear improvement of performance

while having more features in the Marg. state, which are updated through the mea-

surement inflation method presented in Section 4.5.1.4, has an accuracy drop but large

computational advantages. A mix between these two can provide the best of both and
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is our aim.

Looking at the baseline CI map-based method, detailed in Appendix F.1, it

is able to perform with accuracy near that of the inflation method with an overly

conservative covariance (small NEES). We can see that when CI is combined with a

mixture of SKF features, the performance of the estimator actually becomes worse than

CI itself. This is counter-intuitive. One can think about how the CI update will affect

SKF feature uncertainties. It will increase the uncertainty of the SKF map features,

which are unable to reduce their uncertainty due to the SKF update, see Eq. (4.10).

This means that all SKF features become more and more uncertain as CI updates are

performed, losing significant amounts of information. This causes the system with high

amounts of SKF features, +CI (25%) with 75% of the map being SKF map features,

to perform far worse than a method with only a few SKF features, +CI (25%) where

only 25% of the map is SKF. Thus we can’t recommend the combined hybrid use of

the SKF and CI within an estimator due to this effect.

4.6.3.2 Experiment 2: Hybrid Estimators’ Complexity-Accuracy Trade-off

We now focus on the proposed hybrid estimator which combines the SKF and

Marg. feature inflation updates. The key question to ask is if this combination allows

for the benefit of higher accuracy due to tracking of correlations of some features, while

a reduction in computation with a small accuracy loss due to using the Marg. feature

inflation. The proposed hybrid method was tested with different ratios of SKF to Marg.

with a higher percentage representing more features being in the Marg. map state. The

results shown in Table 4.10 are for different numbers of max map points allowed for

each method. The map was built online for all methods, but the Fixed-SKF and Marg.

methods are unable to improve the feature estimates once inserted into the map (i.e.

incremental map building). When the map reaches its max capacity, a random feature

from the map is removed to make room for the to-be-inserted newly inserted SLAM

feature.
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Table 4.9: Average ATE over 5 dataset runs of the Room dataset for different map priors and
algorithms.

Algorithm ATE (deg / m) NEES (3) Map Pts (cm) Time (s)

VIO 1.256 / 0.154 2.500 / 3.630 - 0.0037 ± 0.0010

0.
5◦

,
12

cm
F

ea
t.

P
ri

o
r

EKF 0.027 / 0.003 3.153 / 3.514 0.792 ± 2.640 0.0878 ± 0.0030
CI 0.221 / 0.033 0.167 / 0.117 10.580 ± 6.567 0.0022 ± 0.0003

Inf. Marg. 0.191 / 0.034 2.088 / 0.643 10.580 ± 6.567 0.0019 ± 0.0003

F
ix

ed
S
K

F

SKF 0.073 / 0.012 3.067 / 3.484 10.580 ± 6.567 0.0118 ± 0.0011
+CI (25%) 0.340 / 0.058 0.468 / 0.281 10.580 ± 6.567 0.0081 ± 0.0009
+CI (50%) 0.262 / 0.044 0.264 / 0.194 10.580 ± 6.567 0.0048 ± 0.0006
+CI (75%) 0.216 / 0.034 0.203 / 0.146 10.580 ± 6.567 0.0026 ± 0.0004

+Marg. (25%) 0.079 / 0.013 3.039 / 3.508 10.580 ± 6.567 0.0078 ± 0.0009
+Marg. (50%) 0.092 / 0.016 3.158 / 3.655 10.580 ± 6.567 0.0045 ± 0.0006
+Marg. (75%) 0.106 / 0.021 2.900 / 3.388 10.580 ± 6.567 0.0023 ± 0.0003

D
y
n
.

S
K

F SKF 0.033 / 0.003 3.535 / 3.753 0.852 ± 2.620 0.0257 ± 0.0083
+Marg. (25%) 0.034 / 0.004 3.142 / 3.944 3.339 ± 5.878 0.0141 ± 0.0042
+Marg. (50%) 0.040 / 0.004 3.285 / 3.447 5.752 ± 7.013 0.0069 ± 0.0016
+Marg. (75%) 0.046 / 0.005 2.860 / 3.227 8.232 ± 7.262 0.0028 ± 0.0005

1
.0

◦ ,
24

cm
F

ea
t.

P
ri

or

EKF 0.033 / 0.003 3.615 / 4.127 1.583 ± 5.589 0.2426 ± 0.0063
CI 0.345 / 0.052 0.120 / 0.087 21.160 ± 13.136 0.0037 ± 0.0004

Inf. Marg. 0.316 / 0.059 2.107 / 0.677 21.160 ± 13.136 0.0033 ± 0.0003

F
ix

ed
S
K

F

SKF 0.129 / 0.022 3.635 / 3.849 21.160 ± 13.136 0.0291 ± 0.0014
+CI (25%) 0.538 / 0.090 0.390 / 0.238 21.160 ± 13.136 0.0203 ± 0.0012
+CI (50%) 0.416 / 0.070 0.210 / 0.159 21.160 ± 13.136 0.0117 ± 0.0011
+CI (75%) 0.339 / 0.052 0.153 / 0.115 21.160 ± 13.136 0.0062 ± 0.0007

+Marg. (25%) 0.137 / 0.024 3.518 / 3.830 21.160 ± 13.136 0.0189 ± 0.0011
+Marg. (50%) 0.162 / 0.030 3.649 / 3.870 21.160 ± 13.136 0.0111 ± 0.0011
+Marg. (75%) 0.175 / 0.038 3.063 / 3.529 21.160 ± 13.136 0.0059 ± 0.0007

D
y
n
.

S
K

F SKF 0.041 / 0.004 4.020 / 4.625 1.658 ± 5.533 0.0378 ± 0.0092
+Marg. (25%) 0.046 / 0.006 3.597 / 5.499 6.626 ± 11.780 0.0273 ± 0.0063
+Marg. (50%) 0.052 / 0.006 3.551 / 4.099 11.452 ± 14.102 0.0148 ± 0.0032
+Marg. (75%) 0.059 / 0.007 2.915 / 3.239 16.440 ± 14.572 0.0069 ± 0.0010
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Table 4.10: Average RPE over 5 runs of the Room dataset for different map sizes lengths.
RPE units are in degrees and meters. The map is built incrementally and not improved
unless Dynamic-SKF is leveraged.

Map Size 40m 80m 120m 160m 200m 240m NEES (ori / pos) Map Pts (cm) Time (s)

VIO - 0.445 / 0.044 0.607 / 0.062 0.701 / 0.074 0.820 / 0.086 0.919 / 0.094 1.006 / 0.102 2.407 / 2.723 - 0.0040 ± 0.0011

In
f.

M
a
rg

. 100pts 0.132 / 0.030 0.185 / 0.035 0.232 / 0.038 0.273 / 0.042 0.302 / 0.043 0.325 / 0.044 5.435 / 7.820 7.185 ± 3.782 0.0046 ± 0.0010
200pts 0.130 / 0.033 0.163 / 0.035 0.189 / 0.036 0.210 / 0.037 0.219 / 0.037 0.224 / 0.037 5.405 / 4.846 5.843 ± 3.147 0.0043 ± 0.0008
300pts 0.129 / 0.035 0.152 / 0.036 0.165 / 0.036 0.176 / 0.037 0.181 / 0.037 0.187 / 0.036 5.496 / 4.114 5.675 ± 3.036 0.0044 ± 0.0007
400pts 0.137 / 0.038 0.169 / 0.039 0.188 / 0.039 0.198 / 0.040 0.199 / 0.040 0.202 / 0.039 5.316 / 3.205 5.527 ± 3.222 0.0043 ± 0.0006

F
ix

ed
S
K

F 100pts 0.078 / 0.011 0.084 / 0.011 0.085 / 0.011 0.088 / 0.011 0.088 / 0.011 0.089 / 0.011 1.951 / 0.704 2.509 ± 2.061 0.0052 ± 0.0012
200pts 0.072 / 0.011 0.076 / 0.011 0.078 / 0.011 0.080 / 0.011 0.081 / 0.012 0.079 / 0.012 2.028 / 0.679 2.709 ± 2.123 0.0063 ± 0.0015
300pts 0.073 / 0.011 0.074 / 0.011 0.076 / 0.011 0.080 / 0.011 0.082 / 0.012 0.085 / 0.012 2.156 / 0.702 2.893 ± 2.242 0.0073 ± 0.0020
400pts 0.076 / 0.012 0.080 / 0.012 0.081 / 0.012 0.083 / 0.012 0.085 / 0.013 0.087 / 0.013 2.110 / 0.765 3.096 ± 2.459 0.0086 ± 0.0026

F
ix

ed
H

y
-

b
ri

d

200pts (25%) 0.082 / 0.013 0.098 / 0.013 0.112 / 0.014 0.124 / 0.015 0.133 / 0.015 0.141 / 0.016 5.151 / 2.558 3.234 ± 2.550 0.0063 ± 0.0014
200pts (50%) 0.078 / 0.013 0.086 / 0.013 0.094 / 0.013 0.102 / 0.014 0.105 / 0.014 0.106 / 0.015 3.305 / 2.746 3.381 ± 2.612 0.0056 ± 0.0011
200pts (75%) 0.091 / 0.016 0.100 / 0.015 0.110 / 0.016 0.114 / 0.016 0.115 / 0.016 0.117 / 0.017 4.711 / 3.728 3.340 ± 2.656 0.0049 ± 0.0009

D
y
n
.

S
K

F 100pts 0.059 / 0.007 0.064 / 0.007 0.065 / 0.008 0.067 / 0.008 0.069 / 0.008 0.068 / 0.008 2.058 / 0.465 1.639 ± 1.511 0.0067 ± 0.0017
200pts 0.049 / 0.006 0.052 / 0.006 0.052 / 0.006 0.055 / 0.006 0.058 / 0.006 0.057 / 0.007 2.027 / 0.380 1.210 ± 0.973 0.0088 ± 0.0024
300pts 0.048 / 0.006 0.050 / 0.005 0.051 / 0.006 0.053 / 0.006 0.054 / 0.006 0.054 / 0.006 2.126 / 0.373 1.000 ± 0.578 0.0108 ± 0.0034
400pts 0.046 / 0.005 0.048 / 0.005 0.049 / 0.005 0.051 / 0.005 0.053 / 0.006 0.053 / 0.006 2.099 / 0.357 0.944 ± 0.533 0.0127 ± 0.0048

D
y
n
.

H
y
-

b
ri

d

200pts (25%) 0.061 / 0.007 0.066 / 0.007 0.071 / 0.007 0.075 / 0.007 0.077 / 0.008 0.079 / 0.008 3.814 / 3.026 1.565 ± 1.132 0.0085 ± 0.0022
200pts (50%) 0.062 / 0.007 0.069 / 0.007 0.072 / 0.007 0.075 / 0.008 0.075 / 0.008 0.074 / 0.008 5.807 / 9.440 1.814 ± 1.234 0.0073 ± 0.0018
200pts (75%) 0.068 / 0.010 0.074 / 0.010 0.076 / 0.010 0.079 / 0.010 0.078 / 0.010 0.077 / 0.011 6.949 / 16.017 2.518 ± 1.719 0.0059 ± 0.0012

Table 4.11: Average factor and state errors of a representative run on the Spencer dataset for
different relative pose frequencies. ATE is in units of degrees and meters with the pose NEES
also being reported. The frontend does not leverage a map (e.g. it is VIO). The backend
is the proposed relative pose graph with only relative pose uncertainty from VIO (MARG),
equal weighted relative (EQUAL), or proposed relative C-KLAM method (C-KLAM).

Algo. Rel. ATE NEES(6) # PnP ATE NEES(6) # Kfs ATE NEES(6) Apf NEES(3) Gpf NEES(3)

W
it

h
ou

t
L

C

MARG-0.3hz 0.030 / 0.010 6.430 538 - - - 0.585 / 0.284 13.382 0.029 3.037 0.203 3.075
MARG-0.5hz 0.026 / 0.009 6.530 672 - - - 0.599 / 0.290 15.213 0.029 3.037 0.211 3.595
MARG-1.0hz 0.019 / 0.006 6.339 1094 - - - 0.629 / 0.316 19.415 0.029 3.037 0.223 4.696

C-KLAM-0.3hz 0.030 / 0.010 6.430 538 - - - 0.585 / 0.284 1.416 0.029 3.037 0.203 0.360
C-KLAM-0.5hz 0.026 / 0.009 6.530 672 - - - 0.599 / 0.290 1.160 0.029 3.037 0.211 0.326
C-KLAM-1.0hz 0.019 / 0.006 6.339 1094 - - - 0.629 / 0.316 0.638 0.029 3.037 0.223 0.182

W
it

h
P

n
P

L
C

MARG-0.3hz 0.030 / 0.010 6.430 538 0.324 / 0.018 9.572 63 0.397 / 0.130 9.752 0.029 3.037 0.135 6.158
MARG-0.5hz 0.026 / 0.009 6.530 672 0.336 / 0.020 11.109 92 0.260 / 0.056 9.219 0.029 3.037 0.070 6.104
MARG-1.0hz 0.019 / 0.006 6.339 1094 0.316 / 0.018 9.428 162 0.225 / 0.042 11.366 0.029 3.037 0.059 8.307

C-KLAM-0.3hz 0.030 / 0.010 6.430 538 0.324 / 0.018 9.572 63 0.274 / 0.108 1.170 0.029 3.037 0.108 0.769
C-KLAM-0.5hz 0.026 / 0.009 6.530 672 0.336 / 0.020 11.109 92 0.188 / 0.048 2.738 0.029 3.037 0.063 2.532
C-KLAM-1.0hz 0.019 / 0.006 6.339 1094 0.316 / 0.018 9.428 162 0.209 / 0.037 1.664 0.029 3.037 0.055 1.751

EQUAL-0.3hz 0.030 / 0.010 - 538 0.324 / 0.018 - - 0.356 / 0.139 - 0.029 - 0.125 -
EQUAL-0.5hz 0.026 / 0.009 - 672 0.336 / 0.020 - - 0.437 / 0.096 - 0.029 - 0.114 -
EQUAL-1.0hz 0.019 / 0.006 - 1094 0.316 / 0.018 - - 0.492 / 0.093 - 0.029 - 0.106 -
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Table 4.12: Average ATE over 5 runs of the Spencer dataset for different relative pose
frequencies. The frontend does not leverage a map (e.g. it is VIO). The non-VIO pose and
uncertainty is of the backend reported using the decoupled pose recovery (see Appendix F.3).

Algo. ATE (deg/m) NEES(3) Time (s)

VIO - 1.349 / 0.362 2.826 / 5.450 0.0083 ± 0.0020

W
it

h
ou

t
L

C

MARG-0.3hz 1.425 / 0.471 16.851 / 1.673 0.0413 ± 0.0276
MARG-0.5hz 1.429 / 0.500 20.449 / 1.863 0.0525 ± 0.0368
MARG-1.0hz 1.427 / 0.509 26.954 / 2.028 0.1010 ± 0.0775

C-KLAM-0.3hz 1.425 / 0.471 1.305 / 0.755 0.0964 ± 0.0426
C-KLAM-0.5hz 1.305 / 0.490 1.466 / 0.753 0.0876 ± 0.0389
C-KLAM-1.0hz 1.427 / 0.509 0.630 / 0.524 0.1181 ± 0.0777

W
it

h
P

n
P

L
C

MARG-0.3hz 0.961 / 0.245 18.681 / 0.556 0.0569 ± 0.0445
MARG-0.5hz 0.633 / 0.153 18.761 / 0.272 0.0836 ± 0.0693
MARG-1.0hz 0.732 / 0.175 26.424 / 0.425 0.1899 ± 0.1694

C-KLAM-0.3hz 0.872 / 0.228 1.892 / 0.320 0.1129 ± 0.0559
C-KLAM-0.5hz 0.450 / 0.119 1.826 / 0.242 0.1189 ± 0.0713
C-KLAM-1.0hz 0.563 / 0.140 0.978 / 0.164 0.2087 ± 0.1716

EQUAL-0.3hz 0.968 / 0.245 - 0.0567 ± 0.0445
EQUAL-0.5hz 0.760 / 0.168 - 0.0831 ± 0.0690
EQUAL-1.0hz 0.740 / 0.158 - 0.1912 ± 0.1714
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Table 4.13: Average RPE over 5 runs of the Spencer dataset for different algorithms. RPE
units are in degrees and meters, with a max total of 400 map features being leveraged.
Dynamic Schmidt’ing is used for all methods which have SKF features. The backend relative
pose optimization uses a clone rate of 0.5Hz and the proposed relative C-KLAM for all
methods. We show the configurations for frontend estimation without feedback (F), backend
without feedback (B), frontend leveraging the optimized backend map (F+B(F)), and backend
leveraging the frontend which leverages the optimized backend map (F+B(B)).

Algo. Config 40m 80m 120m 160m 200m 240m NEES (ori/pos) Time (s)

VIO
F 0.278 / 0.067 0.404 / 0.101 0.476 / 0.125 0.536 / 0.144 0.596 / 0.164 0.645 / 0.181 2.962 / 4.968 0.0084 ± 0.0020
B 0.254 / 0.069 0.304 / 0.089 0.329 / 0.100 0.344 / 0.096 0.350 / 0.086 0.351 / 0.080 1.827 / 0.242 0.1046 ± 0.0559

EKF
F 0.075 / 0.020 0.079 / 0.023 0.078 / 0.024 0.080 / 0.025 0.080 / 0.025 0.080 / 0.025 2.175 / 1.095 0.0789 ± 0.0296
B 0.126 / 0.023 0.132 / 0.030 0.136 / 0.033 0.139 / 0.033 0.136 / 0.028 0.133 / 0.025 1.139 / 0.288 0.3713 ± 0.2561

SKF
F 0.087 / 0.022 0.094 / 0.026 0.094 / 0.028 0.100 / 0.029 0.097 / 0.029 0.099 / 0.028 2.128 / 1.274 0.0285 ± 0.0085
B 0.141 / 0.028 0.151 / 0.035 0.155 / 0.038 0.155 / 0.038 0.150 / 0.033 0.148 / 0.029 2.155 / 0.375 0.3739 ± 0.2569

Inf. Marg.

F 0.152 / 0.043 0.213 / 0.057 0.265 / 0.069 0.309 / 0.082 0.352 / 0.092 0.394 / 0.102 11.434 / 64.794 0.0085 ± 0.0020
F+B (F) 0.183 / 0.058 0.237 / 0.077 0.263 / 0.084 0.285 / 0.084 0.293 / 0.078 0.305 / 0.070 3.804 / 6.512 0.0101 ± 0.0023

B 0.244 / 0.069 0.283 / 0.085 0.302 / 0.091 0.310 / 0.090 0.312 / 0.080 0.319 / 0.077 2.051 / 1.202 0.1010 ± 0.0526
F+B (B) 0.239 / 0.071 0.286 / 0.088 0.307 / 0.097 0.319 / 0.095 0.321 / 0.085 0.321 / 0.079 1.688 / 1.002 0.1006 ± 0.0519

SKF+Marg.
(50%)

F 0.112 / 0.028 0.140 / 0.037 0.164 / 0.045 0.185 / 0.048 0.203 / 0.052 0.227 / 0.055 4.868 / 15.249 0.0197 ± 0.0046
F+B (F) 0.126 / 0.033 0.154 / 0.042 0.165 / 0.047 0.174 / 0.048 0.179 / 0.048 0.185 / 0.047 3.311 / 3.644 0.0173 ± 0.0043

B 0.147 / 0.032 0.158 / 0.040 0.165 / 0.043 0.166 / 0.043 0.158 / 0.038 0.160 / 0.034 1.329 / 0.647 0.2696 ± 0.1837
F+B (B) 0.148 / 0.032 0.157 / 0.040 0.166 / 0.043 0.164 / 0.043 0.160 / 0.038 0.160 / 0.034 1.634 / 0.600 0.2704 ± 0.1850

SKF+Marg.
(75%)

F 0.117 / 0.030 0.149 / 0.040 0.172 / 0.047 0.186 / 0.053 0.200 / 0.058 0.214 / 0.062 9.155 / 51.779 0.0150 ± 0.0032
F+B (F) 0.138 / 0.037 0.169 / 0.047 0.177 / 0.051 0.186 / 0.052 0.187 / 0.049 0.183 / 0.046 3.510 / 4.491 0.0128 ± 0.0029

B 0.159 / 0.035 0.166 / 0.042 0.174 / 0.045 0.174 / 0.044 0.174 / 0.040 0.175 / 0.037 1.771 / 0.809 0.1977 ± 0.1314
F+B (B) 0.162 / 0.036 0.172 / 0.043 0.181 / 0.047 0.180 / 0.046 0.180 / 0.042 0.181 / 0.039 1.210 / 0.660 0.1991 ± 0.1340

SKF+Marg.
(90%)

F 0.135 / 0.034 0.181 / 0.048 0.226 / 0.060 0.261 / 0.069 0.298 / 0.076 0.331 / 0.082 4.586 / 31.880 0.0124 ± 0.0027
F+B (F) 0.151 / 0.042 0.187 / 0.056 0.203 / 0.061 0.211 / 0.061 0.219 / 0.057 0.219 / 0.053 3.488 / 5.361 0.0105 ± 0.0024

B 0.174 / 0.041 0.181 / 0.049 0.195 / 0.054 0.196 / 0.054 0.198 / 0.049 0.194 / 0.045 1.457 / 0.935 0.1602 ± 0.1065
F+B (B) 0.172 / 0.042 0.181 / 0.051 0.195 / 0.055 0.198 / 0.054 0.198 / 0.049 0.195 / 0.045 1.547 / 0.886 0.1569 ± 0.1030

Table 4.14: Average RPE over 5 runs of the Spencer dataset for different algorithms. RPE
units are in degrees and meters, with a max total of 200 map features being leveraged.

