
1

Versatile 3D Multi-Sensor Fusion
for Lightweight 2D Localization

Patrick Geneva*, Nathaniel Merrill*,
Yulin Yang, Chuchu Chen, Woosik Lee, and Guoquan Huang

Robot Perception and Navigation Group (RPNG)
University of Delaware (UD), Newark, DE, USA



2

Motivation
• Real-time accurate localization of 

ground robots

• Large-scale prior map localization

• Use inexpensive sensors:
– 2D LiDAR, Wheel Odometry, IMU

• Potential autonomous 
applications:

– Warehousing
– Delivery and service

http://ais.informatik.uni-freiburg.de/slamevaluation/datasets.php

https://roboticsandautomationnews.com
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Contributions
• 2-stage localization system for robots with inexpensive sensors

– 2D LiDAR, Wheel Odometry, IMU

• Stage 1 - Offline occupancy grid mapping

– Accurate scan matching uncertainty modeling

– Line tracking and weighted non-linear batch least-squares for improved map quality 

in structured environments

• Stage 2 - Online EKF-based prior map localization

– 6-DoF filter incorporates IMU to account for true motion of robot

– Online spatial-temporal calibration between sensors to allow for “plug and play”

– Light-weight real-time prior map localization
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Related Works
Cartographer [1]

• 2D occupancy grid submaps to enable 

loop closure detection

• Novel depth-first-search correlative scan 

matching

• 2-stage scan matching technique

– Correlative scan for initial

– Refinement with nonlinear

• Pose graph is equally weighted (no 

covariance estimation)

• No other geometric features (e.g. 

lines) used to improve map quality

HectorSLAM [2]

• Builds a multiple resolution occupancy 

grid map online

• Fuses 2D LiDAR and IMU

• Estimates a full 6-DoF trajectory 

• No online calibration of sensor 

extrinsics

• Extra cost of building prior map online 

instead of localizing in known prior 

frame

[1] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in 2d lidar slam,” in 2016 IEEE International Conference on Robotics and Automation. IEEE, 2016, pp. 1271–1278

[2] S. Kohlbrecher, O. Von Stryk, J. Meyer, and U. Klingauf, “A flexible and scalable slam system with full 3d motion estimat ion,” in2011 IEEE International Symposium on Safety, Security, and Rescue Robotics. IEEE, 2011, pp. 155–
160.
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Stage 1 - 2D Line and Occupancy Grid Mapping
• Create 2D submaps

– Match to current submap for 
odometry 

– Keep keyframes as nodes in 
posegraph

– Match to old submaps in separate 
thread (loop closures)

• Accurately estimate scan matching 
covariance

– Perform weighted batch 
optimization of constraints

• Extract 2D lines from LiDAR
– Perform line tracking and mapping
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• Scan matching problem:
– Optimize the relative LiDAR pose to the 

submap

• Prior Odometry:
– Integrated into relative pose

• Prior Scan (accurate to grid res):
– Exhaustive search or Cartographer’s DFS
– Olson’s [3] method for uncertainty 

Scan Matching

[3] E. Olson, “Real-time correlative scan matching,” in Proc. IEEE Int. Conf. Robotics and Automation (ICRA), 2009

• Covariance
– Consider noise from scans and 

from submap occupancy

– Scan uncertainty in residual

– Final scan relative pose 
information matrix

– Optimized relative pose and 
information matrix are added as a 
constraint in pose graph

Transformation prior Occupancy constraints
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Line Mapping
• Store lines in closest point (CP) [4] 

format, with the following coordinate 
transformation from global to LiDAR 
frame

• Line Tracking: Lines are tracked by 
thresholding distance and orientation 
(normal vector) 

• Line Merging: After loop-closure, close 
lines are merged together with similar 
thresholding

• Lines constrain pose states
– Multiple states can be constrained 

with multiple observations of the 
same line

[4] Y. Yang and G. Huang, “Observability analysis of aided ins with  heterogeneous features of points, lines and planes,”IEEE Transactions on Robotics, vol. 35, no. 6, pp. 399–1418, Dec. 2019.
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Stage 2 - Online EKF-based Localization

