

RPNG

Robust Monocular Visual-Inertial Depth Completion for Embedded Systems

Nathaniel Merrill*, Patrick Geneva*, and Guoquan Huang University of Delaware, USA

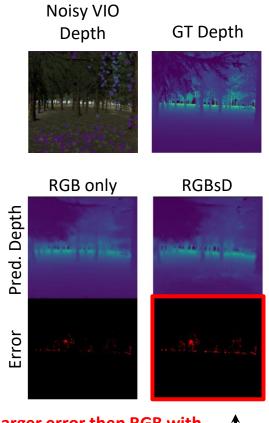
Introduction

- <u>Goal</u>: Provide real-time accuracy dense depth and 6DoF pose estimates on embedded systems for planning and control
- Leverage sparse VIO depth for accurate depth completion with only a camera and IMU
- Contributions:
 - Real-time visual-inertial estimation and depth completion on embedded devices
 - Investigation of depth completion RGBsD sensitivities and robust training schemes
 - Demonstrate evaluation on embedded devices

Example navigation through forest environment at high speed

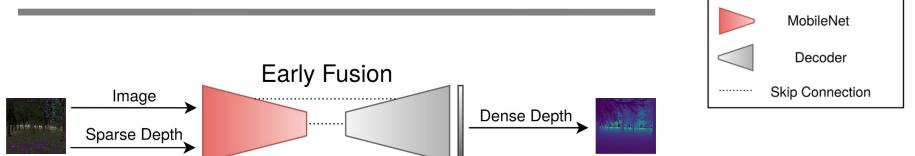
Depth Completion

- Single-view depth (RGBsD) enables realtime completion and recovery of fully dense depth maps
- Sparse depth allows RGBsD to have improved accuracy compared to RGB only
- Key Observations:
 - Existing methods fail under **noisy** VIO sparse depths, negating benefits of leveraging sparse depth



Larger error then RGB with typical RGBsD network!

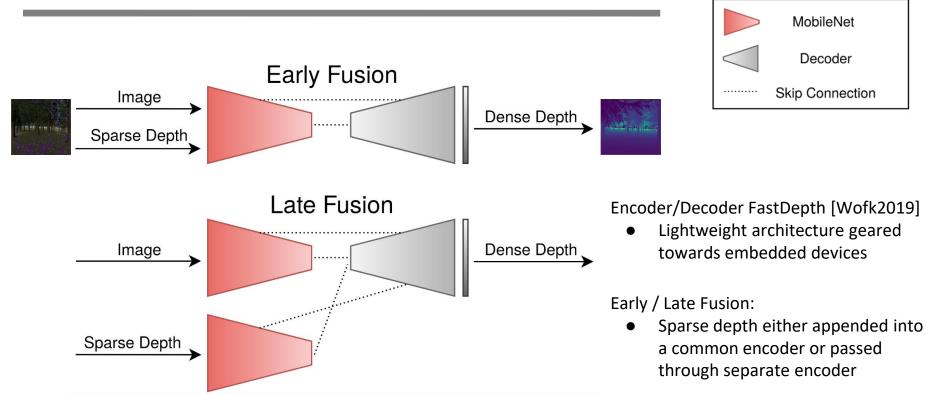
Network Architecture



Encoder/Decoder FastDepth [Wofk2019]

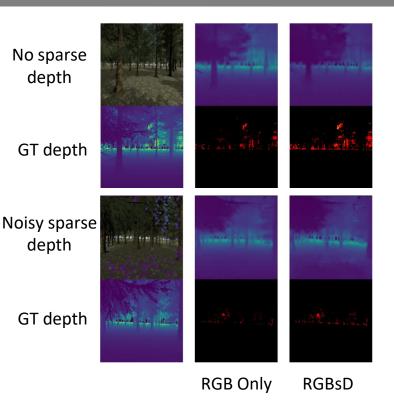
• Lightweight architecture geared towards embedded devices