Algo. Config 40m 80m 120m 160m 200m 240m NEES (ori/pos) Time (s)

SKF+Marg.
(50%)

F 0.160 / 0.039 0.234 / 0.056 0.296 / 0.072 0.345 / 0.083 0.383 / 0.092 0.423 / 0.102 4.494 / 18.620 0.0126 ± 0.0030
F+B (F) 0.168 / 0.045 0.232 / 0.063 0.269 / 0.073 0.281 / 0.072 0.272 / 0.065 0.257 / 0.060 3.037 / 3.667 0.0144 ± 0.0033

B 0.148 / 0.035 0.157 / 0.041 0.166 / 0.044 0.164 / 0.043 0.165 / 0.039 0.165 / 0.036 1.357 / 0.424 0.2231 ± 0.1568
F+B (B) 0.150 / 0.034 0.160 / 0.040 0.168 / 0.044 0.168 / 0.043 0.167 / 0.038 0.166 / 0.035 1.759 / 0.474 0.2220 ± 0.1565

SKF+Marg.
(75%)

F 0.150 / 0.037 0.222 / 0.054 0.283 / 0.070 0.332 / 0.081 0.370 / 0.089 0.398 / 0.097 4.848 / 26.821 0.0109 ± 0.0025
F+B (F) 0.161 / 0.042 0.209 / 0.056 0.229 / 0.063 0.239 / 0.062 0.246 / 0.058 0.247 / 0.054 3.635 / 4.758 0.0126 ± 0.0028

B 0.159 / 0.036 0.170 / 0.043 0.178 / 0.046 0.179 / 0.046 0.176 / 0.042 0.172 / 0.039 1.517 / 0.514 0.1850 ± 0.1311
F+B (B) 0.159 / 0.035 0.167 / 0.042 0.173 / 0.045 0.174 / 0.045 0.172 / 0.041 0.171 / 0.038 2.115 / 0.635 0.1871 ± 0.1331

SKF+Marg.
(90%)

F 0.157 / 0.041 0.237 / 0.060 0.303 / 0.077 0.362 / 0.092 0.413 / 0.106 0.470 / 0.118 12.327 / 59.804 0.0097 ± 0.0023
F+B (F) 0.169 / 0.048 0.222 / 0.066 0.248 / 0.076 0.270 / 0.076 0.282 / 0.072 0.283 / 0.066 3.289 / 4.242 0.0113 ± 0.0026

B 0.180 / 0.045 0.197 / 0.052 0.210 / 0.058 0.215 / 0.058 0.220 / 0.054 0.222 / 0.050 1.561 / 0.698 0.1578 ± 0.1065
F+B (B) 0.181 / 0.045 0.198 / 0.054 0.212 / 0.060 0.220 / 0.059 0.219 / 0.054 0.221 / 0.050 1.852 / 0.740 0.1570 ± 0.1067
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First we can see that the inclusion of map features allows for all methods to

improve in accuracy over VIO. Additionally, we can see that the inclusion of more

map features in the Dynamic-SKF allows for further accuracy gains, but plateaus after

300 points. The inflation baseline is also, in general, able to improve in accuracy

levels, and becomes more consistent as more features are included in the map. The

key difference for the inflation Marg. feature method is that the feature’s uncertainty

is built online, which can be inaccurate due to long-term VIO drift. This clearly

causes the inflation Marg. method to perform much worse as compared to when a

consistent prior covariance is provided as in Section 4.6.3.1. In fact, as the scale of the

map becomes bigger, such as the multi-room dataset, the inconsistencies of the feature

uncertainties become much larger and need to be addressed.

As compared to when a prior map was provided, one can see that the Hybrid

use of Marg. features with the SKF tell a much different story due to their inconsis-

tent nature. The Dynamic-SKF and Marg. features are able to obtain high levels of

accuracy near the full SKF, but with an overconfident covariance matrix. This is due

to the Marg. feature inconsistencies “corrupting” the SKF feature estimates and clone

states during the update, which was prevented when the SKF marginal covariance was

fixed. We equate the Fixed-SKF with marginal features better consistency, to be an

artifact of the conservative nature of the SKF “hiding” the inconsistencies of the Marg.

features.

As demonstrated, the use of Marg. features directly will provide computational

gains, but will hurt estimation accuracy and consistency. The proposed mixture of

Dynamic-SKF and Marg. features are able to provide significant computational gains

with minimal impact on accuracy. A natural remedy to this issue is to ensure that

Marg. features and their covariances are globally self-consistent, without inertial drift,

nor overconfident from their marginal nature. This is exactly solved by the proposed

backend optimization framework, which aims to efficiently recover an accurate, drift-

free, and consistent feature map that can be leveraged to remove this source of error.
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4.6.3.3 Experiment 3: Consistent Backend Optimization

Next, we look to investigate the performance of the backend optimization which

allows for relinearization and global consistency in the map through the inclusion

of loop-closures. Standard VIO is run, using the configuration described in Table 4.8,

without any online map building to provide relative poses to the backend optimization.

The use of the marginal relative covariance from Appendix F.2 (MARG), the proposed

relative C-KLAM covariance from Section 4.6.2.1 (C-KLAM), and equally weighting

all edges with a fixed identity covariance (EQUAL) is reported. We first investigate

the consistency of the relative pose factors provided by the frontend, after which the

PnP relative poses recovered and full optimization is investigated.

Shown in Table 4.11, we can see that the relative MARG VIO factors are ac-

curate in nature, and that the covariance recovered is as consistent as expected (the

frontend provides consistent relative information). If the previously appended keyframe

is not kept in the state as proposed, see Appendix F.2, the correlations between sequen-

tially added keyframe relatives are dropped, and the NEES is extremely conservative

with an average NEES of 0.25. More importantly, one can see that the recovered

covariance of the keyframe poses in the global are highly inconsistent, and become

more so as the frequency of relative factor creation is increased. This clearly shows

that recovering the relative pose covariance directly front the frontend prohibits the

backend from achieving consistency since sequential relative measurements are highly

correlated, and thus ignoring this correlation is highly inconsistent. Once PnP loop-

closures are included to reduce the estimation error and VIO drive, the poses become a

bit more consistent but the feature uncertainties which we aim to recover and provide

to the frontend become overconfident. One can also see that using EQUAL weights

significantly impacts the accuracy of the keyframe poses and features, prevents the

recovery of the feature covariance, and thus is not usable.

In contrast, the proposed relative C-KLAM methodology provides a consistent

relative factor uncertainty and the global keyframe poses are conservative in nature.
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When PnP relative factors are included, the features remain consistent and have re-

duced errors, confirming the benefit of a secondary optimization. It can also be seen

that the proposed PnP method is able to recover a slightly overconfident pose uncer-

tainty which we equate to not modeling the correlations between the anchored features

leveraged. We also note, that while PnP has a much larger error of 0.5deg and 2cm, it

is drift-free, thus is still able to provide large improvements and enforce global consis-

tency.

Next we look at the pose trajectory accuracy and NEES of the backend when

leveraging the decoupled pose recovery method (see Appendix F.3). Shown in Table

4.12, the decoupled method with C-KLAM and PnP loop-closures is able to recover

an accurate pose and uncertainty, with superior performance when compared to just

VIO. Both the MARG and EQUAL methods perform poorly, are inconsistent, or are

unable to recover their uncertainty. Furthermore, the average computational cost of

each method to optimize at each timestep is reported. As more states and factors are

included the computational cost remains real-time. The proposed relative C-KLAM

does have some overhead in computing the marginal information, especially seen in the

lower clone rates, but this increase is minimal.

4.6.3.4 Experiment 4: Frontend-Backend Feedback Analysis

The final question we look to answer is if providing the backend’s consistent

and optimized map to the frontend solves the inconsistencies introduced by VIO drift,

and improves state estimation performance. Shown in Table 4.13, it is clear that all

methods that leveraged a map in some form are able to improve their accuracy over

VIO. It is also clear that both EKF and SKF frontends have nearly the same level of

accuracy over all trajectory lengths. The Inf. Marg and hybrid SKF+Marg. methods

which do not leverage an optimized map through feedback, do not retain this property

and instead have trajectory errors increase as the trajectory length grows. This makes

sense as the incrementally built maps in large spaces are unable to improve their map

estimates and thus are bound by the accuracy during the exploration and creation of
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the map. The methods that do leverage the optimized backend map, F+B, are able

both able to have trajectory error which is constant over the trajectory lengths, but

also have improved consistency.

The Inf. Marg. method has the worst consistency and is only partially addressed

through feedback of the optimized map. The proposed hybrid SKF+Marg. also suffers

from the inaccuracies of the marginal features which contain the VIO drift and while are

able to have improved accuracy through leveraging SKF features, are unable to limit

accuracy lost as the trajectory length increases. The proposed hybrid SKF+Marg.

which have feedback is able to outperform in terms of accuracy and consistency of the

Inf. Marg method even with just 40 SKF features (SKF+Marg. with 90%). While

the hybrid is unable to outperform the SKF, it is able to have more than half the

computational cost and still be able to remain drift-free. This clearly shows that both

the proposed system architecture choices, and the hybrid estimator provide a way to

trade off efficiency for accuracy while maintaining consistency.

We further look to the case where the proposed SKF+Marg. is only allowed

to keep 200 features (there are over 4k points in the map in the Spencer dataset).

Shown

4.7 Summary

In this thesis thrust, we have presented three novel estimators for efficient and

consistent VI-SLAM. The first, termed SEVIS-3D leveraged the Schmidt-Kalman up-

date to efficiently update when tracking a historical map of 3D points which were

loop-closed through a visual keyframe-based feature matching methodology. We then

proposed SEVIS-2D a novel 2D-to-2D loop-closure constraint which instead kept a his-

torical map of keyframes from which historical feature observations could be matched

to active features and included in the feature update. This loop-closure indirectly con-

strained the active state through the Schmidt’ed keyframe pose as compared to the

more direct 2D-to-3D loop-closure to a historical 3D feature in SEVIS-3D. We then,
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within the context of a prior localization, compared the different measurement con-

straints and estimators, such as the EKF, SKF and feature inflation methods, in terms

of their efficiency, accuracy, and consistency. This brought us to the conclusion that the

SKF is well suited for smaller workspaces and features that are highly correlated with

the state and thus are properly tracked to ensure consistency. The 2D-to-2D measure-

ment model, while not achieving the same level of accuracy as the 2D-to-3D, was able

to be more efficient as the number of features grew making it a compelling alternative.

Finally, we showed that for larger environments, inflation methods do work if we relax

the need to have guaranteed consistent estimation and that within the context of prior

map localization the performance was relativity invariant to the inflation parameters

chosen.

Then the complete SEVIS was proposed which aimed to solve the larger scale

persistent localization problem and address the previous methods’ inability to perform

relinearization of their state estimates due to their filter-based formulation after signif-

icant periods of odometry drift and loop-closure. The novel architecture first focused

on the idea of dynamic Schmidt’ing which allows for map features to be updated and

gain information after re-observation, enabling refinement of the map and reduction in

state uncertainty and was shown to improve performance to almost the level of full co-

variance estimation with only a fraction of the computational cost. We then presented

an efficient and consistent backend optimization framework which leveraged a relative

pose graph whose PnP uncertainty was properly captured and relative odometry un-

certainty was recovered via the C-KLAM [147] methodology. This backend was shown

to recover an accurate and consistent 3D point map which could then be leveraged by

the visual frontend to address the relinearization problem and demonstrated efficient,

accurate, and consistent performance.
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Chapter 5

EFFICIENT VISUAL-INERTIAL COOPERATIVE LOCALIZATION
WITH TEMPORAL LOOP-CLOSURE CONSTRAINTS

5.1 Introduction

Having improved the efficiency of long-term estimation for the single robot case,

we now look at how these loop-closure methodologies can be applied to the cooper-

ative localization (CL) multi-robot case to enable long-term efficient, consistent, and

accurate state estimation. Multi-robot localization inherently comes with many chal-

lenges which are absent from the single robot case: exponential increase in state size,

limited communication frequency and data rates, and an inherent asynchronicity as

robots can move independently through an environment which means that two robots

may never be in the same location at the same time instance. In this thrust, we look

to address these problems through the use of an efficient distributed estimator which

only requires each robot to estimate its own state, and only leverage the other robot’s

state when fusing cross-robot constraint information. We advocate for the use of co-

variance intersection (CI) [87] to compensate for the unknown correlations between

robots in a consistent nature, and show that while it is very conservative in its covari-

ance estimation, it enables high quality localization performance. We present a novel

method for leveraging historical poses and features within the context of a CI estimator

and extend the previously created single-robot loop-closure detection and measurement

methodology to this multi-robot case. The system is evaluated extensively in simula-

tion along with on two real-world datasets clearly showing the efficiency, consistency,

and accuracy of the proposed distributed VINS.
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This work builds on the work by Zhu et al. [226] which only leveraged cross-robot

MSCKF features within a distributed CI estimator framework and required simultane-

ous viewing of the scene to perform cross-robot updates. In contrast, we present two

novel methods on how to leverage SLAM within the multi-robot case and incorporate

loop-closure constraints to historical states of other robots and thus we do not require

simultaneous viewing of the same location (e.g., a robot can gain information if another

robot had previously explored the same location), while significantly improving the lo-

calization performance thanks to such common multi-robot measurement information.

Another close work is that by Sartipi et al. [174] which introduced a distributed method

for multi-user AR experiences through the use of multi-map feature constraints. Com-

mon features were detected in environmental maps received from other users and the

transmitted feature position estimates were used to constrain the user’s state directly.

Instead of inflating measurement noise and the robot-to-robot map transform to com-

pensate for the unknown correlations between the current user and the other user’s

map, we leverage CI that theoretically guarantees consistency to handle the unknown

correlations and also do not require that all common features must match to each

robot’s environmental maps thus leveraging additional information.

5.2 Distributed Localization

In this section, we briefly describe the cooperative visual-inertial system that

serves as the basis for the proposed distributed CI-based estimator. The state vector

for the i’th robot contains its current IMU navigation state xIi , sliding window of

cloned IMU poses xCi , spatial-temporal calibration parameters xWi
, along with a small

temporal map (i.e., SLAM features) xMi
at time tk (see [60, 226]).

xi,k =
[
x>Ii x>Wi

x>Ci x>Mi

]>
(5.1)

xIi =
[
Ii,k
G q̄> Gp>Ii,k

Gv>Ii,k b>ωi,k b>ai,k

]>
(5.2)

xWi
=
[
CitIi

Ci
Ii
q̄> Cip>Ii ζ>i

]>
(5.3)

xCi =
[
Ii,k−1

G q̄> Gp>Ii,k−1
· · · Ii,k−c

G q̄> Gp>Ii,k−c

]>
(5.4)
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xMi
=
[
Gp>f1 · · · Gp>fm

]>
(5.5)

where we have the typical clone state xC which contains c historical IMU poses in a

sliding window and a temporal map state xM has m features. Each robot additionally

calibrates its camera intrinsics ζi, camera-IMU extrinsics, and camera-IMU temporal

offset CitIi , see Section 2.2. Note that the subscript now specifies which robot the state

corresponds to, e.g. the i’th, as compared to time, e.g. the k’th time at tk, which is

specified after the robot index. Finally, given a group of n robots, we have the following

combined state and covariance matrix decomposition:

xk =
[
x>1,k · · · x>n,k

]>
(5.6)

Pk =


P11k · · · PN1k

...
. . .

...

P1Nk · · · PNNk

 (5.7)

Here we note that in the centralized formulation, this is the state that we jointly

estimate along with the cross-covariance terms, while in the distributed case each

robot only estimates a sub-set of the total state and correlations between robots are

dropped (e.g., robot i only tracks xi,k and Piik).

5.2.1 Distributed Inertial Propagation

Similar to the single robot case presented in Section 2.2.1, we can propagate each

robot’s inertial state forward independently using their own internal IMU information.

This can be seen when we inspect the linearized error state propagation model for our

states which do not have any correlations with each other:

Pk|k−1 = Φk−1Pk−1|k−1Φ
>
k−1 + Qk−1 (5.8)

Φk−1 = Diag (Φ1,k−1, . . . ,ΦN,k−1) (5.9)

Qk−1 = Diag (Q1,k−1, . . . ,QN,k−1) (5.10)

where Φi,k and Qi,k are respectively the system Jacobian and discrete noise covariance

for the i’th robot (Section 2.2.1 and [139]), and Diag(· · · ) creates a block diagonal
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matrix from the specified values. It can be seen that in the distributed case, all states

can be propagated independently since cross-covariance is not tracked. Thus robots

can continue to propagate independently without having to perform communication

as in the case of the centralized estimator, leading to computational efficiency and

reductions in communication.

5.3 Distributed Visual-Inertial Cooperative Localization

As it is known that the standard EKF in the worst case has cubic computation

complexity due to its covariance update, a naive implementation of the multi-robot

visual-inertial CL can become prohibitively expensive as the number of robots grows

in size. Note also that due to communication constraints, the robots might not be able

to communicate with all the other robots or a common fusion center. To address these

issues, the key idea of our CL approach is to leverage CI [87] to reduce the estimation

cost, by only updating the state and error covariance of the current robot (i.e., robot

i only updates xi,k and Piik) while ensuring consistency.

In particular, each robot independently propagates its own state and updates

with measurements that are only a function of its own state. When updating with

measurements of features observed from multiple robots, CI is employed to consistently

handle the unknown and untracked cross-covariance terms between the involved robots.

This means that robots need to communicate their state and covariance, along with

visual feature information to the other robots. Each robot tracks a set of visual features

using KLT optical flow [121], and communicates its latest tracks and extracted ORB

descriptors [171] to the other robots in communication range. A robot then performs

descriptor-based feature matching and loop-closure detection to find correspondences

between its most recent features and other robots’ feature tracks. After tracking and

matching, feature tracks are categorized as follows:

(A) VIO features which have only been tracked for a short period of time.
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(B) Temporal SLAM features which have been tracked beyond the current sliding

window.

(C) Common VIO features which have been matched to features in another robot

and tracked for only a short period of time.

(D) Common SLAM features which have been matched to features in another robot.

Note that this feature might be either a VIO or SLAM feature in the other robot.

In the following, we present in detail how we update our state with these different

feature variants. Note that for the centralized case independent features update the

full state and covariance since cross-covariances are tracked, while in the distributed

case only the i’th robot state and covariance is updated thus allowing for computational

savings.

5.3.1 Independent VIO Feature: MSCKF Update

For VIO features that have lost active track in the current window, we perform

MSCKF update [139]. In particular, we first triangulate these features for computing

the feature Jacobians Hfk , and then project rfk (see Eq. (2.52)) onto the left nullspace

of Hfk (i.e., Q>2 Hfk = 0) to yield the measurement noise independent of state:

Q>2 rfk = Q>2 Hxi,k x̃i,k + Q>2 Hfk
Gp̃f + Q>2 nfk (5.11)

⇒ r′fk = H′xx̃k + n′fk (5.12)

where Hxi,k is the stacked measurement Jacobians with respect to the navigation states

in the current robot’s window.

5.3.2 Independent SLAM Feature: FEJ-EKF Update

SLAM features which a robot is able to reliably track longer than its sliding

window in length, will be initialized into the SLAM map state vector xMi
. These

features are directly updated using the linearized system (2.52) and will remain in the

state until they have lost track. To improve consistency, we employ First Estimate
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Jacobians (FEJ) [83, 84] ensuring Jacobians are evaluated at the same linearization

points to prevent spurious information gain.

