LIC-Fusion 2.0: LiDAR-Inertial-Camera Odometry with Sliding-Window Plane-Feature Tracking

Xingxing Zuo^{1,2}, Yulin Yang³, Patrick Geneva³, Jiajun Lv² Yong Liu², Guoguan Huang³, Marc Pollefeys^{1,4}

¹ ETH Zurich, Switzerland

- ² Zhejiang University, Hangzhou, China ³ University of Delaware, USA
- ⁴ Microsoft Mixed Reality and Artificial Intelligence Lab, Zurich Switzerland

• 3D LiDAR, camera, inertial-measurement (IMU) have their inherent strengths and drawbacks.

- The data association for LiDAR sparse features is non-trivial and error-prone. How to address this issue in a non-iterative light-weight EKF^[1]?
- How to make the estimator consistent and prevent the inconsistent-prone ICP for LiDAR scan matching?

Fig. Sensor setup with a 3D LiDAR, IMU and a monocular camera.

[1] X. Zuo, P. Geneva, W. Lee, Y. Liu, and G. Huang. "LIC-Fusion: LiDAR-Inertial-Camera Odometry". In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Nov. 2019, pp. 5848–5854.

System Overview

• State vector include IMU states, extrinsics between sensors, cloned IMU poses at the time instants of receiving the images and LiDAR scans, point features and plane features:

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_{I}^{\top} & \mathbf{x}_{calib_C}^{\top} & \mathbf{x}_{calib_L}^{\top} & \mathbf{x}_{C}^{\top} & \mathbf{x}_{L}^{\top} & {}^{G}\mathbf{x}_{f}^{\top} & {}^{A}\mathbf{x}_{\pi}^{\top} \end{bmatrix}^{\top}$$

Update – Sparse LiDAR Feature

• Point ${}^{L}\mathbf{p}_{f}$ to plane ${}^{L}\mathbf{p}_{\pi}$ distance

$$\mathbf{z}_{\pi} = \frac{{}^{L}\mathbf{p}_{\pi}}{\left\|{}^{L}\mathbf{p}_{\pi}\right\|} \left({}^{L}\mathbf{p}_{f} - \mathbf{n}_{f}\right) - \left\|{}^{L}\mathbf{p}_{\pi}\right\|$$

$${}^{L}d = \left\| {}^{L}\mathbf{p}_{\pi} \right\|, {}^{L}\mathbf{n} = {}^{L}\mathbf{p}_{\pi} / \left\| {}^{L}\mathbf{p}_{\pi} \right|$$
$$\begin{bmatrix} {}^{L}\mathbf{n} \\ {}^{L}d \end{bmatrix} = \begin{bmatrix} {}^{L}\mathbf{R} & 0 \\ {}^{-A}\mathbf{p}_{L}^{\top} & 1 \end{bmatrix} \begin{bmatrix} {}^{A}\mathbf{n} \\ {}^{A}d \end{bmatrix}$$

• Linearize the distance residual at current best estimated states

$$\mathbf{r}_{f} = \mathbf{0} - \mathbf{z}_{f} \simeq \mathbf{H}_{x}\tilde{\mathbf{x}} + \mathbf{H}_{\pi}\tilde{\mathbf{p}}_{\pi} + \mathbf{H}_{n}\mathbf{n}_{f}$$

Marginalize plane feature by the left nullspace N,

$$\mathbf{N}^{\top}\mathbf{r}_{f} = \mathbf{N}^{\top}\mathbf{H}_{x}\tilde{\mathbf{x}} + \mathbf{N}^{\top}\mathbf{H}_{\pi}^{A}\tilde{\mathbf{p}}_{\pi} + \mathbf{N}^{\top}\mathbf{H}_{n}\mathbf{n}_{f}$$
$$\Rightarrow \mathbf{r}_{fo} = \mathbf{H}_{xo}\tilde{\mathbf{x}} + \mathbf{n}_{o}$$

Due to the special structure that $\mathbf{H}_{n}\mathbf{H}_{n}^{T} = \mathbf{I}_{n}$ the measurement covariance is still isotropic, thus the null space operation is still valid.

Sparse LiDAR Feature Tracking

• Track the planar LiDAR feature across frames (from green frame to red frame)

A point is associated with its closet triangle^[1]. Meanwhile, make sure to prevent reusing information.