Network Architecture



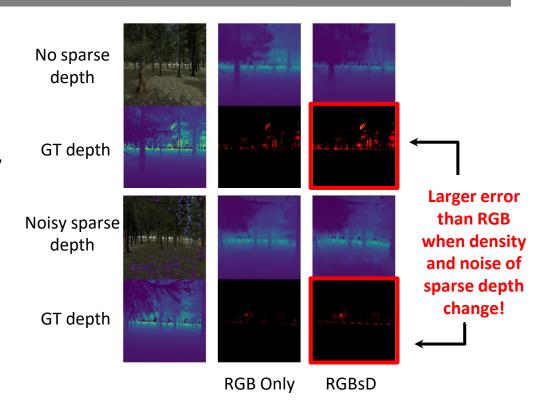
Typical Sparse Depth Completion

- Most existing RGBsD networks are trained with uniformly sampling GT depth
- VIO depths are: salient features, noisy, with varying density
 - RGBsD worse than RGB!



Typical Sparse Depth Completion

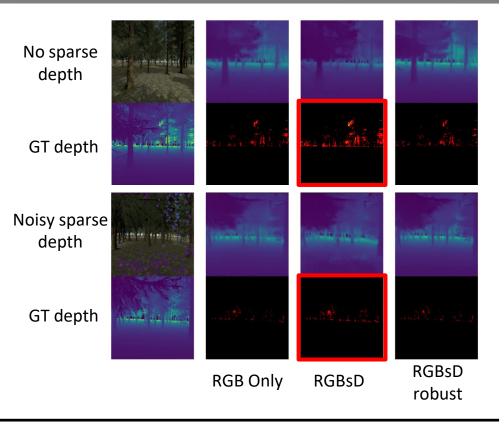
- Most existing RGBsD networks are trained with uniformly sampling GT depth
- VIO depths are: salient features, noisy, with varying density
 - RGBsD worse than RGB!



Typical Sparse Depth Completion

- Most existing RGBsD networks are trained with uniformly sampling GT depth
- VIO depths are: salient features, noisy, with varying density
 - RGBsD worse than RGB!

The proposed **robust training** and **initialization** scheme ensures depth accuracy are the same or better then RGB



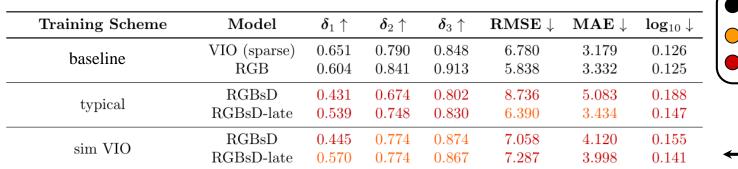
Training Scheme	Model	$\boldsymbol{\delta}_{1}\uparrow$	$\boldsymbol{\delta}_{2}\uparrow$	$\boldsymbol{\delta}_{3}\uparrow$	$\mathbf{RMSE}\downarrow$	$\mathbf{MAE}\downarrow$	$\mathbf{log}_{10}\downarrow$
baseline	VIO (sparse) RGB	$\begin{array}{c} 0.651 \\ 0.604 \end{array}$	$\begin{array}{c} 0.790 \\ 0.841 \end{array}$	$\begin{array}{c} 0.848 \\ 0.913 \end{array}$	$6.780 \\ 5.838$	$3.179 \\ 3.332$	$0.126 \\ 0.125$

Baseline accuracy of sparse points and RGB only

								Better than RGB
Training Scheme	\mathbf{Model}	$\boldsymbol{\delta}_1\uparrow$	$\boldsymbol{\delta}_{2}\uparrow$	$\boldsymbol{\delta}_3\uparrow$	$\mathbf{RMSE}\downarrow$	$\mathbf{MAE}\downarrow$	$\mathbf{log}_{10}\downarrow$	< 10% worse than RGB
baseline	VIO (sparse) RGB	$0.651 \\ 0.604$	$0.790 \\ 0.841$	$\begin{array}{c} 0.848 \\ 0.913 \end{array}$	$6.780 \\ 5.838$	$3.179 \\ 3.332$	$0.126 \\ 0.125$	\geq 10% worse than RGB
typical	RGBsD RGBsD-late	$0.431 \\ 0.539$	$0.674 \\ 0.748$	$0.802 \\ 0.830$	$8.736 \\ 6.390$	$\begin{array}{c} 5.083\\ 3.434\end{array}$	$\begin{array}{c} 0.188\\ 0.147\end{array}$	 ←

Poor prediction accuracy using traditional training methods

RGBsD Color Legend



Better than RGB
< 10% worse than RGB
≥ 10% worse than RGB

RGBsD Color Legend

Even if we perform data augmentation to robustly train, still worst performance!