5.3.3 Common VIO Feature: CI-EKF Update

Consider we find a feature which has been seen from multiple robots and want

to use this information to update the state. In the centralized case, we would directly

update our state with all available measurements (2.52) through the standard EKF

since we track the cross-covariance (e.g., PiNk). In the distributed case, a robot only

tracks its own state and autocovariance to ensure computational efficiency and scala-

bility with respect to the robot team size. This presents two key challenges: (i) how to

efficiently and consistently fuse multiple robots’ autocovariances, and (ii) how to find

the data association between different features, which motivates us to leverage CI to

fuse estimates and covariances transmitted from other robots.

5.3.3.1 CI-EKF Update

Consider the i’th robot has a measurement which is a function of L other robot

states. The linearized measurement model can be computed as:

rfk = Hxi,k x̃i,k + Hx1..L,k
x̃1..L,k + Hfk

Gp̃f + nfk (5.13)

where Hxi,k is the Jacobian in respect to the i’th robot state using the k’th estimates,

and Hx1..L,k
is the stacked Jacobian with respect to all other robots the measurement

is a function of. To guarantee consistency when updating with this measurement, we

adopt the CI-EKF update [87] to construct a prior covariance such that:

Diag

(
1

ωi
Piik ,

1

ω1

P11k , · · · ,
1

ωL
PLLk

)
≥ Pk (5.14)

where the left side is the CI covariance with zero off-diagonal elements and the right-

hand side is the unknown true covariance of the state with cross-covariances (see Eq.

(5.7)). The weights ωl > 0 and
∑

l ωl = 1, for l ∈ {i, 1..L}, can be found optimally [87].
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Substituting (5.14) into the standard EKF equations and only selecting the portion that

updates the current robot’s state (say robot i) yields:

δxi,k =
1

ωi
Pii,k|k−1H

>
xi,k

S−1
k r′fk (5.15)

Pii,k|k =
1

ωi
Pii,k|k−1−

1

ω2
i

Pii,k|k−1H
>
xi,k

S−1
k Hxi,kPii,k|k−1 (5.16)

Sk =
∑

o∈{i,1..L}

1

ωo
Hxo,kPoo,k|k−1H

>
xo,k

+ Rfk (5.17)

where δxi,k is the correction to the state estimate x̂i,k.

5.3.3.2 Common VIO Feature: Efficient Nullspace Projection

To process common features which are short in length, we leverage the similar

logic as in Sec. 5.3.1. For example, we have multiple measurements from two different

robots and wish to update our state:

rfi,k

rf2,k

 =

Hxi,k 0 Hfi,k

0 Hx2,k
Hf2,k




x̃Ii

x̃I2
Gp̃f

+

nfi,k

nf2,k

 (5.18)

We can then project both equations onto their left range and nullspace (e.g., Hfi,k =

[Qi,1 Qi,2][Ui 0]>):
r1
fi,k

r2
fi,k

r1
f2,k

r2
f2,k

 =


Q>i,1Hxi,k 0 Ui

Q>i,2Hxi,k 0 0

0 Q>2,1Hx2,k
U2

0 Q>2,2Hx2,k
0




x̃Ii

x̃I2
Gp̃f

+


n1
fi,k

n2
fi,k

n1
f2,k

n2
f2,k


where we have defined that r1

fi,k
= Q>i,1rfi,k and n1

fi,k
= Q>i,1nfi,k . Note that the last

row is no longer dependent on the current robot’s state, xIi , and thus, this can be

discarded since it will not update the state or covariance due to the lack of tracked

cross-covariances. This directly reduces the number of measurements involved during
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the update and makes the computation of S−1
k substantially cheaper (see Eq. (5.17)).

We then have the following linear systems:

r1
fi,k

r1
f2,k

 =

Q>i,1Hxi,k 0 Ui

0 Q>2,1Hx2,k
U2




x̃Ii

x̃I2
Gp̃f

+

n1
fi,k

n1
f2,k


r2
fi,k

= Q>i,2Hxi,k x̃Ii + n2
fi,k

(5.19)

A second nullspace projection onto the left nullspace of Hf = [Ui U2]> is performed to

create a linear system which is only a function of the xIi and xI2 states. The CI-EKF

update (see Eq. (5.15) and (5.16)) is then used to update the state xIi . The second

equation (see Eq. (5.19)) can update the current robot state without CI through the

standard EKF equations since it is only a function of the current robot state. This

update contains the same information as in the case that we performed a “large”

nullspace projection using the full feature Jacobians in (5.18), but results in a much

smaller measurement size since we can drop measurement residuals which are not a

function of the i’th robot’s state.

5.3.4 Common SLAM Feature: CI-EKF Update

There are two different cases for temporal SLAM features: (i) a SLAM feature

in the current robot state matches to a feature that is not a SLAM feature in another

robot, and (ii) a SLAM feature matches to another robot’s SLAM feature. For example

as in Figure 5.1, in the first case we collect the measurements from the other robot

(z1..N) and directly apply (5.13) and update both the current robot’s poses and its

estimate of the SLAM feature. In the second case, we can follow this same logic (i.e.,

grab the measurements from the other robot and update the current robot’s estimate)

or we can leverage the knowledge that the 3D position of these two features should be

equal. This SLAM feature constraint model is similar to the one introduced in [69] for

cooperative mapping. Consider we have the following two robots:

xi,k =
[
x>Ii x>Wi

x>Ci
Gp>fa

]>
(5.20)
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{Ci,21}
{Ci,20}

pfa
pfb

{C2,N}

z1

zN

{C2,1} · · ·

Figure 5.1: Illustration of the keyframe-aided 2D-to-2D matching for data association. As-
suming robot i’s 21st frame {Ci,21} matches to the 2nd robot’s N ’th frame {C2,N}. We are
able to find all feature correspondences between the features the robot’s observer, namely
z1..N .

x2,k =
[
x>I2 x>W2

x>C2

Gp>fb

]>
(5.21)

If we have matched feature Gpfa in the current i’th robot to the Gpfb in the other

robot, then we can construct the following feature constraint (see Figure 5.1):

Gpfa − Gpfb = 0⇒ rc (xi,k,x2,k) = 0 (5.22)

which can be linearized to yield:

rc (x̂i,k, x̂2,k) + Hfa
Gp̃fa + Hfb

Gp̃fb ≈ 0 (5.23)

⇒0− rc (x̂i,k, x̂2,k) ≈ Hfa
Gp̃fa + Hfb

Gp̃fb (5.24)

This linearized system can then update the i’th robot state estimate using the CI-EKF

update (see Eq. (5.15) and (5.16)). Note that this is a very efficient update, as it is

only a function of the two estimated feature positions.

5.3.5 Historical Features: CI-EKF Update

We now explain how to leverage loop-closure constraints to previous robot states.

First, to find the feature correspondences between robots, as previously presented in

Chapter 4, each robot creates DBoW2 [53] databases for all other robots. When a

robot receives feature tracks and descriptors from other robots they are appended to

their corresponding DBoW2 database. The current image can then be queried against

the other robots’ databases to see if any other robots are or have been at the current
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location. If a loop closure is detected and verified using a fundamental matrix geometric

check, then we assume that we have detected that another robot has been at our current

location. After matching descriptors, we know the correspondences between a feature

in the current robot, and that of the features in the other robot (see Figure 5.1). We

can then grab the history of measurements and formulate a common feature update.

To incorporate these measurements from historical states, each robot records

the measurement and previous states received from the other agents.1 Outside of the

most recent sliding window, these historical states can provide loop-closure information

if we are able to generate measurement constraints to them. Specifically, we store

the following historical states and covariances in addition to their most recent states

published:

xi = {xi,0, · · · ,xi,k−1} (5.25)

Pi =
{
Pii0 , · · · ,Piik−1

}
(5.26)

Since each one of these historical states contains a sliding window of poses and SLAM

features, we only store non-overlapping sliding windows. To accelerate lookup we

only store historical descriptor information at a fixed rate (normally 1Hz) since recent

frames in the same sliding window contain redundant loop-closure information. A more

ideal heuristic could be leveraged here to increase match rates. Once loop-closure is

detected, we know old historical feature correspondences which we can then use to

retrieve measurements and update our current robot state. This update is identical to

the CI-EKF update as in Sec. 5.3.3–5.3.4, which only needs to involve the historical

windows that contain the historical measurements, and thus is efficient since historical

states are not updated.
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Table 5.1: Simulation parameters and prior standard deviations that perturbations of mea-
surements and initial states were drawn from.

Parameter Value Parameter Value

Gyro. White Noise 1.6968e-04 Gyro. Rand. Walk 1.9393e-05
Accel. White Noise 2.0000e-3 Accel. Rand. Walk 3.0000e-3

Pixel Proj. (px) 1 Robot Num. 3
IMU Freq. (Hz) 400 Cam Freq. (Hz) 10
AR Avg. Feats 25 AR Num. SLAM 3

ETH Avg. Feats 50 ETH Num. SLAM 5
Num. Clones 11 Feat. Rep. GLOBAL

Figure 5.2: Simulated trajectories, axes are in units of meters. General hand-held AR dataset
(left) are 147, 93, and 100 meters long, while ETH EuRoC MAV Vicon room datasets (right)
are 70, 58, and 59 meters long for each robot. Green square denotes the start and red diamond
denotes the end.

152



5.4 Numerical Results

To validate the proposed method, we have simulated two realistic scenarios both

with three robots (see Figure 5.2). The first is a hand-held mobile AR dataset which

has a series of users look and move around a central table, while the second is a series

of trajectories from the ETH EuRoC MAV dataset [14]. We employ the OpenVINS

simulator, see Section 2.3.7, to generate realistic visual-bearing and inertial measure-

ments from these supplied trajectories. On average each robot is able to find common

features on, respectively, 79.0% and 83.5% (43.7% and 62.7%) of the frames without

or with loop-closure in AR datasets (ETH dataset). This clearly shows the advan-

tage of historical loop-closure on datasets which have limited temporal view overlaps

between robots. Simulation parameters used are documented in Table 5.1. We fix

the weight of other robots’ covariance in the CI-EKF update as ωo = 0.001. For the

constraint measurement update presented in Sec. 5.3.4, we use the value ωo = 0.005

and a synthetic measurement noise of 2cm. Note that while these weights can be found

by minimizing the trace or determinant of Pii,k|k [87], we have empirically found that

using fixed weights still ensures consistent performance. For fair and thorough com-

parison, we define the following variations of the centralized and proposed distributed

CL estimators:

indp – No common features are found between robots and all measurements are

processed as independent features which only relate to the current robot.

indp-slam – Same as indp, but temporal SLAM features are included in each

robot to show the relative improvement.

ce-cmsckf – The centralized estimator uses the common VIO features over the

sliding window.

1 In the future we plan to investigate the latency introduced due to communication
constraints, but historical matching ensures that the robot will leverage all available
information at the current time including delayed information recently communicated.
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ce-cmsckf-cslam – The centralized estimator uses the common VIO and SLAM

features over the sliding window.

dc-cmsckf [226] – The distributed estimator using the common VIO features over

the sliding window.

dc-cmsckf-cslam – The distributed estimator uses the common VIO and SLAM

features over the sliding window without enforcing the same feature constraint.

For example, even if a common SLAM feature is a SLAM feature in another

robot’s state, we grab the measurements from the other robot and update as

the first case in Sec. 5.3.4.

dc-full-window – The distributed estimator uses the common VIO and SLAM

features over the sliding window while enforcing the same feature constraint.

dc-full-history – The distributed estimator uses both the common VIO and

SLAM features over the sliding window and from historical matching.

Note that the observed independent VIO features and SLAM features are used in all

these estimators. To ensure a fair comparison, the same parameters reported in Table

5.1 are used for all algorithms and for all robots.

5.4.1 Accuracy and Consistency Evaluation

We performed 20 Monte-Carlo simulations on each dataset. The average Abso-

lute Trajectory Error (ATE) [221] can be found in Table 5.2 and 5.3. It is clear from

the top two rows that the additional SLAM features improve indp. In the cooper-

ative case, when using the common VIO features, both ce-msckf and dc-msckf

outperform the indp-slam, and when including common SLAM features, the accu-

racy is further improved. It is worth noting that the efficient dc-full-window with

feature constraint has close accuracy to its counterpart dc-cmsckf-cslam. More-

over, when including the historical common features, the distributed estimator becomes
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Table 5.2: ATE on simulated AR datasets in degrees / meters for each algorithm variation.
Green denotes the best, while blue is second best.

Algorithm Robot 0 Robot 1 Robot 2 Average

indp 1.957 / 0.072 0.811 / 0.041 0.742 / 0.039 1.170 / 0.051
indp-slam 1.396 / 0.046 0.602 / 0.029 0.557 / 0.022 0.852 / 0.032

ce-cmsckf 0.364 / 0.017 0.323 / 0.015 0.355 / 0.015 0.347 / 0.016
ce-cmsckf-cslam 0.232 / 0.011 0.228 / 0.011 0.220 / 0.010 0.227 / 0.011

dc-cmsckf 0.759 / 0.029 0.540 / 0.025 0.553 / 0.020 0.617 / 0.025
dc-cmsckf-cslam 0.643 / 0.025 0.496 / 0.022 0.478 / 0.017 0.539 / 0.022

dc-full-window 0.644 / 0.024 0.547 / 0.022 0.480 / 0.017 0.557 / 0.021
dc-full-history 0.356 / 0.017 0.299 / 0.014 0.319 / 0.013 0.325 / 0.014

Table 5.3: ATE on simulated ETH datasets in degrees / meters for each algorithm variation.
Green denotes the best, while blue is second best.

Algorithm Robot 0 Robot 1 Robot 2 Average

indp 0.569 / 0.088 0.578 / 0.092 0.560 / 0.093 0.569 / 0.091
indp-slam 0.371 / 0.070 0.406 / 0.069 0.444 / 0.075 0.407 / 0.071

ce-cmsckf 0.221 / 0.052 0.221 / 0.049 0.221 / 0.051 0.221 / 0.050
ce-cmsckf-cslam 0.151 / 0.042 0.143 / 0.038 0.144 / 0.040 0.146 / 0.040

dc-cmsckf 0.329 / 0.064 0.342 / 0.061 0.319 / 0.062 0.330 / 0.062
dc-cmsckf-cslam 0.298 / 0.054 0.325 / 0.050 0.290 / 0.052 0.304 / 0.052

dc-full-window 0.285 / 0.052 0.287 / 0.047 0.268 / 0.047 0.280 / 0.049
dc-full-history 0.211 / 0.029 0.207 / 0.031 0.218 / 0.030 0.212 / 0.030

more accurate as expected. Interestingly, with only the common features over the slid-

ing window, the ce-cmsckf-cslam can achieve the best performance on the AR

dataset even without loop-closure. This is likely due to the fact that over the whole

dataset all robots look in the same general location thus negating any benefit of loop-

closure detection. As shown in Table 5.3 and in the following real-world experiments,

when robots do not have many overlapping views, the historical information plays an

important role.

We additionally show the average Root Mean Square Error (RMSE) [221] and

Normalized Estimation Error Squared (NEES) [4] of the distributed algorithms for
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Figure 5.3: Robot 0’s average RMSE (left) and NEES (right) results in the simulated AR
(top) and ETH datasets (bottom). Cyan represents indp, magenta represents indp-slam, red
represents dc-msckf, blue represents dc-cmsckf-cslam, green represents dc-full-window and
green represents dc-full-history. Please refer to the color figure.

Robot 0 in Figure 5.3. The results for the other two robots are similar and are

omitted here for space. The indp has the largest drift that can be reduced as

shown by indp-slam and leveraging common features. The dc-cmsckf-cslam and

dc-full-window have almost the same performance while the dc-full-history

achieves the best accuracy. It is clear that all the distributed algorithms are conserva-

tive in nature (NEES is smaller than three) and have smaller NEES than the centralized

ones.
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Figure 5.4: Sequential propagation and update time (ms). Note that while decentralized can
update in parallel, here we report its sequential timings.

Table 5.4: Timing for AR dataset. Millisecond mean and deviation.

Algorithm Proposed Combined

MSCKF update (window) 1.20 ± 0.94 2.88 ± 3.90
MSCKF update (hist) 4.11 ± 5.52 22.75 ± 159.65

Algorithm Constraint No Constraint

SLAM update (window) 0.10 ± 0.03 0.15 ± 0.16
SLAM update (hist) 0.17 ± 0.06 27.11 ± 160.95

5.4.2 Timing Analysis

5.4.2.1 Multiple Robots

We now investigate the computational efficiency of the proposed work in compar-

ison to the centralized estimator using only common features over the sliding window.

We compare the timing results of dc-full-window and ce-cmsckf-cslam while

processing the same amount of measurements. We first investigate the performance as

more robots are added to show the efficiency gains from the distributed formulation.

The results in Figure 5.4 show that as more robots are added, the centralized esti-

mator quickly becomes computationally expensive while the distributed one is able to

remain efficient since each robot only needs to propagate and update its own state and

auto-covariance. Additionally, if one robot does not find common features in a given

frame, the robot can update the estimator independently in the distributed case. On

the contrary, the centralized estimator needs to collect all data, propagate, and update
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the whole state even if there are no common features. The distributed algorithm does

have a slight increase in cost, which is due to the increase of common measurements

from the additional robots.

5.4.2.2 Common VIO Features

We next investigate the efficiency of the common VIO feature nullspace pro-

jection and subsequent CI-EKF update introduced in Sec. 5.3.3.2. We report the up-

date time for dc-full-window (window) and dc-full-history (history) without

common SLAM features. The results presented in Table 5.4 show that if we use the pro-

posed method to first perform nullspace projection and separate each robot’s systems

into two systems (Proposed) we are able to outperform the naive way of performing

nullspace projection on a “stacked” Jacobian containing all robot feature Jacobians

(Combined). It is clear that in both algorithms, the proposed method is able to have

less computational cost, especially in the historical case due to the proposed system

reducing the number of measurements in the update. We also note that there is a high

level of variance in the historical case due to loop-closure introducing large amounts of

measurements in short intervals.

5.4.2.3 SLAM Constraint Update

Now we investigate the efficiency of the common SLAM feature update intro-

duced in Sec. 5.3.4. Only common SLAM features that can be matched to another

robot’s SLAM feature are used to ensure that both variants have the same number of

measurements in the update. When we match features in the current window, the con-

straint update (Constraint) is slight more efficient than the naive way of grabbing all

the measurements from the other robots (No Constraint) since all robots only have the

most recent measurements (in most cases just one). During historical SLAM matching,

by definition SLAM features are long feature tracks, and thus many measurements and

clones states are associated with a historical SLAM feature. This means that after

loop-closure in the naive case (No Constraint) we will process all measurements ever
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Figure 5.5: Example feature matching for each robot to the other two robot keyframes
descriptors. Images are just shown for visualization, only descriptors and point coordinates
need to be transmitted.

Figure 5.6: TUM-VI groundtruth (left) and Vicon room groundtruth trajectories (right)
TUM-VI trajectories are 146, 131, and 134 meters long, while the Vicon room datasets are
507, 509, and 501 meters long.

recorded for a SLAM feature which can easily reach many sliding windows in length.

If instead we use the constraint update, only the two feature positions are involved,

thus the update is extremely efficient in nature (bottom Table 5.4).

5.5 Real-World Results

We have also evaluated the proposed distributed CL estimators on the TUM-

VI dataset [179] and a hand collected 10 minute long Vicon room dataset (see Figure

5.6).2 Both datasets provide monochrome stereo images at 20Hz and IMU readings

at 200Hz. We only leverage the left camera and initialize all robots based on the

2 A video demo https://youtu.be/boHBcVoMKk8
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Table 5.5: Relative pose error (RPE) on TUM-VI datasets in degrees / meters averaged over
all robots for the dataset.

Algorithm 40m 60m 80m 100m 120m

indp-slam 1.818 / 0.093 2.833 / 0.126 2.604 / 0.154 2.774 / 0.185 2.716 / 0.215

ce-cmsckf 1.358 / 0.071 1.321 / 0.091 1.357 / 0.108 0.843 / 0.128 0.932 / 0.140
ce-cmsckf-cslam 1.758 / 0.069 1.350 /0.079 1.027 / 0.100 0.718 / 0.119 0.938 / 0.130

dc-cmsckf 1.662 / 0.075 2.005 / 0.104 1.605 / 0.129 1.142 / 0.141 1.531 / 0.170
dc-cmsckf-cslam 1.800 / 0.080 2.642 / 0.093 2.233 / 0.106 1.544 / 0.114 0.934 / 0.157

dc-full-window 1.768 / 0.075 2.218 / 0.091 1.788 / 0.109 1.257 / 0.123 0.854 / 0.159
dc-full-history 1.213 / 0.067 1.232 / 0.061 1.029 / 0.065 1.004 / 0.068 0.784 / 0.072

Table 5.6: Relative pose error (RPE) on Vicon room dataset in degrees / meters averaged
over all robots.