• Estimated states

– Inertial:

– Clones: 

– Calib:

• Measurements:
– IMU: Angular velocity & linear acceleration (propagation)

– LiDAR: Laser scan distances (in local LiDAR xy plane)
• ICP to prior map
• ICP relative to previous frame

– Wheel: 2D angular & linear velocity (in global 3D xy plane)
• Integrated into relative pose change

Temporal offset 
between sensors

Extrinsic transform of IMU to 
LiDAR/Wheel sensors

Historical inertial pose clones
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LiDAR Measurement Processing

1. Incoming scan          is “unwarped” with polynomial model to account for motion during collection

2. Local LiDAR frame points are projected to          in the global xy plane (ensures ICP is performed in 
same 3D plane)

Point in unwarped scanProjected point global xy plane

Consistent plane to perform ICP, 
invariant to sensor roll, pitch
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LiDAR Measurement Processing

1. Incoming scan          is “unwarped” with polynomial model to account for motion during collection

2. Local LiDAR frame points are projected to          in the global xy plane (ensures ICP is performed in 
same 3D plane)

1. ICP is performed relative to the previous scan and global map

1. Measurements are rejected based on chi-squared threshold, and relate to state through projected 
measurement model and time-offset

Point in unwarped scanProjected point global xy plane

Global map (transformed into 
frame near current)

Previously received LiDAR scan

ICP uncertainty
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Wheel Odometry

• From 2D wheel odometry, we generate a “pseudo” 3D measurement

• Measurements are integrated incrementally between LiDAR times

• Uncertainty in the timeoffset        used to integrate, we model the bounding clone poses as:

Additional noise to model how close 
to “planar” odometry is

Measurement uncertainty

Integrated pose 
found using best 
timeoffset estimate
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Localization Simulation Validation

• Indoor multi-room office environment 
(236 planes, 348 meters)

• Simulated realistic sensors and 
nonholonomic motion

• Prior map simulated based on floorplan

Able to estimate with higher accuracy as more sensors are 
added. Prior map has the largest impact on reducing error.
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• Frequency of prior map does have small 
impact on accuracy (robot is moving at 
1.8 m/s on average)

• Able to robustly online calibrate sensors.

• Direction normal to the plane of motion 
not converging as expected

Prior Map Frequency and Online Calibration

Even 10 seconds between updates (0.10 
Hz) we can still achieve < 20cm accuracy
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Mapping Accuracy Evaluation
• Evaluated on RADISH 

datasets comparing to 
Cartographer [1] and Graph 
Mapping [5]

• Able to outperform on a 
number of datasets

• Confirms that uncertainty 
modeling and lines improve 
estimation performance 
over state-of-the-art

[5] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard. A tree parameterization for efficiently computing maximum likelihood maps using gradient descent. InProc. of Robotics: Science and 

Systems       

(RSS), 2007. 
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Real-World Turtlebot3 Mapping and Localization

• Demonstration on low-cost Turtlebot3 (separate datasets)

• Two-room and floor-size datasets

• Able to provide continues estimation close to optimized 
trajectory

* https://www.turtlebot.com/
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Video Demonstration

http://drive.google.com/file/d/1Y1SqWZhGohTya87klem_Y00yjMK_77Eg/view
http://drive.google.com/file/d/1Y1SqWZhGohTya87klem_Y00yjMK_77Eg/view
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Conclusion
• Presented a 2-stage system which first performs accurate mapping and then performs 

efficient online localization

• Stage 1 - Prior Map Mapping

– Improved upon Cartographer, handled scan matching uncertainty
– Improved robustness and accuracy with additional line features

• Stage 2 - Online Localization

– 6-DoF fusion of 2D-LiDAR, IMU, and Wheel odometry with online calibration and light-weight 
real-time localization

• Demonstrated performance both in simulation and real-world experiments