Tracking based on distance only is not enough!

[1] J. Zhang, S. Singh, LOAM: Lidar Odometry and Mapping in Real-time[C], Robotics: Science and Systems. 2014, 2: 9.

Sparse LiDAR Feature Tracking

Normal vector based probabilistic planar feature data association

Measure the difference between two normal vectors derived from points $\left\{ {}^{L_a} \mathbf{p}_{fn} \; {}^{L_a} \mathbf{p}_{fn} \; {}^{L_a} \mathbf{p}_{fn} \; {}^{L_a} \mathbf{p}_{fn} \right\}$ and points $\left\{ {}^{L_a} \mathbf{p}_{fn} \; {}^{L_a} \mathbf{p}_{fi} \; {}^{L_a} \mathbf{p}_{fg} \right\}$ respectively while taking into account the noises from relative pose.

$$\mathbf{z}_{n} = \begin{bmatrix} L_{a} \mathbf{n}_{1} \end{bmatrix}_{L_{b}}^{L_{a}} \mathbf{R}^{L_{b}} \mathbf{n}_{2}$$

$$^{L_{a}} \mathbf{n}_{1} = \begin{bmatrix} L_{a} \mathbf{p}_{fn} - L_{a} \mathbf{p}_{fm} \end{bmatrix} \begin{pmatrix} L_{a} \mathbf{p}_{fo} - L_{a} \mathbf{p}_{fm} \end{bmatrix}$$

$$^{L_{b}} \mathbf{n}_{2} = \begin{bmatrix} L_{b} \mathbf{p}_{fn} - L_{b} \mathbf{p}_{fg} \end{bmatrix} \begin{pmatrix} L_{b} \mathbf{p}_{fi} - L_{b} \mathbf{p}_{fg} \end{bmatrix}$$

Afterwards, reject outlier correspondences by the Mahalanobis distance, and Initialize the 3D plane feature with measurements across multiple frames.

Observability Analysis of the LiDAR-IMU Subsystem

• The state vector of the LiDAR-IMU subsystem and state observability matrix

$$\mathbf{X} = \begin{bmatrix} \mathbf{X}_{I}^{\top} & \mathbf{X}_{\text{calib}_L}^{\top} & {}^{G}\mathbf{p}_{\pi}^{\top} \end{bmatrix}^{I}$$
$$\mathbf{M}_{k} = \mathbf{H}_{\pi} \begin{bmatrix} L\mathbf{R}_{G}^{I} \widehat{\mathbf{R}} \mathbf{0}_{3\times 1} \\ \mathbf{0}_{1}^{\mathbf{I}} \mathbf{1} \end{bmatrix} \times \begin{bmatrix} \Gamma_{\pi 11} & \mathbf{0}_{3} & \mathbf{0}_{3} & \Gamma_{\pi 14} & \mathbf{0}_{3} & \Gamma_{\pi 16} & \mathbf{0}_{3} & \Gamma_{\pi 18} & \Gamma_{\pi 19} \\ \Gamma_{\pi 21} & \mathbf{G}^{\top} & \mathbf{G}_{\mathbf{n}}^{\top} \Delta t_{k} & \Gamma_{\pi 24} & \Gamma_{\pi 25} & \Gamma_{\pi 26} & \Gamma_{\pi 27} & \Gamma_{\pi 28} & \Gamma_{\pi 29} \end{bmatrix}$$

7

TABLE I: Summary of degenerate motions for LiDAR-IMU calibration with one-plane feature.

One Plane / Parallel Planes	Unobservable		
Pure Translation	${}^{L}_{I}\mathbf{R}, {}^{L}\mathbf{p}_{I}$		
1-axis Rotation	$^{L}\mathbf{p}_{I}$ along rotation axis		
Constant ${}^{I}\omega$ and ${}^{I}\mathbf{v}$	$t_{dL}, {}^L \mathbf{p}_I$		
Constant ${}^{I}\omega$ and ${}^{G}\mathbf{a}$	$t_{dL}, {}^L \mathbf{p}_I$		
${}^{G}\boldsymbol{\omega} \parallel {}^{G}\mathbf{n}$ and ${}^{G}\mathbf{n} \perp {}^{G}\mathbf{v}$	t_{dL}		

Experiments: Simulation

• Simulation inside a synthetic room with plane structures

Table. The ATE and NEES of over 12 simulations under different setups of perturbation to initial values and online calibration.