Algorithm 80m 100m 200m 300m 420m

indp-slam 2.022 / 0.276 2.416 / 0.334 3.872 / 0.613 5.222 / 0.870 8.045 / 1.189

ce-cmsckf-cslam 2.180 / 0.288 2.603 / 0.333 2.771 / 0.548 3.050 / 0.770 3.557 / 1.044

dc-full-window 2.197 / 0.281 2.340 / 0.332 3.322 / 0.580 3.670 / 0.804 5.977 / 1.102
dc-full-history 1.271 / 0.145 1.307 / 0.151 1.346 / 0.158 1.267 / 0.157 1.343 / 0.160

Figure 5.7: Example trajectory of indp-slam (left) and proposed dc-full-history
(right). The benefit of leveraging cross-robot loop-closure constraints can be clearly seen by
the minimal drift of the proposed. Robot 1, 2, and 3 are shown in different colors along with
their feature maps.
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Figure 5.8: Trajectory of the groundtruth, independent, and distributed historical trajectory
for Robot 0 in the Vicon room dataset. It can be seen that through the use of common
historical features the drift in the z-axis direction along with improvements in the x-y accuracy
can be seen. Please refer to the color figure.

161



groundtruth orientation and position with zero velocity. The specific datasets we run

on for the TUM-VI are the room1, room3, and room5. For the Vicon room dataset,

the groundtruth has been generated using the vicon2gt utility presented in Section

2.3.5. The shorter TUM-VI dataset has more time periods where multiple robots are

looking at the same environmental location (26.7% and 41.8% of the frames detected

common features without and with loop-closure), thus providing a good insight into

an expected performance in a multi-user AR case where many users are observing the

same environment at the same time. On the other hand, the Vicon room dataset has

near-zero time periods where we are able to detect common features between robots

by matching the most recent features. Thus, we use the Vicon room dataset to show

the accuracy gain from leveraging historical loop-closure information by matching it

to historical states (28.8% of the frames detected common loop-closure features).

5.5.1 TUM-VI Dataset

We use a sliding window of 11, a max of 5 SLAM features, max 30 VIO features

per update, 300 active tracks, and perform online calibration of all parameters. For the

historical method, we insert keyframes into our database at 5Hz and detect and match

to historical keyframes at each timestep. Example feature matching performance is

shown in Figure 5.5. We used a static weight of ωi = 0.99 and distributed the remaining

weight to all other robot covariances used in the CI-EKF update, and for constraint

measurement updates (see Eq. (5.24)), we used a value of ωi = 0.995 and injected a

synthetic measurement noise of 2cm to relax the hard constraint.

The Relative Pose Error (RPE) [221] results are shown in Table 5.5 solidify

the performance gains due to leveraging common features from other robot agents.

The independent methods which leverage only independent VIO and SLAM feature

updates have about three times the error compared to the distributed method which

leverages loop-closure information. Additionally, we can see that all variations which

leverage common features are able to reduce errors due to the additional information.

It is also important to note that even though the distributed variants do not track
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the cross-covariances between robotic states, the use of CI allows the accuracy to

be near the same level as that of the centralized algorithm, and in the case where

we leverage historical information (which the centralized algorithm is unable to do),

we can slightly outperform for longer trajectory length. The dc-full-history

method, which leverages loop-closure information, has a relatively constant error as

the trajectory lengths increase as expected (showing its drift-free nature).

5.5.2 Vicon Room Dataset

We now present results on the longer hand-held, approximately 500 meter and

10 minute trajectory. We use a sliding window of 11, a max of 20 SLAM features, max

30 VIO features per update, 200 active tracks, and perform online calibration of all pa-

rameters. The RPE results for different segment lengths can be found in Table 5.6 and

give the same conclusion as the previous TUM-VI dataset. It is also important to note

that there is very similar performance of the indp-slam and ce-cmsckf-cslam

methods (and their distributed equivalents). This is expected as there are no time

periods in any of the robotic trajectories where robots are looking at the same loca-

tion at the same time. Compared to these cases, we have huge accuracy gains due to

the inclusion of common feature measurement constraints in the historical case, with

halved orientation errors and a quarter of the position error at long trajectory lengths.

This can be clearly seen in Figure 5.7 where the proposed dc-full-history is

able to have little long-term drift. We also plot the groundtruth, indp-slam, and

dc-full-history Robot 0 trajectories in Figure 5.8, which reinforces that by lever-

aging historical information we are able to prevent inherent drift in the loop-closure-free

case.

5.6 Summary

In this thesis thrust, we have presented a distributed visual-inertial cooperative

CL estimator that efficiently fuses constraints between robots and leverages tempo-

ral SLAM and loop-closure information. We have introduced two different ways to
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incorporate temporal SLAM features: (i) directly update using the other robot’s mea-

surements, and (ii) if both robots are estimating the SLAM feature, a constraint be-

tween the two feature positions is leveraged. We have adapted CI to ensure consistent

fusion of loop-closure constraints to other agents’ historical poses and SLAM features

whose cross-correlations are unknown. Extensive simulation and real-world evaluations

have demonstrated the performance of the proposed method in realistic scenarios and

showed impressive accuracy gains over the single robot case.
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Chapter 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this thesis, we first introduced the state-of-the-art filter-based visual-inertial

estimator and research framework OpenVINS. OpenVINS was shown to provide accu-

rate, efficient, and consistent state estimation in both simulation and real-world exper-

iments. Then a novel minimal plane representation, termed Closest Point (CP) plane,

was introduced and shown to outperform the existing plane representation within a

LiDAR-inertial estimation framework. The monocular visual-inertial OpenVINS was

then extended with a novel plane tracking method and feature update which enabled

estimation of environmental planar primitives. It was shown that these planes which

could be tracked for significant periods of time improve the state estimation accuracy

due to their ability to provide high-quality loop-closure information.

We then focused on the long-term persistent SLAM problem, where we looked

to perform consistent and efficient state estimation. We first proposed SEVIS-3D and

SEVIS-2D which leveraged a point feature map with 2D-to-3D loop-closures and a

historical keyframe map with a novel 2D-to-2D loop-closure constraint, respectively.

The complexity of keeping historical states was addressed through the application of

the Schmidt-Kalman filter (SKF), which reduced the complexity to linear in terms

of the size of the map. We additionally proposed a methodology, termed dynamic

Schmidt’ing, which enabled the refinement of map features instead of fixing them as in

the traditional SKF. Both SEVIS methods were evaluated on real-world experiments,

and then compared against each other in a detailed numerical study within the context

of prior map localization. Finally we proposed Schmidt-EKF for VI-SLAM (SEVIS)
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which looked to address the large-scale localization problem through use of an efficient

secondary thread which can perform relinearization and recover a sparse point feature

map with consistent marginal feature uncertainties.

Finally, we moved to the cooperative localization (CL) problem. We proposed

an efficient distributed covariance intersection (CI)-based multi-robot VI-SLAM sys-

tem which leveraged the previously developed loop-closure technique and measurement

models. We showed that we could limit long-term drift without requiring simultaneous

viewing of common locations, leveraging cross-time historical constraints maximizing

information gain and elegantly addressing the inherit asynchronousity of multi-robot

systems. This OpenVINS extension to CL through CI fusion was shown to achieve

state-of-the-art accuracy, consistency, and efficiency in both simulation and real-world

experiments.

6.2 Future Work

A natural extension of the research presented in this thesis is to apply the novel

Closest Point (CP) planar primitive to the explored Schmidt and feature matching

methodologies to create planar environmental maps which can be efficiently leveraged

for long-term persistent loop-closure. Each plane can contain a set of sparse features

which can be matched to using keyframes as explored in the SEVIS systems, elegantly

merging the planar feature tracking and historical matching. Instead of estimating

point features, a planar map naturally reduces the state size (and thus complexity)

through the compression of environmental structures into this higher-level primitive.

For larger environments, the complexity of this planar map can still be reduced through

the application of the SKF and whose estimate can continue to be refined through the

proposed dynamic Schmidt’ing. These planes are also memory efficient large planar

structures which can be leveraged during cooperative localization to reduce communi-

cation bandwidth. Outside of planes, reduced state representations either numerically

with fixed-point numerical representation or reduced state representations such as 1

DoF point features holds great potential to maximize the number of retained states for
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which correlations are tracked (and thus information) while decreasing computational

cost.

An unexplored direction, which has seen some research [20, 35, 36, 143], is how

to optimally select what map points (or planes) and/or keyframes to keep given a

computational budget. While the complexity of the proposed SEVIS is able to be on

O(n) in terms of the map size, this is not constant, thus at some point, given a large

enough space, sparsification will need to occur. A natural desire is to keep the most

informative features which can benefit us both in the present and in the future when

we revisit locations. A key question is how can we capture this desire in a meaningful

way to rank our map features and how to select such features.
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[53] Dorian Gálvez-López and J. D. Tardós. Bags of binary words for fast place

recognition in image sequences. IEEE Transactions on Robotics, 28(5):1188–

1197, 2012.

[54] Xiang Gao, Rui Wang, Nikolaus Demmel, and Daniel Cremers. Ldso: Direct

sparse odometry with loop closure. In 2018 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pages 2198–2204. IEEE, 2018.

[55] Jochen Gast and Stefan Roth. Lightweight probabilistic deep networks. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 3369–3378, 2018.

[56] Patrick Geneva. Research notes and jacobians: Continuous-time visual-inertial

trajectory estimation with event cameras, 2018.

174



[57] Patrick Geneva, Kevin Eckenhoff, and Guoquan Huang. Asynchronous multi-

sensor fusion for 3d mapping and localization. In Proc. of the IEEE International

Conference on Robotics and Automation, Brisbane, Australia, May 2018.

[58] Patrick Geneva, Kevin Eckenhoff, and Guoquan Huang. Complexity analysis: A

linear-complexity ekf for visual-inertial navigation with loop closures. Technical

Report RPNG-2019-LOOP, University of Delaware, 2019. Available: http:

//udel.edu/˜ghuang/papers/tr_loop.pdf.

[59] Patrick Geneva, Kevin Eckenhoff, and Guoquan Huang. A linear-complexity

EKF for visual-inertial navigation with loop closures. In Proc. International

Conference on Robotics and Automation, Montreal, Canada, May 2019.

[60] Patrick Geneva, Kevin Eckenhoff, Woosik Lee, Yulin Yang, and Guoquan Huang.

OpenVINS: a research platform for visual-inertial estimation. In Proc. of the

IEEE International Conference on Robotics and Automation, Paris, France, 2020.

[61] Patrick Geneva and Guoquan Huang. vicon2gt: Derivations and analysis. Tech-

nical Report RPNG-2020-VICON2GT, University of Delaware, 2020. Available:

http://udel.edu/˜ghuang/papers/tr_vicon2gt.pdf.

[62] Patrick Geneva and Guoquan Huang. Map-based visual-inertial localization: A

numerical study. In Proc. International Conference on Robotics and Automation

(ICRA), Philadelphia, PA, May 2022.

[63] Patrick Geneva and Guoquan Huang. Map-based visual-inertial localization:

A numerical study. Technical Report RPNG-2022-MAPPING, University of

Delaware, 2022.

[64] Patrick Geneva and Guoquan Huang. Openvins state initialization: Details

and derivations. Technical Report RPNG-2022-INIT, University of Delaware,

2022. Available: https://pgeneva.com/downloads/reports/tr_

init.pdf.

175

http://udel.edu/~ghuang/papers/tr_loop.pdf
http://udel.edu/~ghuang/papers/tr_loop.pdf
http://udel.edu/~ghuang/papers/tr_vicon2gt.pdf
https://pgeneva.com/downloads/reports/tr_init.pdf
https://pgeneva.com/downloads/reports/tr_init.pdf


[65] Patrick Geneva, James Maley, and Guoquan Huang. An efficient schmidt-ekf for

3D visual-inertial SLAM. In Proc. Conference on Computer Vision and Pattern

Recognition (CVPR), Long Beach, CA, June 2019.
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ing generic sensor fusion algorithms with sound state representations through

encapsulation of manifolds. Information Fusion, 14(1):57–77, 2013.

[71] Joel A Hesch, Dimitrios G Kottas, Sean L Bowman, and Stergios I Roumeliotis.

Consistency analysis and improvement of vision-aided inertial navigation. IEEE

Transactions on Robotics, 30(1):158–176, 2013.

176



[72] Joel A Hesch, Dimitrios G Kottas, Sean L Bowman, and Stergios I Roumeliotis.

Camera-imu-based localization: Observability analysis and consistency improve-

ment. The International Journal of Robotics Research, 33(1):182–201, 2014.

[73] Joel A Hesch, Faraz M Mirzaei, Gian Luca Mariottini, and Stergios I Roumeliotis.

A laser-aided inertial navigation system (l-ins) for human localization in unknown

indoor environments. In 2010 IEEE International Conference on Robotics and

Automation (ICRA), pages 5376–5382. IEEE, 2010.

[74] Blanka Hovart, Anastasis Kratsios, Yannick Limmer, and Xuwei Yang. Deep

kalman filters can filter. arXiv preprint arXiv:2310.19603, 2023.

[75] Ming Hsiao, Eric Westman, and Michael Kaess. Dense planar-inertial slam with

structural constraints. In 2018 IEEE International Conference on Robotics and

Automation (ICRA), pages 6521–6528. IEEE, 2018.

[76] Ming Hsiao, Eric Westman, Guofeng Zhang, and Michael Kaess. Keyframe-

based dense planar slam. In 2017 IEEE International Conference on Robotics

and Automation (ICRA), pages 5110–5117. IEEE, 2017.

[77] Jiaxin Hu, Jun Hu, Y-J. Shen, Xiaomin Lang, Bo Zang, Guoquan Huang, and

Yinian Mao. 1d-lrf aided visual-inertial odometry for high-altitude mav flight.

In Proc. of the IEEE International Conference on Robotics and Automation,

Philadelphia, PA, May 2022.

[78] Zheng Huai and Guoquan Huang. Robocentric visual-inertial odometry. Inter-

national Journal of Robotics Research, April 2019.

[79] Zheng Huai and Guoquan Huang. Markov parallel tracking and mapping for

probabilistic slam. In Proc. of the IEEE International Conference on Robotics

and Automation, Xi’an, China, 2021.

[80] Guoquan Huang. Visual-inertial navigation: A concise review. In Proc. Interna-

tional Conference on Robotics and Automation, Montreal, Canada, May 2019.

177



[81] Guoquan Huang, Michael Kaess, and John Leonard. Consistent sparsification

for graph optimization. In Proc. of the European Conference on Mobile Robots,

pages 150–157, Barcelona, Spain, September 2013.

[82] Guoquan Huang, Anastasios I. Mourikis, and Stergios I. Roumeliotis. Analysis

and improvement of the consistency of extended Kalman filter-based SLAM. In

Proc. of the IEEE International Conference on Robotics and Automation, pages

473–479, Pasadena, CA, May 2008.

[83] Guoquan Huang, Anastasios I. Mourikis, and Stergios I. Roumeliotis. A first-

estimates Jacobian EKF for improving SLAM consistency. In Proc. of the 11th

International Symposium on Experimental Robotics, Athens, Greece, July 2008.

[84] Guoquan Huang, Anastasios I. Mourikis, and Stergios I. Roumeliotis.

Observability-based rules for designing consistent EKF SLAM estimators. In-

ternational Journal of Robotics Research, 29(5):502–528, April 2010.

[85] Hordur Johannsson, Michael Kaess, Maurice Fallon, and John J Leonard. Tempo-

rally scalable visual slam using a reduced pose graph. In 2013 IEEE International

Conference on Robotics and Automation, pages 54–61. IEEE, 2013.

[86] Simon J Julier and Jeffrey K Uhlmann. A non-divergent estimation algorithm

in the presence of unknown correlations. In Proceedings of the 1997 American

Control Conference (Cat. No. 97CH36041), volume 4, pages 2369–2373. IEEE,

1997.

[87] SJ Julier and Jeffrey K Uhlmann. General decentralized data fusion with co-

variance intersection. Handbook of multisensor data fusion: theory and practice,

pages 319–344, 2009.

[88] Roland Jung, Christian Brommer, and Stephan Weiss. Decentralized collabora-

tive state estimation for aided inertial navigation. In 2020 IEEE International

Conference on Robotics and Automation (ICRA), pages 4673–4679. IEEE, 2020.

178



[89] Michael Kaess. Simultaneous localization and mapping with infinite planes. In

2015 IEEE International Conference on Robotics and Automation (ICRA), pages

4605–4611. IEEE, 2015.

[90] Michael Kaess, Hordur Johannsson, Richard Roberts, Viorela Ila, John J

Leonard, and Frank Dellaert. iSAM2: Incremental smoothing and mapping using

the bayes tree. The International Journal of Robotics Research, 31(2):216–235,

2012.

[91] Marco Karrer, Patrik Schmuck, and Margarita Chli. Cvi-slam—collaborative

visual-inertial slam. IEEE Robotics and Automation Letters, 3(4):2762–2769,

2018.

[92] Anton Kasyanov, Francis Engelmann, Jörg Stückler, and Bastian Leibe.

Keyframe-based visual-inertial online slam with relocalization. In 2017

IEEE/RSJ international conference on intelligent robots and systems (IROS),

pages 6662–6669. IEEE, 2017.

[93] Tong Ke, Kejian J Wu, and Stergios I Roumeliotis. Rise-slam: A resource-aware

inverse schmidt estimator for slam. In 2019 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pages 354–361. IEEE, 2019.

[94] Alex Kendall and Roberto Cipolla. Modelling uncertainty in deep learning for

camera relocalization. In 2016 IEEE international conference on Robotics and

Automation (ICRA), pages 4762–4769. IEEE, 2016.

[95] Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep

learning for computer vision? In Advances in neural information processing

systems, pages 5574–5584, 2017.

[96] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using un-

certainty to weigh losses for scene geometry and semantics. In Proceedings of

179



the IEEE Conference on Computer Vision and Pattern Recognition, pages 7482–

7491, 2018.

[97] Alex Kendall, Matthew Grimes, and Roberto Cipolla. Posenet: A convolutional

network for real-time 6-dof camera relocalization. In Proceedings of the IEEE

international conference on computer vision, pages 2938–2946, 2015.

[98] Alex Guy Kendall. Geometry and uncertainty in deep learning for computer

vision. PhD thesis, University of Cambridge, 2019.

[99] Pyojin Kim, Brian Coltin, and H Jin Kim. Linear rgb-d slam for planar environ-

ments. In Proceedings of the European Conference on Computer Vision (ECCV),

pages 333–348, 2018.

[100] Georg Klein and David Murray. Parallel tracking and mapping for small ar

workspaces. In 2007 6th IEEE and ACM international symposium on mixed and

augmented reality, pages 225–234. IEEE, 2007.

[101] Dmitry Kopitkov and Vadim Indelman. Bayesian information recovery from

cnn for probabilistic inference. In 2018 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 7795–7802. IEEE, 2018.

[102] Dimitrios G Kottas and Stergios I Roumeliotis. Exploiting urban scenes for

vision-aided inertial navigation. In Robotics: Science and Systems, 2013.

[103] Rahul G Krishnan, Uri Shalit, and David Sontag. Deep kalman filters. arXiv

preprint arXiv:1511.05121, 2015.

[104] Tristan Laidlow, Michael Bloesch, Wenbin Li, and Stefan Leutenegger. Dense

rgb-d-inertial slam with map deformations. In 2017 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 6741–6748. IEEE,

2017.

180



[105] Pierre-Yves Lajoie, Benjamin Ramtoula, Yun Chang, Luca Carlone, and Gio-

vanni Beltrame. Door-slam: Distributed, online, and outlier resilient slam for

robotic teams. IEEE Robotics and Automation Letters, 5(2):1656–1663, 2020.

[106] Woosik Lee, Yulin Yang, and Guoquan Huang. Efficient multi-sensor aided in-

ertial navigation with online calibration. In Proc. of the IEEE International

Conference on Robotics and Automation, Xi’an, China, 2021.

[107] Keith YK Leung, Yoni Halpern, Timothy D Barfoot, and Hugh HT Liu. The utias

multi-robot cooperative localization and mapping dataset. The International

Journal of Robotics Research, 30(8):969–974, 2011.

[108] Stefan Leutenegger. OKVIS2: Realtime scalable visual-inertial slam with loop

closure. arXiv preprint arXiv:2202.09199, 2022.

[109] Stefan Leutenegger, Simon Lynen, Michael Bosse, Roland Siegwart, and Paul

Furgale. Keyframe-based visual–inertial odometry using nonlinear optimization.

