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Introduction

• Goal: Provide real-time accuracy dense depth
and 6DoF pose estimates on embedded 
systems for planning and control

• Leverage sparse VIO depth for accurate depth 
completion with only a camera and IMU

• Contributions:
– Real-time visual-inertial estimation and depth 

completion on embedded devices
– Investigation of depth completion RGBsD 

sensitivities and robust training schemes
– Demonstrate evaluation on embedded devices

Example navigation through forest 
environment at high speed
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Depth Completion

• Single-view depth (RGBsD) enables real-
time completion and recovery of fully dense 
depth maps

• Sparse depth allows RGBsD to have 
improved accuracy compared to RGB only

• Key Observations:

– Existing methods fail under noisy VIO sparse 
depths, negating benefits of leveraging 
sparse depth

Larger error then RGB with 
typical RGBsD network!
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Network Architecture

Encoder/Decoder FastDepth [Wofk2019]
● Lightweight architecture geared 

towards embedded devices
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Network Architecture

Encoder/Decoder FastDepth [Wofk2019]
● Lightweight architecture geared 

towards embedded devices

Early / Late Fusion:
● Sparse depth either appended into 

a common encoder or passed 
through separate encoder
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Typical Sparse Depth Completion

• Most existing RGBsD networks 
are trained with uniformly 
sampling GT depth

• VIO depths are: salient features, 
noisy, with varying density

– RGBsD worse than RGB!

No sparse 
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Noisy sparse 
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Typical Sparse Depth Completion

• Most existing RGBsD networks 
are trained with uniformly 
sampling GT depth

• VIO depths are: salient features, 
noisy, with varying density

– RGBsD worse than RGB!
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Larger error 
than RGB 

when density 
and noise of 
sparse depth 

change!
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Typical Sparse Depth Completion

• Most existing RGBsD networks 
are trained with uniformly 
sampling GT depth

• VIO depths are: salient features, 
noisy, with varying density

– RGBsD worse than RGB!
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The proposed robust training
and initialization scheme 

ensures depth accuracy are 
the same or better then RGB
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Robust Training Scheme
RGBsD Color Legend

< 10% worse than RGB

≥ 10% worse than RGB

Better than RGB

baseline

Baseline 
accuracy of 

sparse points 
and RGB only
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Robust Training Scheme
RGBsD Color Legend

< 10% worse than RGB

≥ 10% worse than RGB

Better than RGB

baseline

Poor prediction 
accuracy using 

traditional training 
methods
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Robust Training Scheme
RGBsD Color Legend

< 10% worse than RGB

≥ 10% worse than RGB

Better than RGB

baseline

Even if we perform 
data augmentation 

to robustly train, still 
worst performance!
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Robust Training Scheme

Proposed Solution:

– Pretrain the network with RGB only depth

– Train with simulated VIO depths to robustify

– Ensures performance does not drop worst then RGB only!

RGBsD Color Legend

< 10% worse than RGB

≥ 10% worse than RGB

Better than RGB

baseline
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Comparison to Sparse-to-Dense [Ma 2018]

• Sparse-to-Dense (S2D) network
– Based on more powerful ResNet model
– Trained with uniform noise-free sparse depth

Testing on NYUv2 with Sampled Sparse Depth
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Comparison to Sparse-to-Dense [Ma 2018]

• Sparse-to-Dense (S2D) network
– Based on more powerful ResNet model
– Trained with uniform noise-free sparse depth

Testing on NYUv2 with Sampled Sparse Depth

S2D significantly worse than 
FastDepth (RGB-only) with 
out-of-distribution sparse 
depths!
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Challenging Forest Application

• Complete system demonstrated on 
challenging simulated forest dataset 

• Trained using proposed method and 
highly variable viewpoints

• Challenges:
– Large depth range due to gaps in trees
– High detail level due to vegetation

RGBsD

OpenVINS 

[Geneva2020]
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6DoF Pose

Depth 

Completion
Dense Depth

Downstream 
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Deployment to Embedded Platforms

• Key OpenVINS modifications:
– Limit features for update
– Out-of-state features for 

sparse depth-map generation

• NVIDIA Jetson devices allow 
depth completion GPU 
acceleration

• Leveraged Apache TVM 
autotune optimization to 
further tune network 
prediction speed (x2 speedup)

● 128-core Maxwell

● Quad-core ARM A57 @ 

1.43 GHz

● 4 GB 64-bit LPDDR4

● Max 10W power

● 256-core Pascal

● Dual-core Denver 2 64-

bit CPU & quad-core 

ARM A57 complex

● 4 GB 128-bit LPDDR4

● Max 15W power

Nano TX2
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http://drive.google.com/file/d/15GHBlK36uPEVDmwqLSYTm_mCCbeHPUZe/view
http://drive.google.com/file/d/15GHBlK36uPEVDmwqLSYTm_mCCbeHPUZe/view
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• Both depth prediction and 
OpenVINS on NVIDIA Nano and 
TX2 are able to be real-time

• OpenVINS single-threaded 
performance split between EKF 
update and feature tracking

• Complementary resource usage 
of single CPU thread and GPU
leaving compute for planning & 
control

Timing Results

Minimal overhead from including sparse depth!

OpenVINS on the 
embedded 

devices at ~30Hz

O
p

en
V

IN
S



20

Conclusion

• Showed that noisy VIO depths can 
significantly hurt depth completion

• Proposed robust training strategy 
– Initialize to RGB-only weights
– Train with noisy sampled corner 

features with imperfect depths

• Demonstrated real-time VIO depth 
completion on embedded devices
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