RGBsD Color Legend

< 10% worse than RGB

≥ 10% worse than RGB

Better than RGB

Training Scheme	Model	$\boldsymbol{\delta}_{1}\uparrow$	$\boldsymbol{\delta}_{2}\uparrow$	$\boldsymbol{\delta}_{3}\uparrow$	$\mathbf{RMSE}\downarrow$	$\mathbf{MAE}\downarrow$	$\mathbf{log}_{10}\downarrow$
baseline	VIO (sparse) RGB	$0.651 \\ 0.604$	$0.790 \\ 0.841$	$0.848 \\ 0.913$	$6.780 \\ 5.838$	$3.179 \\ 3.332$	$0.126 \\ 0.125$
typical	RGBsD RGBsD-late	$0.431 \\ 0.539$	$\begin{array}{c} 0.674 \\ 0.748 \end{array}$	$0.802 \\ 0.830$	$8.736 \\ 6.390$	5.083 3.434	$\begin{array}{c} 0.188\\ 0.147\end{array}$
sim VIO	RGBsD RGBsD-late	$\begin{array}{c} 0.445 \\ 0.570 \end{array}$	$0.774 \\ 0.774$	$0.874 \\ 0.867$	7.058 7.287	$4.120 \\ 3.998$	$0.155 \\ 0.141$
sim VIO w/ RGB init	RGBsD RGBsD-late	0.582 0.658	0.852 0.849	0.919 0.915	5.652 5.742	3.318 3.211	0.127 0.122

Proposed Solution:

- Pretrain the network with RGB only depth
- Train with *simulated* VIO depths to robustify
- Ensures performance does not drop worst then RGB only!

Comparison to Sparse-to-Dense [Ma 2018]

- Sparse-to-Dense (S2D) network
 - Based on more powerful ResNet model
 - Trained with uniform noise-free sparse depth

Test	Model	$\boldsymbol{\delta}_1\uparrow$	$\boldsymbol{\delta}_{2}\uparrow$	$\boldsymbol{\delta}_{3}\uparrow$	$\mathbf{RMSE}\downarrow$	$\mathbf{MAE}\downarrow$	abs. rel. \downarrow	$\textbf{log}_{10}\downarrow$
-	FastDepth	0.904	0.971	0.989	0.433	0.267	0.092	0.042
	S2D	0.981	0.995	0.998	0.194	0.100	0.036	0.016
uniform	RGBsD	0.956	0.991	0.997	0.281	0.173	0.063	0.028
	RGBsD-late	0.963	0.991	0.997	0.270	0.160	0.057	0.025

Testing on NYUv2 with Sampled Sparse Depth

Comparison to Sparse-to-Dense [Ma 2018]

- Sparse-to-Dense (S2D) network
 - Based on more powerful ResNet model
 - Trained with uniform noise-free sparse depth

Test	Model	$\boldsymbol{\delta}_1\uparrow$	$\boldsymbol{\delta}_{2}\uparrow$	$\boldsymbol{\delta}_{3}\uparrow$	$\mathbf{RMSE}\downarrow$	$\mathbf{MAE}\downarrow$	abs. rel. \downarrow	$\log_{10}\downarrow$
-	FastDepth	0.904	0.971	0.989	0.433	0.267	0.092	0.042
	S2D	0.981	0.995	0.998	0.194	0.100	0.036	0.016
uniform	RGBsD	0.956	0.991	0.997	0.281	0.173	0.063	0.028
	RGBsD-late	0.963	0.991	0.997	0.270	0.160	0.057	0.025
	S2D	0.626	0.689	0.730	1.247	0.777	0.267	0.199
corners	RGBsD	0.948	0.990	0.997	0.301	0.194	0.072	0.032
	RGBsD-late	0.955	0.990	0.997	0.286	0.176	0.064	0.028

Testing on NYUv2 with Sampled Sparse Depth

Comparison to Sparse-to-Dense [Ma 2018]