The International Journal of Robotics Research, 34(3):314–334, 2015.

[110] Stefan Leutenegger, Simon Lynen, Michael Bosse, Roland Siegwart, and Paul

Furgale. Keyframe-based visual–inertial odometry using nonlinear optimization.

The International Journal of Robotics Research, 34(3):314–334, 2015.

[111] Mingyang Li. Visual-Inertial Odometry on Resource-Constrained Systems. PhD

thesis, UC Riverside, 2014.

[112] Mingyang Li and Anastasios I Mourikis. High-precision, consistent ekf-based

visual-inertial odometry. The International Journal of Robotics Research,

32(6):690–711, 2013.

[113] Mingyang Li and Anastasios I Mourikis. Optimization-based estimator design

for vision-aided inertial navigation. In Robotics: Science and Systems, pages

241–248. Berlin Germany, 2013.

181



[114] Mingyang Li and Anastasios I Mourikis. Online temporal calibration for Camera–

IMU systems: Theory and algorithms. The International Journal of Robotics

Research, 33(7):947–964, 2014.

[115] Mingyang Li, Hongsheng Yu, Xing Zheng, and Anastasios I Mourikis. High-

fidelity sensor modeling and self-calibration in vision-aided inertial navigation.

In 2014 IEEE International Conference on Robotics and Automation (ICRA),

pages 409–416. IEEE, 2014.

[116] Xin Li, Yijia He, Jinlong Lin, and Xiao Liu. Leveraging planar regularities for

point line visual-inertial odometry. In 2020 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pages 5120–5127. IEEE, 2020.

[117] Yanyan Li, Raza Yunus, Nikolas Brasch, Nassir Navab, and Federico Tombari.

RGB-D SLAM with structural regularities. In 2021 IEEE International Confer-

ence on Robotics and Automation (ICRA), pages 11581–11587. IEEE, 2021.

[118] Chen Liu, Kihwan Kim, Jinwei Gu, Yasutaka Furukawa, and Jan Kautz. Plan-

eRCNN: 3d plane detection and reconstruction from a single image. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 4450–4459, 2019.

[119] Haomin Liu, Mingyu Chen, Guofeng Zhang, Hujun Bao, and Yingze Bao. Ice-

ba: Incremental, consistent and efficient bundle adjustment for visual-inertial

slam. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 1974–1982, 2018.

[120] Shing Yan Loo, Ali Jahani Amiri, Syamsiah Mashohor, Sai Hong Tang, and Hong

Zhang. Cnn-svo: Improving the mapping in semi-direct visual odometry using

single-image depth prediction. In 2019 International Conference on Robotics and

Automation (ICRA), pages 5218–5223. IEEE, 2019.

182



[121] Bruce D. Lucas and Takeo Kanade. An iterative image registration technique

with an application to stereo vision. In International Joint Conference on Arti-

ficial Intelligence, pages 674–679, Vancouver, BC, August 1981.

[122] Lukas Luft, Tobias Schubert, Stergios I Roumeliotis, and Wolfram Burgard.

Recursive decentralized localization for multi-robot systems with asynchronous

pairwise communication. The International Journal of Robotics Research,

37(10):1152–1167, 2018.

[123] Lukas Lukas Von Stumberg and Daniel Cremers. Dm-vio: Delayed marginaliza-

tion visual-inertial odometry. IEEE Robotics and Automation Letters, 7(2):1408–

1415, 2022.

[124] Lukas Lukas Von Stumberg, Vladyslav Usenko, and Daniel Cremers. Direct

sparse visual-inertial odometry using dynamic marginalization. In 2018 IEEE

International Conference on Robotics and Automation (ICRA), pages 2510–2517.

IEEE, 2018.

[125] Simon Lynen, Michael Bosse, Paul Furgale, and Roland Siegwart. Placeless place-

recognition. In 2014 2nd International Conference on 3D Vision, volume 1, pages

303–310. IEEE, 2014.

[126] Simon Lynen, Torsten Sattler, Michael Bosse, Joel A Hesch, Marc Pollefeys,

and Roland Siegwart. Get out of my lab: Large-scale, real-time visual-inertial

localization. In Robotics: Science and Systems, volume 1, page 1, 2015.

[127] Simon Lynen, Bernhard Zeisl, Dror Aiger, Michael Bosse, Joel Hesch, Marc

Pollefeys, Roland Siegwart, and Torsten Sattler. Large-scale, real-time visual–

inertial localization revisited. The International Journal of Robotics Research,

39(9):1061–1084, 2020.

183



[128] Lingni Ma, Christian Kerl, Jörg Stückler, and Daniel Cremers. CPA-SLAM: Con-

sistent plane-model alignment for direct rgb-d slam. In 2016 IEEE International

Conference on Robotics and Automation (ICRA), pages 1285–1291. IEEE, 2016.

[129] Joshua G Mangelson, Derrick Dominic, Ryan M Eustice, and Ram Vasudevan.

Pairwise consistent measurement set maximization for robust multi-robot map

merging. In 2018 IEEE international conference on robotics and automation

(ICRA), pages 2916–2923. IEEE, 2018.

[130] Agostino Martinelli. Cooperative visual-inertial odometry: Analysis of singular-

ities, degeneracies and minimal cases. IEEE Robotics and Automation Letters,

5(2):668–675, 2020.

[131] Agostino Martinelli, Alexander Oliva, and Bernard Mourrain. Cooperative

visual-inertial sensor fusion: The analytic solution. IEEE Robotics and Automa-

tion Letters, 4(2):453–460, 2019.

[132] Peter S. Maybeck. Stochastic Models, Estimation, and Control, volume 1. Aca-

demic Press, London, 1979.

[133] Mladen Mazuran, Wolfram Burgard, and Gian Diego Tipaldi. Nonlinear factor

recovery for long-term slam. The International Journal of Robotics Research,

35(1-3):50–72, 2016.

[134] John McCormac, Ankur Handa, Andrew Davison, and Stefan Leutenegger. Se-

manticfusion: Dense 3d semantic mapping with convolutional neural networks.

In 2017 IEEE International Conference on Robotics and automation (ICRA),

pages 4628–4635. IEEE, 2017.

[135] Igor V Melnyk, Joel A Hesch, and Stergios I Roumeliotis. Cooperative vision-

aided inertial navigation using overlapping views. In 2012 IEEE International

Conference on Robotics and Automation, pages 936–943. IEEE, 2012.

184



[136] Nathaniel Merrill and Guoquan Huang. Lightweight unsupervised deep loop

closure. In Proc. of Robotics: Science and Systems (RSS), Pittsburgh, PA, June

2018.

[137] Nathaniel Merrill and Guoquan Huang. CALC2.0: Combining appearance, se-

mantic and geometric information for robust and efficient visual loop closure. In

2019 International Conference on Intelligent Robots and Systems (IROS), Macau,

China, November 2019.

[138] Sven Middelberg, Torsten Sattler, Ole Untzelmann, and Leif Kobbelt. Scalable

6-dof localization on mobile devices. In European conference on computer vision,

pages 268–283. Springer, 2014.

[139] Anastasios I Mourikis and Stergios I Roumeliotis. A multi-state constraint

kalman filter for vision-aided inertial navigation. In Proceedings 2007 IEEE In-

ternational Conference on Robotics and Automation, pages 3565–3572. IEEE,

2007.

[140] Anastasios I Mourikis and Stergios I Roumeliotis. A dual-layer estimator archi-

tecture for long-term localization. In 2008 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition Workshops, pages 1–8. IEEE, 2008.

[141] Anastasios I Mourikis, Nikolas Trawny, Stergios I Roumeliotis, Andrew E John-

son, Adnan Ansar, and Larry Matthies. Vision-aided inertial navigation for space-

craft entry, descent, and landing. IEEE Transactions on Robotics, 25(2):264–280,

2009.

[142] Elias Mueggler, Guillermo Gallego, Henri Rebecq, and Davide Scaramuzza.

Continuous-time visual-inertial odometry for event cameras. IEEE Transactions

on Robotics, 34(6):1425–1440, 2018.

185
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Appendix A

VISUAL MEASUREMENT MODEL DERIVATIONS

A.1 Camera Measurement Modeling

Consider a 3D feature is detected from the camera image at time k, whose uv

measurement (i.e., the corresponding pixel coordinates) on the image plane is given

by:

zm,k = h(xk) + nk

= hd(zn,k, ζ) + nk

= hd(hp(
Ckpf ), ζ) + nk

= hd(hp(ht(
Gpf ,

Ck
G R, GpCk)), ζ) + nk

= hd(hp(ht(hr(λ, · · · ), Ck
G R, GpCk)), ζ) + nk

where nk is the measurement noise and typically assumed to be zero-mean white Gaus-

sian; zn,k is the normalized undistorted uv measurement; ζ is the camera intrinsic pa-

rameters such as focal length and distortion parameters; Ckpf is the feature position

in the current camera frame {Ck}; Gpf is the feature position in the global frame {G};

{CkG R, GpCk} denotes the current camera pose (position and orientation) in the global

frame (or camera extrinsics); and λ is the feature’s parameters of different represen-

tations (other than position) such as simply a xyz position or an inverse depth with

bearing.

In the above expression, we decompose the measurement function into multiple

concatenated functions corresponding to different operations, which map the states

into the raw uv measurement on the image plane. It should be noted that as we will

perform intrinsic calibration along with extrinsic with different feature representations,
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Figure A.1: Overview of the different transformations needed to relate an estimated feature
and transform it into the observation on the camera image plane.

the above camera measurement model is general. The high-level description of each

function is:

• zk = hd(zn,k, ζ): The distortion function that takes normalized coordinates and

maps it into distorted uv coordinates.

• zn,k = hp(
Ckpf ): The projection function that takes a 3D point in the image and

converts it into the normalized uv coordinates.

• Ckpf = ht(
Gpf ,

Ck
G R, GpCk): Transforming a feature’s position in the global

frame into the current camera frame.

• Gpf = hr(λ, · · · ): Converting from a feature representation to a 3D feature in

the global frame.

A.2 Jacobian Computation

Given the above nested functions, we can leverage the chainrule to find the total

state Jacobian. Since our feature representation function hr(· · · ) might also depend on

the state, i.e. an anchoring pose, we need to carefully consider its additional derivatives.

Consider the following example of our measurement in respect to a state x Jacobian:

∂zk
∂x

=
∂hd(·)
∂zn,k

∂hp(·)
∂Ckpf

∂ht(·)
∂x

+
∂hd(·)
∂zn,k

∂hp(·)
∂Ckpf

∂ht(·)
∂Gpf

∂hr(·)
∂x

In the global feature representations the second term will be zero while for the anchored

representations it will need to be computed.
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A.3 Distortion Function

A.3.1 Radial model

To calibrate camera intrinsics, we need to know how to map our normalized

coordinates into the raw pixel coordinates on the image plane. We first employ the

radial distortion as in OpenCV model:u
v

 := zk = hd(zn,k, ζ) =

fx ∗ x+ cx

fy ∗ y + cy


where x = xn(1 + k1r

2 + k2r
4) + 2p1xnyn + p2(r2 + 2x2

n)

y = yn(1 + k1r
2 + k2r

4) + p1(r2 + 2y2
n) + 2p2xnyn

r2 = x2
n + y2

n

where zn,k = [xn yn]> are the normalized coordinates of the 3D feature and u and v

are the distorted image coordinates on the image plane. The following distortion and

camera intrinsic (focal length and image center) parameters are involved in the above

distortion model, which can be estimated online:

ζ =
[
fx fy cx cy k1 k2 p1 p2

]>
Note that we do not estimate the higher order (i.e., higher than fourth order) terms as in

most offline calibration methods such as Kalibr. To estimate these intrinsic parameters

(including the distortion parameters), the following Jacobian for these parameters is

needed:

∂hd(·)
∂ζ

=

x 0 1 0 fx ∗ (xnr
2) fx ∗ (xnr

4) fx ∗ (2xnyn) fx ∗ (r2 + 2x2
n)

0 y 0 1 fy ∗ (ynr
2) fy ∗ (ynr

4) fy ∗ (r2 + 2y2
n) fy ∗ (2xnyn)


Similarly, the Jacobian with respect to the normalized coordinates can be obtained as

follows:

∂hd(·)
∂zn,k

=

H11 H12

H21 H22


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H11 = fx ∗ ((1 + k1r
2 + k2r

4) + (2k1x
2
n + 4k2x

2
n(x2

n + y2
n)) + 2p1yn + (2p2xn + 4p2xn))

H12 = fx ∗ (2k1xnyn + 4k2xnyn(x2
n + y2

n) + 2p1xn + 2p2yn)

H21 = fy ∗ (2k1xnyn + 4k2xnyn(x2
n + y2

n) + 2p1xn + 2p2yn)

H22 = fy ∗ ((1 + k1r
2 + k2r

4) + (2k1y
2
n + 4k2y

2
n(x2

n + y2
n)) + (2p1yn + 4p1yn) + 2p2xn)

A.3.2 Fisheye model

As fisheye or wide-angle lenses are widely used in practice, we here provide

mathematical derivations of such distortion model as in OpenCV fisheye.u
v

 := zk = hd(zn,k, ζ) =

fx ∗ x+ cx

fy ∗ y + cy


where x =

xn
r
∗ θd

y =
yn
r
∗ θd

θd = θ(1 + k1θ
2 + k2θ

4 + k3θ
6 + k4θ

8)

r2 = x2
n + y2

n

θ = atan(r)

where zn,k = [xn yn]> are the normalized coordinates of the 3D feature and u and v

are the distorted image coordinates on the image plane.

Clearly, the following distortion intrinsic parameters are used in the above

model:

ζ =
[
fx fy cx cy k1 k2 k3 k4

]>
In analogy to the previous radial distortion case, the following Jacobian for these

parameters is needed for intrinsic calibration:

∂hd(·)
∂ζ

=

xn 0 1 0 fx ∗ (xn
r
θ3) fx ∗ (xn

r
θ5) fx ∗ (xn

r
θ7) fx ∗ (xn

r
θ9)

0 yn 0 1 fy ∗ (yn
r
θ3) fy ∗ (yn

r
θ5) fy ∗ (yn

r
θ7) fy ∗ (yn

r
θ9)


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Similarly, with the chain rule of differentiation, we can compute the following Jacobian

with respect to the normalized coordinates:

∂hd(·)
∂zn,k

=
∂uv

∂xy

∂xy

∂xnyn
+
∂uv

∂xy

∂xy

∂r

∂r

∂xnyn
+
∂uv

∂xy

∂xy

∂θd

∂θd
∂θ

∂θ

∂r

∂r

∂xnyn

where
∂uv

∂xy
=

fx 0

0 fy


∂xy

∂xnyn
=

θd/r 0

0 θd/r


∂xy

∂r
=

−xn
r2 θd

−yn
r2 θd


∂r

∂xnyn
=
[
xn
r

yn
r

]
∂xy

∂θd
=

xnr
yn
r


∂θd
∂θ

=
[
1 + 3k1θ

2 + 5k2θ
4 + 7k3θ

6 + 9k4θ
8

]
∂θ

∂r
=
[

1
r2+1

]
A.4 Perspective Projection Function

The standard pinhole camera model is used to project a 3D point in the camera

frame into the normalized image plane (with unit depth):

zn,k = hp(
Ckpf ) =

Cx/Cz
Cy/Cz



where Ckpf =


Cx

Cy

Cz


whose Jacobian matrix is computed as follows:

∂hp(·)
∂Ckpf

=

 1
Cz

0 −Cx
(Cz)2

0 1
Cz

−Cy
(Cz)2


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A.5 Euclidean Transformation

We employ the 6DoF rigid-body Euclidean transformation to transform the 3D

feature position in the global frame {G} to the current camera frame {Ck} based on

the current global camera pose:

Ckpf = ht(
Gpf ,

Ck
G R, GpCk) = Ck

G R(Gpf − GpCk)

Note that in visual-inertial navigation systems, we often keep the IMU, instead of

camera, state in the state vector. So, we need to further transform the above geometry

using the time-invariant IMU-camera extrinsic parameters {CI R, CpI} as follows:

GpCk = GpIk + G
I RIpCk = GpIk + G

I RIpC

Ck
G R = Ck

I RIk
GR = C

I RIk
GR

Substituting these quantities into the equation of Ckpf yields:

Ckpf = C
I RIk

GR(Gpf − GpIk) + CpI

We now can compute the following Jacobian with respect to the pertinent states:

∂ht(·)
∂Gpf

= C
I RIk

GR

∂ht(·)
∂IkGR

= C
I R

⌊
Ik
GR(Gpf − GpIk)×

⌋
∂ht(·)
∂GpIk

= −CI RIk
GR

where ba×c denotes the skew symmetric matrix of a vector a (see Quaternion TR

[186]). Note also that in the above expression (as well as in ensuing derivations), there

is a little abuse of notation; that is, the Jacobian with respect to the rotation matrix

is not the direct differentiation with respect to the 3x3 rotation matrix, instead with

respect to the corresponding 3x1 rotation angle vector. Moreover, if performing online

extrinsic calibration, the Jacobian with respect to the IMU-camera extrinsics is needed:

∂ht(·)
∂CI R

=
⌊
C
I RIk

GR(Gpf − GpIk)×
⌋

∂ht(·)
∂CpI

= I3×3

203



A.6 Point Feature Representations

There are two main parameterizations of a 3D point feature: 3D position (xyz)

and inverse depth with bearing. Both of these can either be represented in the global

frame or in an anchor frame of reference which adds a dependency on having an “an-

chor” pose where the feature is observed. To allow for a unified treatment of different

feature parameterizations λ in our codebase, we derive in detail the generic function

Gpf = f(·) that maps different representations into global position.

A.6.1 Global XYZ

As the canonical parameterization, the global position of a 3D point feature is

simply given by its xyz coordinates in the global frame of reference:

Gpf = f(λ)

=


Gx

Gy

Gz


where λ = Gpf =

[
Gx Gy Gz

]>
It is clear that the Jacobian with respect to the feature parameters is:

∂f(·)
∂λ

= I3×3

A.6.2 Global Inverse Depth

The global inverse-depth representation of a 3D point feature is given by (akin

to spherical coordinates):

Gpf = f(λ)

=
1

ρ


cos(θ) sin(φ)

sin(θ) sin(φ)

cos(φ)


where λ =

[
θ φ ρ

]>
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The Jacobian with respect to the feature parameters can be computed as:

∂f(·)
∂λ

=


−1
ρ

sin(θ) sin(φ) 1
ρ

cos(θ) cos(φ) − 1
ρ2 cos(θ) sin(φ)

1
ρ

cos(θ) sin(φ) 1
ρ

sin(θ) cos(φ) − 1
ρ2 sin(θ) sin(φ)

0 −1
ρ

sin(φ) − 1
ρ2 cos(φ)


A.6.3 Anchored XYZ

We can represent a 3D point feature in some “anchor” frame (say some IMU

local frame, {IaGR, GpIa}), which would normally be the IMU pose corresponding to

the first camera frame where the feature was detected.

Gpf = f(λ, Ia
GR, GpIa ,

C
I R, CpI)

= Ia
GR>CI R>(λ− CpI) + GpIa

where λ = Capf =
[
Cax Cay Caz

]>
The Jacobian with respect to the feature state is given by:

∂f(·)
∂λ

= Ia
GR>CI R>

As the anchor pose is involved in this representation, its Jacobians are computed as:

∂f(·)
∂IaGR

= −IaGR>
⌊
C
I R>(Capf − CpI)×

⌋
∂f(·)
∂GpIa

= I3×3

Moreover, if performing extrinsic calibration, the following Jacobians with respect to

the IMU-camera extrinsics are also needed:

∂f(·)
∂CI R

= −IaGR>CI R>
⌊
(Capf − CpI)×

⌋
∂f(·)
∂CpI

= −IaGR>CI R>
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A.6.4 Anchored Inverse Depth

In analogy to the global inverse depth case, we can employ the inverse depth

with bearing (akin to spherical coordinates) in the anchor frame, {IaGR, GpIa}, to

represent a 3D point feature:

Gpf = f(λ, Ia
GR, GpIa ,

C
I R, CpI)

= Ia
GR>CI R>(Capf − CpI) + GpIa

= Ia
GR>CI R>

(
1

ρ


cos(θ) sin(φ)

sin(θ) sin(φ)

cos(φ)

− CpI

)
+ GpIa

where λ =
[
θ φ ρ

]>
The Jacobian with respect to the feature state is given by:

∂f(·)
∂λ

= Ia
GR>CI R>


−1
ρ

sin(θ) sin(φ) 1
ρ

cos(θ) cos(φ) − 1
ρ2 cos(θ) sin(φ)

1
ρ

cos(θ) sin(φ) 1
ρ

sin(θ) cos(φ) − 1
ρ2 sin(θ) sin(φ)

0 −1
ρ

sin(φ) − 1
ρ2 cos(φ)


The Jacobians with respect to the anchor pose are:

∂f(·)
∂IaGR

= −IaGR>
⌊
C
I R>(Capf − CpI)×

⌋
∂f(·)
∂GpIa

= I3×3

The Jacobians with respect to the IMU-camera extrinsics are:

∂f(·)
∂CI R

= −IaGR>CI R>
⌊
(Capf − CpI)×

⌋
∂f(·)
∂CpI

= −IaGR>CI R>

A.6.5 Anchored Inverse Depth (MSCKF Version)

Note that a simpler version of inverse depth was used in the original MSCKF

paper [139]. This representation does not have the singularity if it is represented in a

camera frame the feature was measured.

