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Motivation

• 3D LiDAR, camera, inertial-measurement (IMU)
have their inherent strengths and drawbacks.

• The data association for LiDAR sparse features is
non-trivial and error-prone. How to address this
issue in a non-iterative light-weight EKF[1]?

• How to make the estimator consistent and
prevent the inconsistent-prone ICP for LiDAR scan
matching?
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Fig. Sensor setup with a 3D
LiDAR, IMU and a monocular
camera.

[1] X. Zuo, P. Geneva, W. Lee, Y. Liu, and G. Huang. “LIC-Fusion: LiDAR-Inertial-Camera Odometry”. In: Proc.
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Nov. 2019, pp. 5848–5854.



System Overview

• State vector include IMU states, extrinsics between sensors, cloned IMU
poses at the time instants of receiving the images and LiDAR scans, point
features and plane features:
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Fig. Data flow of LIC-fusion
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Update – Sparse LiDAR Feature
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Marginalize plane feature by the left nullspace N,

Due to the special structure that

the measurement covariance is
still isotropic, thus the null space
operation is still valid.
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Sparse LiDAR Feature Tracking

5

• Track the planar LiDAR feature across frames (from green frame to red frame)

A point is associated with its closet
triangle[1]. Meanwhile, make sure to
prevent reusing information.

Tracking based on distance only is
not enough!

[1] J. Zhang, S. Singh, LOAM: Lidar Odometry and Mapping in Real-time[C], Robotics: Science and
Systems. 2014, 2: 9.



Sparse LiDAR Feature Tracking
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• Normal vector based probabilistic planar feature data association
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Measure the difference between two normal vectors derived from points
and points                                     respectively while taking into account the noises from
relative pose.
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Afterwards, reject outlier correspondences by the Mahalanobis distance, and
Initialize the 3D plane feature with measurements across multiple frames.



Observability Analysis of the LiDAR-IMU Subsystem
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• The state vector of the LiDAR-IMU subsystem and state observability matrix
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Experiments: Simulation

• Simulation inside a synthetic room with plane structures
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Table. The ATE and NEES of over 12 simulations
under different setups of perturbation to initial
values and online calibration.

The results demonstrates the consistency of the whole estimator
with LiDAR, IMU and camera measurements!



Experiments: Simulation – Convergence of LiDAR-IMU Intrinsics

• Under random motion
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• Under degenerate motion of 1-axis rotation motion around yaw



Experiments: Real-world, Teach Building Scenario
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Experiments: Real-world, Teach Building Scenario
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System Demonstration: Simulation
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System Demonstration: Simulation
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Conclusion

• Propose a plane-feature tracking method for 3D LiDAR, and advocate a new
outlier rejection criterion to improve feature matching quality by taking to
account the uncertainty of relative pose.

• Efficient and consistent tightly-coupled LiDAR-inertial-camera odometry without
inconsistency-prone ICP based LiDAR scan matching.

• In-depth observability analysis of the LiDAR-inertial subsystem with plane
features and identify the degenerate cases.

• Verified on both simulation and real-world experiments, and demonstrated to
outperform the state-of-the-art by fusing measurements in a stochastic way.
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Thanks for listening!

Happy to answer your questions!

Xingxing Zuo
xinzuo@ethz.ch
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Contributions

• A novel sliding-window plane-feature tracking algorithm that allows data
association across multiple LiDAR scans, and a probabilistic outlier rejection
criterion. Improving the data association in our prior tightly-coupled fusion
framework: LIC-Fusion

• In-depth observability analysis of the LiDAR-inertial-camera system with
plane features and identify the degenerate cases.

• A consistent estimator fusing IMU measurements, sparse visual features,
and sparse LiDAR features in a light-weight EKF based framework.

• Validate proposed system in both simulated and real-world dataset, and the
proposed shows superior performance over the state-of-the-art regarding
accuracy and is verified to be consistent. 17


