

Distributed Visual-Inertial Cooperative Localization

Pengxiang Zhu^{*1}, **Patrick Geneva^{*2}**, Wei Ren¹ and Guoquan Huang²

¹Cooperative Vehicle Networks Lab (COVEN) University of California, Riverside ²Robot Perception and Navigation Group (RPNG) University of Delaware

*these authors contributed equally to this work

Motivation and Contributions

- Multi-robot systems can collaborate to accomplish missions more efficiently and robustly
- Visual-Inertial Cooperative Localization (CL) leveraging additional geometric constraints in multi-robot systems can improve the localization accuracy of the whole group
- Distributed estimation algorithms are more scalable, robust, and efficient as compared to centralized estimators

Proposed: An efficient distributed state estimator for multi-robot cooperative localization (CL) which does not require simultaneous viewing of the common features

- Consistent estimation based on Covariance Intersection (CI)
- Efficient common SLAM and VIO feature updates
- Historical loop-closure matching across time and robots to reduced localization drift

Collaborative Navigation (credit ETH Zurich)

Drone Swarm for Search and Rescue

Augmented-Reality Experiences (credit Apple ARKit)

Problem Formulation - Overview

- Multiple robots are exploring an environment:
 - Robots, when in communication range, can send feature information, current, and historical states
 - Each robot tracks a short "sliding window" of clones
 - Other robot's states are related through common feature observations
- Different features can be observed:
 - Independent: Only one robot sees these features
 - Current common: Seen from multiple robots that only constrain their current "sliding window"
 - Historical common: The feature seen by one robot currently was seen by another robot before, but not currently.
- **Proposed:** Use common feature constraints to improve the localization accuracy and limit the long-term navigation drift

Experiments

- Estimator was built on top of OpenVINS [Geneva 2020]
- Common features improved trajectory **accuracy** over independent robot state estimation
- The accuracy of **Distributed** estimators is competitive with centralized estimations at a **fraction of computational cost**
- Historical matching is crucial to ensure constraints during realistic scenarios:
 - 27% frames matched to other robots' most recent frames
 - 42% frames have matched if using historical

Table 1: Relative pose error (RPE) on TUM-VI datasets in degrees / meters averaged over all robots for the dataset.

$\mathbf{Algorithm}$	40m	60m	80m	100m	$120\mathrm{m}$
indp-slam	$1.818 \ / \ 0.093$	$2.833 \ / \ 0.126$	$2.604\ /\ 0.154$	$2.774\ /\ 0.185$	$2.716 \ / \ 0.215$
ce-cmsckf	1.358 / 0.071	1.321 / 0.091	1.357 / 0.108	0.843 / 0.128	0.932 / 0.140
ce-cmsckf-cslam	1.758 / 0.069	1.350 / 0.079	1.027 / 0.100	0.718 / 0.119	0.938 / 0.130
dc-cmsckf	1.662 / 0.075	2.005 / 0.104	1.605 / 0.129	1.142 / 0.141	1.531 / 0.170
dc-cmsckf-cslam	1.800 / 0.080	2.642 / 0.093	2.233 / 0.106	1.544 / 0.114	0.934 / 0.157
dc-full-window	1.768 / 0.075	2.218 / 0.091	1.788 / 0.109	1.257 / 0.123	0.854 / 0.159
dc-full-history	1.213 / 0.067	1.232 / 0.061	1.029 / 0.065	1.004 / 0.068	0.784 / 0.072

 Inclusion of common features always improves both centralized and decentralized estimators.

Historical matching able to outperform all other methods (even the centralized)!