Gpf = f(λ, Ia
GR, GpIa ,

C
I R, CpI)
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= Ia
GR>CI R>(Capf − CpI) + GpIa

= Ia
GR>CI R>

(
1

ρ


α

β

1

− CpI

)
+ GpIa

where λ =
[
α β ρ

]>
The Jacobian with respect to the feature state is:

∂f(·)
∂λ

= Ia
GR>CI R>


1
ρ

0 − 1
ρ2α

0 1
ρ
− 1
ρ2β

0 0 − 1
ρ2


The Jacobians with respect to the anchor state are:

∂f(·)
∂IaGR

= −IaGR>
⌊
C
I R>(Capf − CpI)×

⌋
∂f(·)
∂GpIa

= I3×3

The Jacobians with respect to the IMU-camera extrinsics are:

∂f(·)
∂CI R

= −IaGR>CI R>
⌊
(Capf − CpI)×

⌋
∂f(·)
∂CpI

= −IaGR>CI R>

A.6.6 Anchored Inverse Depth (MSCKF Single Depth Version)

This feature representation is based on the MSCKF representation [139], and the

the single depth from VINS-Mono [160]. As compared to the implementation in [160],

we are careful about how we handle treating of the bearing of the feature. During

initialization we initialize a full 3D feature and then follow that by marginalize the

bearing portion of it leaving the depth in the state vector. The marginalized bearing

is then fixed for all future linearizations.

Then during the update, we perform nullspace projection at every timestep

to remove the feature dependence on this bearing. To do so, we need at least two
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sets of UV measurements to perform this bearing nullspace operation since we lose

two dimensions of the feature in the process. We can define the feature measurement

function as follows:

Gpf = f(λ, Ia
GR, GpIa ,

C
I R, CpI)

= Ia
GR>CI R>(Capf − CpI) + GpIa

= Ia
GR>CI R>

(1

ρ
b̂− CpI

)
+ GpIa

where λ = [ρ]

In the above case we have defined a bearing b̂ which is the marginalized bearing of

the feature after initialization. After collecting two measurements, we can nullspace

project to remove the Jacobian in respect to this bearing variable.
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Appendix B

ASYNCHRONOUS 6 DOF POSE FACTOR JACOBIANS

B.1 Measurement Noise Jacobian

The measurement covariance is propagated through the following covariance

propagation:

Pi = HuP1,2Hu
> (B.1)

=

 δiGθ̃

δ1
Gθ̃

03×3
δiGθ̃

δ2
Gθ̃

03×3

03×3
δGp̃i
δGp̃1

03×3
δGp̃i
δGp̃2


 P1 06×6

06×6 P2


 δiGθ̃

δ1
Gθ̃

03×3
δiGθ̃

δ2
Gθ̃

03×3

03×3
δGp̃i
δGp̃1

03×3
δGp̃i
δGp̃2


>

(B.2)

where P1,2 is the joint covariance matrix from the bounding poses, and θ̃ and p̃ are

the error states of each angle and position measurement, respectively. The resulting

Jacobian matrix Hu is defined as the following:

Hu =


−i1R̂

(
Jr(λ Log(2

1R̂))

λ Jr
−1(Log(2

1R̂))− I
) 03×3

i
1R̂ Jr

(
− λ Log(2

1R̂
>))

λ Jr
−1(Log(2

1R̂
>)
) 03×3

03×3 (1− λ) I 03×3 λ I


B.2 Model Linearization

We have the following residual:

rV (x) =

 Log
(
I
BRBi

V RBi
V R̆>

)
V pIi + Ii

V R>IpB − V p̆Bi

+ npose (B.3)

We can then define the following linearized residual as:

r̃V (x) =
∂h

∂xIi
x̃Ii +

[
∂h

∂[IBδθ
Ip̃B]

− ∂g

∂V tI

]
x̃J + npose (B.4)
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Thus, the measurement Jacobians are as follows:

∂h

∂xIi
=

 I
BR> 03 03 03 03

−IiV R>bIpB×c I3 03 03 03

 (B.5)

∂h

∂[IBδθ
Ip̃B]

=

−IBR> 03

03
Ii
V R>

 (B.6)

∂g

∂V tI
=
∂g

∂λ

∂λ

∂V tI
=

−BiB0
R Jr

(
λ B1
B0
φ
)
B1
B0
φ

V pB1 − V pB0

 −1

(V tB1 − V tB0)
(B.7)

where we define the following:

Bi
B0

R = Exp
(
λ Log(B1

V RB0
V R>)

)
, B1

B0
φ = Log(BiB0

R) (B.8)
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Appendix C

SE(3) B-SPLINE STATE TIME DERIVATIVE

A key foundation of our simulator is the use of a SE(3) B-Spline. The derivations

are based on the works [142] and [152]. The key properties we care about are:

• Local control, allowing the system to function online as well as in batch

• C2-continuity to enable inertial predictions and calculations

• Good approximation of minimal torque trajectories

• A parameterization of rigid-body motion devoid of singularities

The key idea is to convert a set of trajectory points into a continuous-time uniform

cubic cumulative b-spline. As compared to standard b-spline representations, the cu-

mulative form ensures local continuity which is needed for on-manifold interpolation.

We leverage the cubic b-spline to ensure C2-continuity to ensure that we can calculate

accelerations at any point along the trajectory.

C.1 General Form

fSgfigfi-1g
fi+1g

fi+2g

u u u

Figure C.1: Illustration of the B-spline interpolation to a pose G
IS

T which is bounded by four

control poses which are separated by a constant time.
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We look at the special case where we have a uniform distribution that can be

described as if the variable t describes the distance to any point along the b-spline and

each control point is separated by some time ∆t. We can define the time fraction:

u(t) =
t− ti
ti+1 − ti

=
t− ti
∆t

, u ∈ [0, 1) (C.1)

where ti and ti+1 are the first and second control pose positions along the spline (can

also be denoted as ti = i∆t if uniform time between each control pose), respectively.

The equations for a uniform cumulative b-spline supported by 4 bounding control poses

are:

w
s T(u(t)) = exp

(1

6
(6) log

(
w
i−1T

))
exp
(1

6
(5 + 3u− 3u2 + u3) log

(
w
i−1T

−1 w
i T
))

exp
(1

6
(1 + 3u+ 3u2 − 2u3) log

(
w
i T−1 w

i+1T
))

exp
(1

6
u3 log

(
w
i+1T

−1 w
i+2T

))
(C.2)

= exp
(

log
(
w
i−1T

))
exp
(1

6
(5 + 3u− 3u2 + u3) log

(
i−1
i T

))
exp
(1

6
(1 + 3u+ 3u2 − 2u3) log

(
i
i+1T

))
exp
(1

6
u3 log

(
i+1
i+2T

))
(C.3)

where exp(·) is the matrix exponential, log(·) is the matrix logarithm [5].

C.2 Time Derivatives

From here, we can look at taking the derivative of our state in respect to time

to get these values. Our state is made of control points, so we look at taking the

derivative of equation (C.3) in respect to time. First we can simplify equation (C.3) as

follows:

w
s T(u(t)) = w

i−1T exp
(
B0(u(t)) i−1

i Ω
)

(C.4)

exp
(
B1(u(t)) i

i+1Ω
)

exp
(
B2(u(t)) i+1

i+2Ω
)

= w
i−1T A0 A1 A2 (C.5)

We can apply the product derivative rule to get the following:

∂

∂t
w
s T(u(t)) = w

i−1T
(
Ȧ0 A1 A2 + A0 Ȧ1 A2 + A0 A1 Ȧ2

)
(C.6)
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∂

∂t2
w
s T(u(t)) = w

i−1T
(
Ä0 A1 A2 + A0 Ä1 A2 + A0 A1 Ä2

+ 2Ȧ0Ȧ1A2 + 2A0Ȧ1Ȧ2 + 2Ȧ0A1Ȧ2

)
(C.7)

To find the derivatives of our matrix exponential we can look at the series definition

and take the derivative from there. For the first matrix exponential, we can write the

following:

A0 = I +B0(u(t)) i−1
i Ω∧ +

1

2
B0(u(t))2

(
i−1
i Ω∧

)2
+

1

6
B0(u(t))3

(
i−1
i Ω∧

)3
+ · · · (C.8)

Taking the derivative in respect to time, we can get the following:

Ȧ0 = Ḃ0(u(t)) i−1
i Ω∧ + Ḃ0(u(t))B0(u(t))

(
i−1
i Ω∧

)2
+

1

2
Ḃ0(u(t))B0(u(t))2

(
i−1
i Ω∧

)3
+ · · ·

(C.9)

Ȧ0 = Ḃ0(u(t)) i−1
i Ω∧

(
I +B0(u(t))

(
i−1
i Ω∧

)
+

1

2
Ḃ0(u(t))B0(u(t))2

(
i−1
i Ω∧

)2
+ · · ·

)
(C.10)

Ȧ0 = Ḃ0(u(t)) i−1
i Ω∧ A0 (C.11)

where (·)∧ is the matrix “hat” operation which converts vectors into skew-symmetric

matrices [5]. We can see that this is true for all Ai because the Ω’s control point values

do not vary with time. From the above equation, it is simple to apply the product rule

to find the second derivative as follows:

Ä0 = Ḃ0(u(t)) i−1
i Ω∧ Ȧ0 + B̈0(u(t)) i−1

i Ω∧ A0 (C.12)

The final piece is to find the derivative of our basis function. We can take the derivative

in respect to our variable u and then chain rule this with the derivative of u in respect

to time. We can perform that on the matrix form as follows:

B̃(u(t)) =
1

3!

[
6 (5 + 3u− 3u2 + u3) (1 + 3u+ 3u2 − 2u3) u3

]
1×4

(C.13)

Ḃ(u(t)) =
1

3!

[
0 (3− 6u+ 3u2) (3 + 6u− 6u2) 3u2

]
1×4
× 1

∆t
(C.14)
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B̈(u(t)) =
1

3!

[
0 (−6 + 6u) (6− 12u) 6u

]
1×4
× 1

∆t2
(C.15)

This gives us the following final equation set:

w
s T(u(t)) = w

i−1T A0 A1 A2 (C.16)

w
s Ṫ(u(t)) = w

i−1T
(
Ȧ0 A1 A2 + A0 Ȧ1 A2 + A0 A1 Ȧ2

)
(C.17)

w
s T̈(u(t)) = w

i−1T
(
Ä0 A1 A2 + A0 Ä1 A2 + A0 A1 Ä2

+ 2Ȧ0Ȧ1A2 + 2A0Ȧ1Ȧ2 + 2Ȧ0A1Ȧ2

)
(C.18)

i−1
i Ω = log

(
w
i−1T

−1 w
i T
)

(C.19)

Aj = exp
(
Bj(u(t)) i−1+j

i+j Ω
)

(C.20)

Ȧj = Ḃj(u(t)) i−1+j
i+j Ω∧ Aj (C.21)

Äj = Ḃj(u(t)) i−1+j
i+j Ω∧ Ȧj + B̈j(u(t)) i−1+j

i+j Ω∧ Aj (C.22)

B0(u(t)) =
1

3!
(5 + 3u− 3u2 + u3) (C.23)

B1(u(t)) =
1

3!
(1 + 3u+ 3u2 − 2u3) (C.24)

B2(u(t)) =
1

3!
(u3) (C.25)

Ḃ0(u(t)) =
1

3!

1

∆t
(3− 6u+ 3u2) (C.26)

Ḃ1(u(t)) =
1

3!

1

∆t
(3 + 6u− 6u2) (C.27)

Ḃ2(u(t)) =
1

3!

1

∆t
(3u2) (C.28)

B̈0(u(t)) =
1

3!

1

∆t2
(−6 + 6u) (C.29)

B̈1(u(t)) =
1

3!

1

∆t2
(6− 12u) (C.30)

B̈2(u(t)) =
1

3!

1

∆t2
(6u) (C.31)
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Appendix D

PLANE REPRESENTATION DERIVATIONS

D.1 Closest Point (CP) Anchor Plane Factor Jacobians

D.1.1 HA Jacobian

LΠ = L
GR A

GR>
(
AnAd− AnGp>L

A
GR>An + AnGp>A

A
GR>An

)
(D.1)

We perturb the rotation as follows:

LΠ̂ + LΠ̃ = L
GR

((
I− bδθ×c

)
A
GR̂

)>
(
AnAd− AnGp>L

((
I− bδθ×c

)
A
GR̂
)>

An + AnGp>A

((
I− bδθ×c

)
A
GR̂
)>

An

)
(D.2)

= L
GR A

GR̂
>(

I + bδθ×c
)

(
AnAd− AnGp>L

A
GR̂

>(
I + bδθ×c

)
An + AnGp>A

A
GR̂

>(
I + bδθ×c

)
An

)
(D.3)

= L
GR A

GR̂
>(

I + bδθ×c
)

(
AnAd− AnGp>L

A
GR̂

>An− AnGp>L
A
GR̂

>
bδθ×c An

+ AnGp>A
A
GR̂

>An + AnGp>A
A
GR̂

>
bδθ×c An

)
(D.4)

= L
GR A

GR̂
>
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(
AnAd− AnGp>L

A
GR̂

>An− AnGp>L
A
GR̂

>
bδθ×c An

+ AnGp>A
A
GR̂

>An + AnGp>A
A
GR̂

>
bδθ×c An

+ bδθ×c AnAd− bδθ×c AnGp>L
A
GR̂

>An + bδθ×c AnGp>A
A
GR̂

>An

)
(D.5)

= LΠ̂ + L
GR A

GR̂
>
(
− AnGp>L

A
GR̂

>
bδθ×c An + AnGp>A

A
GR̂

>
bδθ×c An

+ bδθ×c AnAd− bδθ×c AnGp>L
A
GR̂

>An + bδθ×c AnGp>A
A
GR̂

>An

)
(D.6)

= LΠ̂ + L
GR A

GR̂
>
(
AnGp>L

A
GR̂

> ⌊An ×
⌋
− AnGp>A

A
GR̂

> ⌊An ×
⌋

−
⌊
AnAd ×

⌋
+
⌊
AnGp>L

A
GR̂

>An ×
⌋
−
⌊
AnGp>A

A
GR̂

>An ×
⌋)

δθ

(D.7)

Thus, we have the following:

∂ h

∂ A
Gδ̃θ

= L
GR A

GR̂
>(AnGp>L

A
GR̂

> ⌊An ×
⌋
− AnGp>A

A
GR̂

> ⌊An ×
⌋

−
⌊
AnAd ×

⌋
+
⌊
AnGp>L

A
GR̂

>An ×
⌋
−
⌊
AnGp>A

A
GR̂

>An ×
⌋)

(D.8)

We perturb the position as follows:

LΠ̂ + LΠ̃ = L
GR A

GR>
(
AnAd− An Gp>L

A
GR>An + An(Gp̂A + Gp̃A)> A

GR>An
)

(D.9)

= L
GR A

GR>
(
AnAd− AnGp>L

A
GR>An + AnGp̂>A

A
GR>An + AnGp̃>A

A
GR>An

)
(D.10)

= LΠ̂ + L
GR A

GR>
(
AnGp̃>A

A
GR>An

)
(D.11)
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= LΠ̂ + L
GR A

GR>
(
An (AGR>An)>

)
Gp̃A (D.12)

= LΠ̂ +
(
L
GR A

GR>An An>AGR
)
Gp̃A (D.13)

Thus, we have the following:

∂ h

∂ Gp̃A
= L

GR A
GR>An An>AGR (D.14)

D.1.2 HL Jacobian

LΠ = L
GR A

GR>
(
AnAd− AnGp>L

A
GR>An + AnGp>A

A
GR>An

)
(D.15)

We perturb the rotation as follows:

LΠ̂ + LΠ̃ =
(
I− bδθ×c

)
L
GR̂ A

GR>
(
· · ·
)

(D.16)

= LΠ̂− bδθ×c L
GR̂ A

GR>
(
· · ·
)

(D.17)

= LΠ̂ +
⌊
L
GR̂ A

GR>
(
· · ·
)
×
⌋
δθ (D.18)

Thus, we have the following:

∂ h

∂ L
Gδ̃θ

=
⌊
L
GR̂ A

GR>
(
AnAd− AnGp>L

A
GR>An + AnGp>A

A
GR>An

)
×
⌋

(D.19)

We perturb the position as follows:

LΠ̂ + LΠ̃ = L
GR A

GR>
(
AnAd− An(Gp̂L + Gp̃L)> A

GR>An + AnGp>A
A
GR>An

)
(D.20)

= L
GR A

GR>
(
AnAd− AnGp̂>L

A
GR>An− AnGp̃>L

A
GR>An + AnGp>A

A
GR>An

)
(D.21)

= LΠ̂ + L
GR A

GR>
(
− AnGp̃>L

A
GR>An

)
(D.22)

= LΠ̂ + L
GR A

GR>
(
− An (AGR>An)>

)
Gp̃L (D.23)

= LΠ̂ +
(
− L

GR A
GR>An An>AGR

)
Gp̃L (D.24)
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Thus, we have the following:

∂ h

∂ Gp̃L
= −LGR A

GR>An An>AGR (D.25)

D.1.3 Hnd Jacobian

LΠ = L
GR A

GR>
(
AnAd− AnGp>L

A
GR>An + AnGp>A

A
GR>An

)
(D.26)

We perturb the normal vector An as follows:

LΠ̂ + LΠ̃ = L
GR A

GR>
(

(An̂ + Añ)Ad− (An̂ + Añ)Gp>L
A
GR>(An̂ + Añ)

+ (An̂ + Añ)Gp>A
A
GR>(An̂ + Añ)

)
(D.27)

= LΠ̂ + L
GR A

GR>
(
AñAd− An̂Gp>L

A
GR>Añ− AñGp>L

A
GR>An̂

+ An̂Gp>A
A
GR>Añ + AñGp>A

A
GR>An̂

)
(D.28)

= LΠ̂ + L
GR A

GR>
(
Ad− An̂Gp>L

A
GR> − Gp>L

A
GR>An̂

+ An̂Gp>A
A
GR> + Gp>A

A
GR>An̂

)
Añ (D.29)

Thus, we have the following:

∂ h

∂ Añ
= L

GR A
GR>

(
Ad− An̂Gp>L

A
GR> − Gp>L

A
GR>An̂ + An̂Gp>A

A
GR> + Gp>A

A
GR>An̂

)
= L

GR A
GR>

(
Ad− Gp>L

A
GR>An̂ + Gp>A

A
GR>An̂

)
+ L

GR A
GR>

(
− An̂Gp>L

A
GR> + An̂Gp>A

A
GR>

)
(D.30)

(D.31)

We perturb the distance Ad as follows:

LΠ̂ + LΠ̃ = L
GR A

GR>
(
An(Ad̂+ Ad̃)− AnGp>L

A
GR>An + AnGp>A

A
GR>An

)
(D.32)
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= LΠ̂ +
(
L
GR A

GR>An
)
Ad̃ (D.33)

(D.34)

Thus, we have the following:

∂ h

∂ Ad̃
= L

GR A
GR>An (D.35)

D.1.4 HΠ Jacobian


An

Ad

 =


1√

AΠ(x)2+AΠ(y)2+AΠ(z)2

AΠ

√
AΠ(x)2 + AΠ(y)2 + AΠ(z)2

 (D.36)

We can take the element wise derivative to get the following:

∂ An

∂ AΠ̃
=



AΠ(y)2 + AΠ(z)2

(AΠ(x)2 + AΠ(y)2 + AΠ(z)2)
3
2

−
AΠ(x)AΠ(y)

(AΠ(x)2 + AΠ(y)2 + AΠ(z)2)
3
2

−
AΠ(x)AΠ(z)

(AΠ(x)2 + AΠ(y)2 + AΠ(z)2)
3
2

−
AΠ(y)AΠ(x)

(AΠ(x)2 + AΠ(y)2 + AΠ(z)2)
3
2

AΠ(x)2 + AΠ(z)2

(AΠ(x)2 + AΠ(y)2 + AΠ(z)2)
3
2

−
AΠ(y)AΠ(z)

(AΠ(x)2 + AΠ(y)2 + AΠ(z)2)
3
2

−
AΠ(z)AΠ(x)

(AΠ(x)2 + AΠ(y)2 + AΠ(z)2)
3
2

−
AΠ(z)AΠ(y)

(AΠ(x)2 + AΠ(y)2 + AΠ(z)2)
3
2

AΠ(x)2 + AΠ(y)2

(AΠ(x)2 + AΠ(y)2 + AΠ(z)2)
3
2



∂ An

∂ AΠ̃
=

1(
AΠ(x)2 + AΠ(y)2 + AΠ(z)2

) 3
2



AΠ(y)2 + AΠ(z)2 −AΠ(x)AΠ(y) −AΠ(x)AΠ(z)

−AΠ(y)AΠ(x) AΠ(x)2 + AΠ(z)2 −AΠ(y)AΠ(z)

−AΠ(z)AΠ(x) −AΠ(z)AΠ(y) AΠ(x)2 + AΠ(y)2


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=
1

Ad̂3





Ad̂2 0 0

0 Ad̂2 0

0 0 Ad̂2


−



AΠ(x)2 AΠ(x)AΠ(y) AΠ(x)AΠ(z)

AΠ(y)AΠ(x) AΠ(y)2 AΠ(y)AΠ(z)

AΠ(z)AΠ(x) AΠ(z)AΠ(y) AΠ(z)2




=

1

Ad̂

(
I3×3 − An̂An̂>

)
∂ An

∂ AΠ̃
=

1

Ad̂

(
I3×3 − An̂ An̂>

)
(D.37)

We can then take the element wise derivatives in respect to the distance scalar.