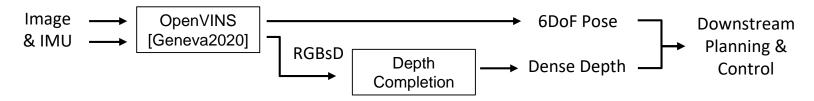
- Sparse-to-Dense (S2D) network
 - Based on more powerful ResNet model
 - Trained with uniform noise-free sparse depth

Test	Model	$\boldsymbol{\delta}_{1}\uparrow$	$\boldsymbol{\delta}_{2}\uparrow$	$\boldsymbol{\delta}_{3}\uparrow$	$\mathbf{RMSE}\downarrow$	$\mathbf{MAE}\downarrow$	abs. rel. \downarrow	$\log_{10}\downarrow$
-	FastDepth	0.904	0.971	0.989	0.433	0.267	0.092	0.042
	S2D	0.981	0.995	0.998	0.194	0.100	0.036	0.016
uniform	RGBsD	0.956	0.991	0.997	0.281	0.173	0.063	0.028
	RGBsD-late	0.963	0.991	0.997	0.270	0.160	0.057	0.025
	S2D	0.626	0.689	0.730	1.247	0.777	0.267	0.199
corners	RGBsD	0.948	0.990	0.997	0.301	0.194	0.072	0.032
	RGBsD-late	0.955	0.990	0.997	0.286	0.176	0.064	0.028
•	S2D	0.480	0.613	0.680	1.371	0.980	0.350	0.241
noisy corners	RGBsD	0.942	0.988	0.996	0.316	0.203	0.075	0.032
	RGBsD-late	0.950	0.989	0.996	0.298	0.186	0.069	0.030

Testing on NYUv2 with Sampled Sparse Depth

S2D significantly worse than FastDepth (RGB-only) with **out-of-distribution** sparse depths!

Challenging Forest Application



- Complete system demonstrated on challenging simulated forest dataset
- Trained using proposed method and highly variable viewpoints
- Challenges:
 - Large depth range due to gaps in trees
 - High detail level due to vegetation

Deployment to Embedded Platforms

- Key OpenVINS modifications:
 - Limit features for update
 - Out-of-state features for sparse depth-map generation
- NVIDIA Jetson devices allow depth completion GPU acceleration
- Leveraged Apache TVM autotune optimization to further tune network prediction speed (x2 speedup)

Nano

- 128-core Maxwell
- Quad-core ARM A57 @ 1.43 GHz
- 4 GB 64-bit LPDDR4
- Max 10W power

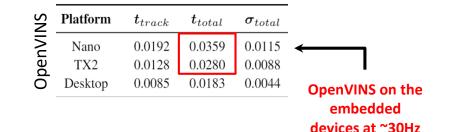
- 256-core Pascal
- Dual-core Denver 2 64bit CPU & quad-core ARM A57 complex
- 4 GB 128-bit LPDDR4
- Max 15W power

Timing Results

- Both depth prediction and OpenVINS on NVIDIA Nano and TX2 are able to be real-time
- OpenVINS single-threaded performance split between EKF update and feature tracking
- Complementary resource usage of single CPU thread and GPU leaving compute for planning & control

	Platform	Model	No-O	ptimizat	ion	TVM-Optimization		
	1 latioi m	Wibuei	t_{pred}	σ	Hz	t_{pred}	σ	Hz
Ύ	Nano	RGB	24.75	0.69	40	14.90	0.79	67
Ş	(GPU)	RGBsD	24.91	0.58	40	17.07	1.03	58
Network	(010)	RGBsD-late	42.99	0.46	23	70.66	0.34	14
Ζ	TX2	RGB	10.79	0.46	92	6.87	0.70	145
	(GPU)	RGBsD	10.78	0.60	92	7.09	0.71	141
		RGBsD-late	18.36	0.47	54	11.34	0.90	88

Minimal overhead from including sparse depth! _



Conclusion

- Showed that noisy VIO depths can significantly hurt depth completion
- Proposed **robust** training strategy
 - Initialize to RGB-only weights
 - Train with **noisy** sampled corner features with imperfect depths
- Demonstrated real-time VIO depth completion on **embedded** devices



Nathaniel Merrill

nmerrill@udel.edu