IMU Model	ATE (deg)	ATE (m)	Ori. NEES	Pos. NEES
true w/ calib	0.118	0.020	2.210	0.185
bad w/ calib	0.129	0.021	2.216	0.221
bad w/o calib	0.148	0.024	2.677	0.246
true w/o calib	0.122	0.021	2.233	0.208
IC true w/o calib	0.159	0.027	2.237	0.314

The results demonstrates the consistency of the whole estimator with LiDAR, IMU and camera measurements!

Experiments: Simulation – Convergence of LiDAR-IMU Intrinsics

Under random motion

Under degenerate motion of 1-axis rotation motion around yaw

Experiments: Real-world, Teach Building Scenario

TABLE V: Averaged Start-to-End drift Error of 5 runs on Teaching Building Sequences (unit meters). The lengths for Seq1 - Seq 7 are around 108, 124, 237, 195, 85, 140, 83 meters, respectively. Note that estimated trajectories on Seq 1 and 2 are shown in Fig. 5.

Methods	Seq 1	Seq 2	Seq 3	Seq 4	Seq 5	Seq 6	seq7
LIC-Fusion 2.0	0.213, 0.074, 0.338	0.136, -0.107, -0.140	0.689, -0.404, -0.172	0.456, 0.122, -0.322	0.054, -0.168, -0.027	0.025, -0.654, 0.199	1.911, 0.226, -0.166
OpenVINS-IC	-, -, -	-1.765,-1.149,-0.836	3.917, 3.552, -0.475	3.181, -0.595, -1.372	-1.093,-0.083,-0.362	-0.085,-3.223,-0.143	-2.312, 1.562, 0.247
Proposed-LI	0.401, -0.195, 0.655	0.203, 0.503, 0.037	-, -, -	0.164,22.251,0.502	1.542, -2.110, 0.342	-, -, -	1.242, -0.462, -0.530
LOAM	0.831, -5.145, -0.607	-0.059, -0.065, 0.073	-3.418, 3.938, -21.364	-0.933, -8.395, 0.098	-9.014, 1.084, -0.300	-0.130, 0.461, 2.960	1.612, 0.000, -2.867
LIO-MAP	-0.104, 0.057, 0.092	-0.019, -0.423, 0.223	-, -, -	0.471, -0.215, -1.37	0.147, 0.017, -0.232	0.206, 0.125, 1.530	0.019, -0.039, -0.142
LIC-Fusion	-0.740, 0.0401, 0.222	0.293, 0.984, -0.656	1.216, 1.831, -0.465	-1.117, 0.607, 0.529	-0.382, -2.248, -0.905	-3.295, -1.934, 0.585	-0.912, -0.847, 0.377

Experiments: Real-world, Teach Building Scenario

TABLE VI: Averaged ATE of 5 runs on Vicon Room Sequences (units degrees/meters). The lengths for Seq 1 - Seq 6 are 42.62, 84.16, 33.92, 53.14, 49.74, 87.87 meters, respectively. Note that estimated trajectory on Seq 2 is shown in Fig. 5

Methods	Seq 1	Seq 2	Seq 3	Seq 4	Seq 5	Seq 6	Average
LIC-Fusion 2.0	2.537 / 0.097	1.870 / 0.145	1.940 / 0.101	2.081 / 0.116	2.710 / 0.104	3.320 / 0.113	2.410 / 0.113
OpenVINS-IC	2.625 / 0.094	1.741 / 0.177	3.131 / 0.273	2.404 / 0.115	2.962 / 0.129	3.953 / 0.129	2.803 / 0.153
Proposed-LI	2.333 / 0.199	3.325 / 0.444	2.810 / 0.306	5.335 / 0.272	3.332 / 0.440	4.866 / 0.412	3.667 / 0.345
LOAM	5.880 / 0.156	6.414 / 0.134	15.384 / 0.333	6.354 / 0.150	5.542 / 0.140	7.095 / 0.188	7.778 / 0.183
LIO-MAP	- / -	5.608 / 0.214	- / -	- / -	4.890 / 0.170	12.862 / 0.238	7.786 / 0.207
LIC-Fusion	2.345 / 0.097	1.879 / 0.173	1.973 / 0.104	- / -	2.743 / 0.100	3.788 / 0.131	2.546 / 0.121