∂ Ad

∂ AΠ̃
=

1√
AΠ(x)2 + AΠ(y)2 + AΠ(z)2

[
AΠ(x) AΠ(y) AΠ(z)

]
(D.38)

= An̂> (D.39)

∂ Ad

∂ AΠ̃
= An̂> (D.40)

D.2 Quaternion (CP) Anchor Plane Factor Jacobians

D.2.1 Quaternion Representation

The plane can also be represented by the a quaternion q̄π, and the relation with

the plane normal direction nπ and plane distance dπ as:

q̄π =

qv

q4

 =
1√

1 + d2
π

nπ

dπ

 (D.41)

Therefore, we can use the error states δθπ for quaternion to represent the plane, that

is:

q̄π =

1
2
δθπ

1

⊗ ˆ̄qπ (D.42)
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Note that the Jacobians w.r.t. the quaternion error states can be written as:

q̄π = ˆ̄qπ + ˜̄qπ =

1
2
δθπ

1

⊗ ˆ̄qπ (D.43)

⇒ ˜̄qπ =

1
2
δθπ

0

⊗ ˆ̄qπ =

q̂4I3 + bq̂vc q̂v

−q̂>v q̂4

1
2
δθπ

0

 (D.44)

⇒

1
2
δθπ

1

 =

03×1

1

+ ˜̄qπ ⊗ ˆ̄q−1
π =

03×1

1

+

q̂4I3 − bq̂vc −q̂v

q̂>v q̂4

 ˜̄qπ (D.45)

D.2.2 Measurement Noise Covariance

Consider a point pf on the plane, then we write the plane measurement as the

following:

z = h (q̄π,np) (D.46)

= q>v (pf + np)− q4 (D.47)

We linearize the above equation and get:

z̃ ' Hπδθπ + Hnnp (D.48)

Hπ =
∂z̃

∂δθπ
=

∂z̃

∂ ˜̄qπ

∂ ˜̄qπ
∂δθπ

(D.49)

Hn =
∂z̃

∂np
(D.50)

where:

∂z̃

∂ ˜̄qπ
=
[
p̂>f −1

]
(D.51)

∂ ˜̄qπ
∂δθπ

=
1

2

q̂4I3 + bq̂vc

−q̂>v

 (D.52)

∂z̃

∂np
= q̂>v (D.53)
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We can minimize the difference between each point and the quaternion representation

to get the optimal plane parameters. After optimization, we can get the measurement

covariance, Rπ, by looping over all measurements to compute the following:

Rπ =

(∑
i

H>πi
(
HniWiH

>
ni

)−1
Hπi

)−1

(D.54)

D.2.3 Jacobians for Quaternion Plan Anchor Factor

Having compressed the point cloud into the quaternion plane representation,

we can add it to our factor graph. In order to optimize we need the Jacobians of

the measurement in respect to the states that it depends on. We define the following

frame of references: {L} current LiDAR frame, {I} current IMU frame, {A} anchored

IMU frame and {La} the anchored LiDAR frame. The measurement function of the

anchored plane projected into the current local frame can be summarized as follows:

z = h
(
Laq̄π,nR

)
(D.55)

= h
(
I
GR, GpI ,

A
GR, GpA,

Laq̄π,nR

)
(D.56)

where I
GR, GpI is the current IMU pose, AGR, GpA is the current anchored IMU pose,

Laq̄π is the plane in the anchor LiDAR frame, and nR is noise corrupting the quaternion

plane measurement, whose covariance is Rπ. Therefore, we can have:

Hx =
∂z̃

∂x̃
=
[
∂δLθπ
∂δθI

∂δLθπ
∂Gp̃I

∂δLθπ
∂δθA

∂δLθπ
∂Gp̃A

∂δLθπ
∂Laθπ

]
(D.57)

where:Lnπ

Ldπ

 =

 L
I R 03×1

−Ip>L 1

 I
GR 03×1

−Gp>I 1

 G
AR 03×1

−Ap>G 1

 I
LR 03×1

−Lp>I 1

Lanπ
Ladπ


(D.58)

We first compute the Jacobians w.r.t. the current IMU pose I
GR and GpI as:

∂δLθπ
∂δθI

=
∂δLθπ
∂L ˜̄qπ

∂L ˜̄qπ

∂

Lñπ

Ld̃π


∂

Lñπ

Ld̃π


∂δθI

(D.59)
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∂δLθπ
∂Gp̃I

=
∂δLθπ
∂L ˜̄qπ

∂L ˜̄qπ

∂

Lñπ

Ld̃π


∂

Lñπ

Ld̃π


∂Gp̃I

(D.60)

The measurement relationship can be described as:Lnπ

Ldπ

 =

 L
I R 03×1

−Ip>L 1

 I
GR 03×1

−Gp>I 1

Gnπ

Gdπ

 (D.61)

where:

∂δLθπ
∂L ˜̄qπ

= 2
[
Lq̂4I3 − bLq̂vc −Lq̂v

]
(D.62)

∂L ˜̄qπ

∂

Lñπ

Ld̃π

 =
1

[1 + Ld2
π]

3
2

(1 + Ld2
π

)
I3 −LdπLnπ

01×3 1

 (D.63)

∂

Lñπ

Ld̃π


∂δθI

=

 L
I R 03×1

−Ip>L 1

bIGRGnπc

01×3

 (D.64)

∂

Lñπ

Ld̃π


∂Gp̃I

=

 L
I R 03×1

−Ip>L 1

 03

−Gn>π

 (D.65)

We then compute the Jacobians w.r.t. the current IMU pose A
GR and GpA as:

∂δLθπ
∂δθA

=
∂δLθπ
∂L ˜̄qπ

∂L ˜̄qπ

∂

Lñπ

Ld̃π


∂

Lñπ

Ld̃π


∂δθA

(D.66)

∂δLθπ
∂Gp̃A

=
∂δLθπ
∂L ˜̄qπ

∂L ˜̄qπ

∂

Lñπ

Ld̃π


∂

Lñπ

Ld̃π


∂Gp̃A

(D.67)
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The measurement relationship can be described as:Lnπ

Ldπ

 =

 L
I R 03×1

−Ip>L 1

 I
GR 03×1

−Gp>I 1

 G
AR 03×1

−Ap>G 1

Anπ

Adπ

 (D.68)

where:

∂δLθπ
∂L ˜̄qπ

= 2
[
Lq̂4I3 − bLq̂vc −Lq̂v

]
(D.69)

∂L ˜̄qπ

∂

Lñπ

Ld̃π

 =
1

[1 + Ld2
π]

3
2

(1 + Ld2
π

)
I3 −LdπLnπ

01×3 1

 (D.70)

∂

Lñπ

Ld̃π


∂δθA

=

 L
I R 03×1

−Ip>L 1

 I
GR 03×1

−Gp>I 1

 −GARbAnπc
An>π bAGRGpAc

 (D.71)

∂

Lñπ

Ld̃π


∂Gp̃A

=

 L
I R 03×1

−Ip>L 1

 I
GR 03×1

−Gp>I 1

 03

An>π
A
GR

 (D.72)

Finally, we compute the Jacobians w.r.t. the plane state in the anchored LiDAR frame

Laq̄π as:

∂δLθπ
∂δGθπ

=
∂δLθπ
∂L ˜̄qπ

∂C ˜̄qπ

∂

Lñπ

Ld̃π


∂

Lñπ

Ld̃π


∂

Lañπ
Lad̃π


∂

Lañπ
Lad̃π


∂La ˜̄qπ

∂La ˜̄qπ
∂δLaθπ

(D.73)

The measurement relationship can be described as:Lnπ

Ldπ

 =

 L
I R 03×1

−Ip>L 1

 I
GR 03×1

−Gp>I 1

 G
AR 03×1

−Ap>G 1

 I
LR 03×1

−Lp>I 1

Lanπ
Ladπ


(D.74)

where:

∂δLθπ
∂L ˜̄qπ

= 2
[
Lq̂4I3 − bLq̂vc −Lq̂v

]
(D.75)
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π

)
I3 −LdπLnπ
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∂

Lañπ
Lad̃π

 =
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∂

Lañπ
Lad̃π


∂La ˜̄qπ

=
1

[Laq>v
Laqv]

3
2

 −bLaqvc2 03×1

−Laq4
Laq>v

Laq>v
Laqv

 (D.78)

∂La ˜̄qπ
∂δLaθπ

=
1

2

Laq̂4I3 + bLaq̂vc

−Laq̂>v

 (D.79)
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Appendix E

COMPLEXITY OF SCHMIDT-KALMAN OPERATIONS

E.1 State Propagation

E.1.1 Problem Formulation

During propagation we process a set of inertial measurements to move the state

mean and covariance forward in time. To propagate the state covariance matrix for-

ward, we use the discrete-time state transition matrix as follows:

xk+1 = f(xk, amk − nak ,ωmk − nωk) (E.1)

Pk|k−1 =

Φk−1PAAk−1|k−1
Φ>k−1 Φk−1PASk−1|k−1

PSAk−1|k−1
Φ>k−1 PSSk−1|k−1

+

Qk−1 0

0 0

 (E.2)

E.1.2 Complexity Analysis

We consider that the current active state variables xAk|k to have an error state

of size a and the Schmidt state variables xSk|k to have an error state of size n. The

mean propagation only affects the active state variables, thus we only focus on the state

covariance propagation. We have the following algorithm and computational costs for

a set of IMU measurements I that are of some size q:
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Algorithm 5 Schmidt-MSCKF Covariance Propagation

1: procedure cov prop(PAAk−1|k−1
, PASk−1|k−1

, I) cost times

2: // Set initial values for state transition and noise

3: Φ = Ia×a a2 1

4: Q = 0a×a a2 1

5: // Compound all inertial measurements

6: for ωi, ai ∈ I do 1 q

7: Φ = Φ(i+ 1, i)Φ a3 + a2 q

8: Q = Φ(i+ 1, i)QΦ(i+ 1, i)> + Qi 2a3 + 2a2 q

9: end for

10: // Update active covariance, and Schmidt cross-

terms
11: PAAk|k−1

= ΦPAAk−1|k−1
Φ> + Q 2a3 + 2a2 1

12: PASk|k−1
= ΦPASk−1|k−1 a2n+ an 1

13: end procedure

It is clear to see that the most expensive computation is the final multiplication

of the Schmidt cross-term covariance. We have the following computational cost for

propagation if we take the size of the active state to remain constant over time:

mean propagation : O(1)

covariance propagation : O(n)

(E.3)

(E.4)

E.2 Clone Marginalization

E.2.1 Problem Formulation

When a clone leaves the sliding window, we choose if we should add that clone

to the Schmidt state, or marginalize it. Here we look at what happens when we

marginalize a clone from the end of our state.
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Figure E.1: Illustrate of what is deleted upon marginalization of a

clone. The rows shown in red will be deleted after the process is

finished.

E.2.2 Complexity Analysis

We consider that the current active state variables xAk|k to have an error state

of size a and the Schmidt state variables xSk|k to have an error state of size n. We

assume that the clone that will be marginalized is at the end of the active variable

state/covariance.

Algorithm 6 Schmidt-MSCKF Covariance Clone Marginalization

1: procedure covariance clone marg(PAA, PAS, PSS) cost times

2: PAA.resize(PAA.r−6, PAA.c−6) c1 1

3: PAS.resize(PAS.r−6, PAS.c) c2 1

4: end procedure

From the above, we can see that the time to resize the matrices should dominate

the actual cost. In practice we don’t deallocate memory and simply keep track of the

current size of the covariance, thus we don’t have a cost to resize the matrix allowing
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for constant computation cost. Considering the active state remains constant over time

we have the following costs:

mean clone marginalization : O(1)

covariance clone marginalization : O(c)

(E.5)

(E.6)

E.3 Keyframe/Point Augmentation

E.3.1 Problem Formulation

When a clone leaves the sliding window, we choose if we should add that clone

to the Schmidt state, or marginalize it. If we are going to add it to the Schmidt state,

we call this operation “keyframe augmentation” as we are adding a new keyframe into

our Schmidt state.

Figure E.2: Illustrate of what is added and deleted upon keyframe

augmentation. The rows shown in red will be deleted after the

process is finished, while the rows shown in green have been added

by copying the cross-terms from the PAA and PAS matrices.
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E.3.2 Complexity Analysis

We consider that the current active state variables xAk|k to have an error state

of size a and the Schmidt state variables xSk|k to have an error state of size n. For the

mean, we simply need to append the new 6× 1 (or 3× 1 for a point) to the end of our

Schmidt state vector and remove it from our active state vector. Thus, we focus on

how to re-order the covariance such that it has the new Schmidt variable at the end of

it. We assume that the clone that will be moved to the Schmidt state is at the end of

the active variable state/covariance.

Algorithm 7 Schmidt-MSCKF Covariance Keyframe Augmentation

1: procedure covariance key aug(PAA, PAS, PSS) cost times

2: // Resize our covariance matrix

3: PAS.resize(PAS.r, PAS.c+6) c1 1

4: PSS.resize(PSS.r+6, PSS.c+6) c2 1

5: // Copy from active state to cross-terms

6: PAS(0, PAS.c−6, PAS.r, 6) = PAA(0, PAA.c−6, PAA.r, 6) 6a 1

7: // Copy from cross-terms to Schmidt

8: PSS(PSS.r−6, 0, 6, PSS.c) = PAS(PAS.r − 6, 0, 6, PAS.c) 6n 1

9: PSS(0, PSS.c−6, PSS.r, 6) = PAS(PAS.r − 6, 0, 6, PAS.c)
> 6n 1

10: // Finally, reduce size of covariances

11: PAA.resize(PAA.r−6, PAA.c−6) c3 1

12: PAS.resize(PAS.r−6, PAS.c) c4 1

13: end procedure

From the above, we can see that the time to resize the matrices should dominate

the actual cost of copying the covariance elements. In practice we preallocate memory

and simply keep track of the current size of the covariance, thus we don’t have a cost

to resize the matrix. Considering the active state remains constant over time we have
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the following costs:

mean augmentation : O(1)

covariance augmentation : O(n+ c)

(E.7)

(E.8)

E.4 EKF Update

E.4.1 Problem Formulation

Having propagated the state, we can update the state estimate means and co-

variance as follows:

x̂Ak|k = x̂Ak|k−1
+ KAk z̃

′
k (E.9)

x̂Sk|k = x̂Sk|k−1
(E.10)

With the Schmidt Kalman gain KSk = 0, we immediately have the covariance update

as follows:

Pk|k = Pk|k−1 −


KAkSkK

>
Ak

KAkH
′
k

PASk|k−1

PSSk|k−1


PASk|k−1

PSSk|k−1

>H′k
>K>Ak 0

 (E.11)

= Pk|k−1 −

LAkS
−1
k L>Ak LAkS

−1
k L>Sk

LSkS
−1
k L>Ak 0

 (E.12)

where the standard Kalman gain can be defined as:

Kk =

KAk

KSk

 =

PAAk|k−1
H>Ak + PASk|k−1

H>Sk

PSAk|k−1
H>Ak + PSSk|k−1

H>Sk

S−1
k

=:

LAk

LSk

S−1
k (E.13)

where:

Sk = H′kPk|k−1H
′
k
>

+ R′k (E.14)
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E.4.2 Complexity Analysis

We consider the current active state variables xAk|k to have an error state of size

a, the Schmidt state variables xSk|k to have an error state of size n, and the size of the

measurement residuals to be of size q. We define the set of variables that the update

involves as K which is sparse and has |K| non-zero elements (i.e. K � n).

For the state mean during update, once the Kalman gain KAk is computed, it

can be clearly seen that it is only of the complexity of the active state and the number

of measurements contained in z̃′k. This Kalman gain KAk will be found through the

computation of the updated covariance, and is the most expensive computation during

the mean update.
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Algorithm 8 Schmidt-MSCKF Covariance Update

1: procedure cov update(PAA, PAS, PSS, Hk) cost times

2: // First, compute the sub-matrices LAk and LSk

3: LAk = 0a×q aq 1

4: LSk = 0n×q nq 1

5: // Loop through all the sparse Hk for each state

variable scalar (whose id is its location in the

covariance matrix)

6: for all active state variables do 1 a

7: LAk(id, 0, 1, q) =
∑

k∈K PikH
>
k 2|K|q a

8: end for

9: for all schmidt state variables do 1 n

10: LSk(id, 0, 1, q) =
∑

k∈K PikH
>
k 2|K|q n

11: end for

12: // Compute the smaller covariance matrix by ele-

ment, only involving the variables that the Ja-

cobian Hk involves.

13: HPH> =
∑

(i,j)∈K×KHiPijH
>
j 2|K|2q2 1

14: // Compute Sk and its inverse

15: Sk = HPH> + R′k 2q2 1

16: S−1
k = inv(Sk) q3 + q2 1

17: // Finally, do the covariance update

18: PAA = PAA−LAkS
−1
k L>Ak

aq2 +

a2q + 2a2

1

19: PAS = PAS−LAkS
−1
k L>Sk

aq2 +

aqn+2an

1

20: end procedure

It is important to note that the size non-zero entries in the sparse Jacobian Hk

which involves K elements (which we have defined as size |K|), directly impacts the
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complexity of the update. To ensure that update is linear in time, we enforce that at

each clone time (i.e., image time) we only match to a single keyframe. This ensures that

the maximum keyframes that we will ever match to is the size of the sliding window

(i.e., no more than a in size). The impact this design decision has on the number of

non-zero elements in Hk is that it is never more than the number of state elements,

thus we can consider it constant in terms of big-O. Thus, we have the following results:

mean update : O(n)

covariance update : O(n)

(E.15)

(E.16)

E.5 Dynamic Schmidt’ing

E.5.1 Problem Formulation

Dynamic Schmidt’ing is the problem of being able to un-Schmidt or Schmidt a

variable during online operation. This can be arbitrarily done online without hurting

consistency. Specifically Section E.3 can be followed directly to Schmidt a variable, or

in reverse to un-Schmidt one. If there are many variables that are being simultaneously

un-Schmidt’ed and Schmidt’ed we can further improve performance by reducing the

number of matrix operations needed. Specifically, the resize operations in Algorithm

9 can be completely avoided by performing an in-place switching of two variables that

are of equal error state dimension (which is common).
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Figure E.3: Illustrate of how to perform in-place switching of two

variables.