System Demonstration: Simulation

LIC-Fusion 2.0: LiDAR-Inertial-Camera Odometry with Sliding-Window Plane-Feature Tracking

Xingxing Zuo^{1,2}, Yulin Yang³, Patrick Geneva³, Jiajun Lv², Yong Liu², Guoquan Huang³, Marc Pollefeys^{1,4}

¹Department of Computer Science, ETH Zurich, Switzerland ²Institute of Cyber-System and Control, Zhejiang University, China ³RPNG, University of Delaware, USA ⁴Microsoft Mixed Reality and Artificial Intelligence Lab, Zurich, Switzerland

System Demonstration: Simulation

LIC-Fusion 2.0: LiDAR-Inertial-Camera Odometry with Sliding-Window Plane-Feature Tracking

Xingxing Zuo^{1,2}, Yulin Yang³, Patrick Geneva³, Jiajun Lv², Yong Liu², Guoquan Huang³, Marc Pollefeys^{1,4}

¹Department of Computer Science, ETH Zurich, Switzerland ²Institute of Cyber-System and Control, Zhejiang University, China ³RPNG, University of Delaware, USA ⁴Microsoft Mixed Reality and Artificial Intelligence Lab, Zurich, Switzerland

Conclusion

• Propose a plane-feature tracking method for 3D LiDAR, and advocate a new outlier rejection criterion to improve feature matching quality by taking to account the uncertainty of relative pose.

• Efficient and consistent tightly-coupled LiDAR-inertial-camera odometry without inconsistency-prone ICP based LiDAR scan matching.

• In-depth observability analysis of the LiDAR-inertial subsystem with plane features and identify the degenerate cases.

• Verified on both simulation and real-world experiments, and demonstrated to outperform the state-of-the-art by fusing measurements in a stochastic way.

Thanks for listening!

Happy to answer your questions!

Xingxing Zuo xinzuo@ethz.ch

References

- X. Zuo, P. Geneva, W. Lee, Y. Liu, and G. Huang. "LIC-Fusion: LiDAR-Inertial-Camera Odometry". In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Nov. 2019, pp. 5848–5854.
- 2. J. Zhang, S. Singh, LOAM: Lidar Odometry and Mapping in Real-time[C], Robotics: Science and Systems. 2014, 2: 9.
- 3. P. Geneva, K. Eckenhoff, W. Lee, Y. Yang, and G. Huang. "OpenVINS: A Research Platform for Visual-Inertial Estimation". In: Proc. of the IEEE International Conference on Robotics andAutomation (ICRA). Paris, France, 2020.
- 4. J. Zhang and S. Singh. "Laser–visual–inertial odometry and mapping with high robustness and low drift". In: Journal of Field Robotics 35.8 (2018), pp. 1242–1264.
- 5. A. I. Mourikis and S. I. Roumeliotis, "A multi-state constraint Kalman filter for vision-aided inertial navigation," in Proc. IEEE Int. Conf. Robot. Autom., Rome, Italy, Apr. 10–14, 2007, pp. 3565–3572.
- 6. H. Ye, Y. Chen, and M. Liu. "Tightly coupled 3d lidar inertial odometry and mapping". In: 2019 International Conference on Robotics and Automation (ICRA). IEEE. 2019, pp. 3144–3150.
- Y. Yang, P. Geneva, K. Eckenhoff, and G. Huang. "Degenerate motion analysis for aided ins with online spatial and temporal sensor calibration". In: IEEE Robotics and Automation Letters 4.2 (2019), pp. 2070–2077.

Contributions

• A novel sliding-window plane-feature tracking algorithm that allows data association across multiple LiDAR scans, and a probabilistic outlier rejection criterion. Improving the data association in our prior tightly-coupled fusion framework: LIC-Fusion

• In-depth observability analysis of the LiDAR-inertial-camera system with plane features and identify the degenerate cases.

• A consistent estimator fusing IMU measurements, sparse visual features, and sparse LiDAR features in a light-weight EKF based framework.

 Validate proposed system in both simulated and real-world dataset, and the proposed shows superior performance over the state-of-the-art regarding accuracy and is verified to be consistent.