E.5.2 Complexity Analysis

We consider that the current active state variables xAk|k to have an error state

of size a and the Schmidt state variables xSk|k to have an error state of size n. We have

two variables we wish to switch places, one in the xAk|k and the other in xSk|k . Both

are the same error state size, consider it is a pose and thus is a 6× 1 (3× 1 for a point)

error state. For the mean, we simply swap the two from each state vector. Thus, we

focus on how to re-order the covariance such that they have switched places.
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Algorithm 9 Schmidt-MSCKF In-Place Dynamic Schmidt’ing

1: procedure cov inplace swap(PAA, PAS, PSS) cost times

2: // Store temp variables

3: paa = PAA(a, 0, 6, PAA.c) 6a+ c1 1

4: pas = PAS(a, 0, 6, PSS.c) 6n+ c2 1

5: Maa = PAA(a, a, 6, 6) 36 + c3 1

6: Mas = PAS(a, s, 6, 6) 36 + c4 1

7: Mss = PSS(s, s, 6, 6) 36 + c5 1

8: // Copy from Schmidt to active state

9: PAA(a, 0, 6, PAA.c) = PAS(0, s, PAA.r, 6) 6a 1

10: PAA(0, a, PAA.r, 6) = PAS(0, s, PAA.r, 6)> 6a 1

11: PAS(a, 0, 0, PAS.c) = PSS(s, 0, 6, PSS.c) 6n 1

12: // Copy from temp active to Schmidt

13: PSS(s, 0, 6, PSS.c) = pas 6n 1

14: PSS(0, s, PSS.r, 6) = p>as 6n 1

15: PAS(0, s, PAA.r, 6) = p>aa 6a 1

16: // Finally, flip the marginal covariance ordering

17: PAA(a, a, 6, 6) = Mss 36 1

18: PAS(a, s, 6, 6) = M>
as 36 1

19: PSS(s, s, 6, 6) = Maa 36 1

20: end procedure

where we have defined a and s as the index into the covariance of the originally active

and the Schmidt’ed variables, respectively. It can be seen that this operation only

requires a small memory allocation for the temporary variables. In practice these can be

pre-allocated to save computation, but are significantly smaller than the matrix resize

operations required in Algorithm 9. Considering the active state remains constant over
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time we have the following costs:

mean switching : O(1)

covariance switching : O(n)

(E.17)

(E.18)
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Appendix F

SEVIS VARIANTS

F.1 CI-EKF Estimator

Another alternative method which provides consistent state estimation is co-

variance intersection (CI) [86, 87], which only tracks the marginal covariances of the

states. For example, we can track the full dense covariance for the active state, xA,

as PAAk , along with the marginal covariance P
(c)
MMk

for each map feature or keyframe

pose:

Diag

(
1

ω0

PAAk ,
1

ω1

P
(1)
MMk

, · · · , 1

ωC
P

(C)
MMk

)
≥ Pk (F.1)

The left portion of the above equation is the CI covariance zero off-diagonal elements

and is conservative, and thus consistent, when compared to the true covariance Pk.

The weights ωc > 0 and
∑
ωc = 1, for c ∈ {0, 1..C}, can be found optimally or

found empirically [87]. Substituting Eq. (F.1) into the standard EKF equations, Eq.

(4.6)-(4.7), and only selecting the portion that updates the active state xA yields:

x̂⊕Ak = x̂Ak +
1

ω0

PAAkH
>
Ak

S−1
k r (F.2)

P⊕AAk =
1

ω0

PAAk−
1

ω2
0

PAAkH
>
Ak

S−1
k HAkPAAk (F.3)

Sk =
1

ω0

HAkPAAkH
>
Ak

+ R +
∑

c∈{1..C}

(
1

ωc
H

(c)
Mk

P
(c)
MMk

H
(c)
Mk

>
)

(F.4)

This process is constant O(1) in terms of computational cost since we leveraged fixed

weights and only update the active states, with a memory requirement of O(9m).

Details on how to perform delayed state initialization using this method can be found

Appendix G.
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Remark: While this method is conservative in nature, in general the CI process

will inflate the covariance of all marginal covariances by a large amount since it will

always bound the fused distributions. As shown in our later simulations, Section 4.6.3,

this causes the system to become very under-confident (e.g., NEES goes towards zero)

impacting the achievable accuracy of the hybrid system and the ability to robustly

reject outliers.

F.2 Relative Marginal Covariance Recovery

Each keyframe is connected with a relative odometry factor based on the fron-

tend relative clone estimates. These factors thus contain the visual and inertial in-

formation used to update the frontend state, and we drop the correlations between

the frontend estimates and backend relative measurements. To construct a relative,

the two global poses from the last added keyframe, xT1 , and to-be-added keyframe,

xIN ∈ xC , need to be transformed into {IN} relative frame. IN
I1

R

I2pI1

 =

 IN
G RI1

GR>

IN
G R(GpIN − GpI1)

 (F.5)

We now wish to compute the uncertainty of this relative transformation. This

can be done by propagating the uncertainty from the global frame into the relative:

Pr,1N = H1N

P11 P1N

P>1N PNN

H>1N (F.6)

where P11, P1N , and PNN are the frontend covariance of the global clone pose, and

H1N is the same as in Eq. (4.40).

In a naive implementation, the use of Eq. (F.6) is not possible since typically

only the marginal keyframe covariances P11 and PNN are known at keyframe creation.

These by themselves are insufficient and if P1N is naively set to zero, then the resulting

measurement uncertainty will be highly underconfident due to the highly correlated

nature of odometry poses within small time horizons. To address this, we modify the

state, Eq. (5.1), of the frontend as follows:

xk =
[
x>A x>T1

x>M

]>
(F.7)
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where xT1 is the previously selected historical keyframe clone for insertion into the

backend. When the next new keyframe is selected to be added, we first can recover

the relative uncertainty, Eq. (F.6), will full correlations since the previous keyframe is

still in the state. After, we can marginalize the old keyframe state, xT1 , and retain the

newly selected keyframe in the frontend state for future use.

F.3 Decoupled Estimation

An alternative to passing data back to the frontend is to fully separate the

secondary thread and only pass information from the frontend odometry to the backend

[92, 159, 160]. Since the backend only maintains a set of keyframe poses, the frontend

pose is used to recover a pose at every timestep. For example, we can compute the

following:

Ik
KRvio = Ik

GRvio
K
GR>vio (F.8)

KpIk,vio = K
GRvio(

GpIk,vio − GpK,vio) (F.9)

This relative transform should be accurate since it is normally over a short time period.

We can then append the optimized pose to recover the decoupled optimized pose:

Ik
GRopt = Ik

KRvio
K
GRopt (F.10)

GpIk,opt = GpK,opt + K
GR>opt

KpIk,vio (F.11)

Next we wish to recover the uncertainty of this estimate pose. Unfortunately,

we cannot directly recover the covariance since correlations between the frontend and

backend keyframes are not tracked (keyframes are inserted at a much lower frequency

than the required frontend pose frequency). We can recover an approximate as follows:

Pr,GI ' Hro

Prel 06

06 Popt

H>ro (F.12)

Hro =

I3 03
Ik
KRvio 03

03
K
GR>opt −KGR>opt

⌊
KpIk,vio×

⌋
I3

 (F.13)

where Prel is the covariance of the relative {IkKRvio,
KpIk,vio} calculated via Eq. (F.6).
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Appendix G

COVARIANCE INTERSECTION DELAYED FEATURE
INITIALIZATION

G.1 Problem Statement

In an extended Kalman filter [139], we wish to initialize previously unseen state

variables using feature measurements. This process is called delayed initialization since

typically the process delayed to collect enough measurement observations to fully re-

cover the to-be initialized state variable. In what follows we will first introduce two

methods for performing delayed initialization, after which we will introduce the co-

variance intersection (CI) [87] update. We then re-derive the delayed initialization

procedure when covariance intersection is leveraged.

fC2g
fC1g

fK1g

Figure G.1: Illustration of the considered visual feature observation scenario. In this case, a

historical keyframe {K1} has been matched to an actively tracked feature (red). We wish to

initialize this feature estimate into our state using all three measurements from the keyframe

and poses {C1} and {C2}.

We now consider a bit more concrete measurement model as shown in Figure

G.1. We consider we observe a 3d environmental feature with a camera from two

camera clone poses, {C1} and {C2}, along with a loop-closure measurement from a

historical keyframe state {K1}. In the case of delayed initialization we do not have the
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feature estimate Gpf mean, uncertainty, or correlation with the rest of the state yet.

Consider we have this linearized measurement model and obtain the following residual:

ri = zi − h(x̂Ti ,
Gp̂f ) (G.1)

' HTix̃Ti + Hfi
Gp̃f + ni (G.2)

where HTi and Hfi are the measurement Jacobians, and x̃Ti and Gp̃f are the error

states for the observation pose and feature, respectively. After sufficient observations

of the feature, we can “stack” them as:

r = HT x̃T1..c + HTk x̃Tk + Hf
Gp̃f + n (G.3)

= Hax̃A + Hkx̃K + Hf
Gp̃f + n (G.4)

=
[
Ha Hk

]
︸ ︷︷ ︸

Hx

x̃A

x̃K

+ Hf
Gp̃f + n (G.5)

where the measurement is a function of c clone poses, x̃T1..c = [x̃>T1
· · · x̃>Tc ]

>, corre-

sponding to each non-keyframe observation time the feature was seen, and the stacked

measurement noise is n ∼ N (0,R) where R = σ2
pixI.

G.2 EKF-based Delayed Initialization

G.2.1 Method 1: Two System Invertible

Based on the stacked linearized measurement equation, Eq. (G.5), we aim to

optimally compute the initial estimate of a new state variable and its covariance and

correlations with the existing state variables. As derived by Mingyang Li [111] we

first perform QR decomposition (e.g., using computationally efficient in-place Givens

rotations) to separate the linear system into two subsystems: (i) one that depends on

the new state (i.e., Gpf ), and (ii) the other that does not.

r =
[
Hx Hf

] x̃k

Gp̃f

+ n (G.6)

⇒

r1

r2

 =

Hx1 Hf1

Hx2 0

 x̃k

Gp̃f

+

nf1

nf2

 (G.7)

242



where nfi ∼ N (0,Rfi), i ∈ {1, 2}. Note that in the above expression r1 and r2 are

orthonormally transformed measurement residuals, not the direct partitions of r. With

the top transformed linearized measurement residual r1 in Eq. (G.7), we now initialize

the state estimate of Gpf and its covariance and correlations to xk [see Eq. (5.1)],

which will then be augmented to the current state and covariance matrix.

Gp̃f = H−1
f1 (r1 − n1 −Hxx̃) (G.8)

⇒ E[Gp̃f ] = H−1
f1 (r1) (G.9)

Pff = E
[
(Gp̃f − E[Gp̃f ])(

Gp̃f − E[Gp̃f ])
>
]

(G.10)

= E
[
(H−1

f1 (−n1 −Hx1x̃))(H−1
f1 (−n1 −Hx1x̃))>

]
(G.11)

= H−1
f1 (Hx1PxxH

>
x1 + R1)H−>f1 (G.12)

Pxf = E
[
(x̃)(Gp̃f − E[Gp̃f ])

>
]

(G.13)

= E
[
(x̃)(H−1

f1 (−n1 −Hx1x̃))>
]

(G.14)

= −PxxH
>
x1H

−>
f1 (G.15)

where E[·] is the expectation operator. These derivations can be summarized as follows:

Gp⊕f = Gpf + H−1
f1 r1 (G.16)

P⊕xx = Pxx (G.17)

P⊕ff = H−1
f1 (Hx1PxxH

>
x1 + Rf1)H−>f1 (G.18)

P⊕xf = −PxxH
>
x1H

−>
f1 (G.19)

P⊕fx = (P⊕xf )
> (G.20)

It should be noted that a full-rank Hf1 is needed to perform the above initialization,

which normally is the case if enough measurements are collected (i.e., delayed initializa-

tion). Note also that to utilize all available measurement information, we also perform

EKF update using the bottom measurement residual r2 in Eq. (2.42).
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G.2.2 Method 2: Infinite Uncertainty with Update

We now look at an alternate formulation for delayed initialization. In this

method, we consider the case where the state already has a prior covariance of the

state-to-be-initialized but its uncertainty is at infinity and has not been correlated

with the current state through a measurement yet. More concretely, we define the

following covariance:

Pk =

Pxx 0

0 µI

 (G.21)

where we have defined Pff = µI with µ → ∞ since we have no prior knowledge of

the feature’s state. We now wish to perform an EKF update using the measurement

information collected. We define the stacked measurements as:

r = Hkx̃k + n (G.22)

=
[
Hx Hf

] x̃A

Gp̃f

+ n (G.23)

This gives us the following update equations:

x⊕A = xA + Kxr (G.24)

Gp⊕f = Gpf + Kfr (G.25)

P⊕k = Pk −


KxSkK

>
x KxHk

Pxf

Pff


Pxf

Pff

>Hk
>K>x KfSkK

>
f

 (G.26)

=

Pxx 0

0 Pff

−
 KxSkK

>
x KxHfPff

PffHf
>K>x KfSkK

>
f

 (G.27)

where we have used that the initial feature is uncorrelated with the state (i.e., Pxf =

P>xf = 0) and we have defined the following Kalman gains:

Kk =

Kx

Kf

 =

PxxH
>
x + PxfH

>
f

PfxH
>
x + PffH

>
f

S−1
k :=

PxxH
>
x

PffH
>
f

S−1
k (G.28)
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We now first look at how to calculate the measurement innovation term. It is as follows:

S−1
k =

(
HkPkH

>
k + Rm

)−1
(G.29)

=
(
HxPxxH

>
x + HfPffH

>
f + Rm

)−1
(G.30)

=
(
A + HfPffH

>
f

)−1
(G.31)

= A−1 −A−1Hf

(
H>f A−1Hf + P−1

ff

)−1

H>f A−1 (G.32)

= A−1 −A−1Hf

(
H>f A−1Hf

)−1
H>f A−1 (G.33)

where we have defined A = HxPxxH
>
x + Rm, and P−1

ff = (µI)−1 → 0 when µ → ∞,

and the matrix inversion lemma as:

(A + UCV)−1 = A−1 −A−1U
(
VA−1U + C−1

)−1
VA−1 (G.34)

This leads the following conclusion for Pxx:

P⊕xx = Pxx −PxxH
>
x S−1

k HxPxx (G.35)

= Pxx −PxxH
>
x

(
A−1 −A−1Hf

(
H>f A−1Hf

)−1
H>f A−1

)
HxPxx (G.36)

Now we look at how to compute the feature’s uncertainty Pff .

P⊕ff = Pff −KfSkK
>
f (G.37)

= Pff −PffH
>
f S−1

k HfPff (G.38)

= Pff + PffH
>
f (−S−1

k )HfPff (G.39)

=

(
P−1
ff − P−1

ffPffH
>
f

(
(−Sk) + HfPffP

−1
ffPffH

>
f

)−1

HfPffP
−1
ff

)−1

(G.40)

=
(
−H>f

(
(−Sk) + HfPffH

>
f

)−1
Hf

)−1

(G.41)

=
(
−H>f

(
(−A−HfPffH

>
f ) + HfPffH

>
f

)−1
Hf

)−1

(G.42)

=
(
H>f A−1Hf

)−1
(G.43)

(G.44)

This leads the following conclusion for Pff :

P⊕ff =
(
H>f A−1Hf

)−1
(G.45)
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Now we look at how to compute the feature’s correlation with the state Pxf .

P⊕xf = Pxf −KxHfPff (G.46)

= −PxxH
>
x S−1

k HfPff (G.47)

Looking at the last three terms and substituting in the equality from Eq. (G.32) (the

only part that is a function of Pff ) we have:

S−1
k HfPff =

(
A−1 −A−1Hf

(
H>f A−1Hf + P−1

ff

)−1
H>f A−1

)
HfPff (G.48)

= A−1Hf

(
I−

(
H>f A−1Hf + P−1

ff

)−1
H>f A−1Hf

)
Pff (G.49)

= A−1Hf

(
H>f A−1Hf + P−1

ff

)−1 [(
H>f A−1Hf + P−1

ff

)
−H>f A−1Hf

]
Pff

(G.50)

= A−1Hf

(
H>f A−1Hf + P−1

ff

)−1

(G.51)

= A−1Hf

(
H>f A−1Hf

)−1
(G.52)

This leads the following conclusion for Pxf :

P⊕xf = −PxxH
>
x A−1Hf

(
H>f A−1Hf

)−1
(G.53)

The state means can be updated similarly.

G.2.3 Method Equivalence

A natural question is the equivalence between these two methods. Just by

looking at Method’s 1 Eq. (G.17) and Method’s 2 Eq. (G.36) one can see that Method

2 updates the original covariance while the first method does not! At first glance this

would mean that the two methods are not doing the exact same thing and that one

is better than the other. There is a subtle difference between the two: Method 1 first

initializes with a sub-system of the full measurement, while the Method 2 initializes

the prior information with all measurements. We can show that Method 2 is exactly

the same as the first by considering we have a square measurement Jacobian that is
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invertible HfH
−1
f = H−1

f Hf = I (thus there is no second update using r2 in method

1). We get:

P⊕xx = Pxx −PxxH
>
x

(
A−1 −A−1Hf

(
H>f A−1Hf

)−1
H>f A−1

)
HxPxx (G.54)

= Pxx −PxxH
>
x

(
A−1 −A−1HfH

−1
f AH−>f H>f A−1

)
HxPxx (G.55)

= Pxx −PxxH
>
x

(
A−1 −A−1AA−1

)
HxPxx (G.56)

= Pxx − PxxH
>
x (A−1 −A−1) HxPxx (G.57)

= Pxx (G.58)

P⊕ff =
(
H>f A−1Hf

)−1
(G.59)

= H−1
f

(
HxPxxH

>
x + Rm

)
H−>f (G.60)

P⊕xf = −PxxH
>
xA−1Hf

(
H>f A−1Hf

)−1
(G.61)

= −PxxH
>
xA−1HfH

−1
f AH−>f (G.62)

= −PxxH
>
x A−1AH−>f (G.63)

= −PxxH
>
xH−>f (G.64)

To explain it in an intuitive way, if you have a square matrix, there is enough mea-

surement information to recover the state you wish to initialize. But just having this

information does not allow you to improve your state estimate (decrease Pxx). Once

you have more measurements than what is required to initialize it then you can improve

it (e.g., non-empty secondary system in Method 1).

G.3 Covariance Intersection-based Delayed Initialization

G.3.1 Covariance Intersection State Update

To guarantee consistency when updating with this measurement, we adopt the

CI-EKF update [87] to construct a prior covariance such that:

Diag

(
1

ωa
Paa,

1

ω1

P1, · · · ,
1

ωn
Pn

)
≥ Pk (G.65)

where the left side is the CI covariance with zero off-diagonal elements and the right-

hand side is the unknown true covariance of the state with cross-covariances. The
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weights ωl > 0 and
∑

l ωl = 1, for l ∈ {a, 1...n}, can be found optimally [87]. The

first weight corresponds to the “active” covariance, while the remainder corresponds

to each keyframe for which we only keep their marginal covariance and do not track

their correlations with the active state elements.

Substituting Eq. (G.65) into the standard EKF equations and only selecting

the portion that updates active state yields (that is, we do not update keyframe states

in the prior map):

x⊕A = xA +
1

ωa
PaaH

>
a S−1

k r (G.66)

P⊕aa =
1

ωa
Paa −

1

ω2
a

PaaH
>
a S−1

k HaPaa (G.67)

Sk =
∑

o∈{a,1...n}

(
1

ωo
HoPooH

>
o

)
+ Rm (G.68)

G.3.2 Delayed Initialization

We can follow the logic presented in the previous segments. Specifically, we can

start with the following covariance matrix:

Pk =



1
ωa

Paa 0 0 0 0

0
. . . 0 0 0

0 0 1
ωo

Poo 0 0

0 0 0
. . . 0

0 0 0 0 µI


(G.69)

We can see that the CI variables only show up in the Sk term and can be grouped into

the value A as before (see Eq. (G.30)).

A =
1

ωa
HaPaaH

>
a +

∑
o∈{1...n}

(
1

ωo
HoPooH

>
o

)
+ Rm (G.70)

We can then perform an update using Eq. (G.66)-(G.68) to get the following:

P⊕xx =
1

ωa
Paa −

1

ω2
a

PaaH
>
a

(
A−1 −A−1Hf

(
H>f A−1Hf

)−1
H>f A−1

)
HaPaa (G.71)

P⊕ff =
(
H>f A−1Hf

)−1
(G.72)
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P⊕af = − 1

ωa
PaaH

>
a A−1Hf

(
H>f A−1Hf

)−1
(G.73)

We can then equate this result to Method’s 1 structure to get:

Gp⊕f = Gpf + H−1
f r1 (G.74)

P⊕aa =
1

ωa
Paa (G.75)

P⊕ff = H−1
f

 1

ωa
HaPaaH

>
a +

∑
o∈{1...n}

(
1

ωo
HoPooH

>
o

)
+ Rm

H−>f (G.76)

P⊕af = − 1

ωa
PaaH

>
a H−>f (G.77)

P⊕fa = (P⊕af )
> (G.78)
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PERMISSIONS
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