SITY or

FIAWARE, RPFPNG

Kalman Filtering for
Visual-Inertial Navigation and
Target Tracking

Kevin Eckenhoff




Active Target Tracking

Maneuver #2
Sharp Turn



https://docs.google.com/file/d/1vMSGknDAiDol20ViyFP_naIfuSn0sDH0/preview

Navigation for Robotics

e Navigation: want to track the motion of robot moving through some unknown
environment using only onboard sensors

e Applications: many (e.g., search and rescue, extraplanetary exploration,
autonomous driving, defeating the Decepticons)




Estimation

e Consider an unknown random variable, X, and a set of measurements
that relate to this state, Zj

e Maximum a Posteriori (MAP) estimation involves finding the most likely
value of the state given the measurements

X = arg max p (x|z)
X




The Kalman Filter

e One of the most popular algorithms due to simplicity and low computational
complexity is the Kalman Filter

e Key idea of the algorithm: divide the algorithm into a two-step process

e Propagation predicts the next estimate of the variable based on its
dynamics, while the second step updates this estimate using other sensor
measurements
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Gaussian Representation

e Represent the state distribution as a Gaussian, which yields a closed form
expression for the MAP estimate

e The mean represents the most likely value for our random variable given the
measurements, while the covariance encodes our uncertainty about this
estimate

e “Optimus Prime is somewhere near the mean with some uncertainty”

e At every time instance we approximate the state’s distribution as a Gaussian
and track the resulting mean and covariance




Propagation

e State evolves according to some known motion model, which is a function of
the state, measured inputs, and some noise

x1 = £ (xq, up, ng)

e Propagation allows us to predict the state at the next instance while
capturing the new covariance

e “Optimus uses noisy odometry to predict his next state with increased
uncertainty”

X() ~ N (}A(O|O7 P0|0> X1~ N <§(1|07 P1|O)




Update

e Update allows us to refine the current estimate using other sensor
measurements, which are also corrupted by noise

e “Optimus Prime measures the distance from himself to the known location of
Bumblebee, allowing him to update his estimate and reduce his uncertainty”

x) ~ N <&1\07P1|0) xp ~ N (5(1|17P1|1)




SLAM

e If the measurement is a function of another unknown, we must add
that unknown to our filter’s state. When this unknown is a static
landmark, this becomes the simultaneous localization and mapping
(SLAM) problem

e “Optimus Prime estimates both his state and that of Bumblebee”




Kalman Filter Process
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Kalman Filter Algorithm

Predict [edit]
Predicted state estimate Epp—1 = F(@r_1p-1, Ur)

Predicted covariance estimate Py = Fp Py 15 FkT + Q.

Update |edit]

Innovation or measurement residual Ui = 25 — h(:f:klk_l)
Innovation (or residual) covariance Sy = Hy P4 Hl,;r + Ry,
Near-optimal Kalman gain Ky = Py H,;r S,;l
Updated state estimate iﬁk|k = 53k|k_1 + Ky,
Updated covariance estimate Py, = (I — Kka)Pk|k_1

where the state transition and observation matrices are defined to be the following Jacobians
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Visual-Inertial Navigation

e Visual-Inertial Navigation: providing estimates for a system using an inertial
measurement unit and one or more cameras.

e Kalman filtering remains an extremely popular solution to this problem due
to its low computational overhead compared to other methods

IMU
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Inertial Measurement Unit (IMU)

e IMU provides local linear acceleration and angular velocity measurements
corrupted by both Gaussian noise and time-varying biases

e Solving resulting ODEs allows us to perform propagation
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IMU Biases

e Biases are modeled as
continuous-time random walks driven
by Gaussian noise

e These model effects which cannot be WWWAMWWWWMWWW White Noise

captured by pure Gaussian noise
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Camera Measurements

e Cameras capture images of the unknown, surrounding environment

e Standard image processing allows us to extract and track features across a
series of images, which provide us with information of both the environment
and the motion of the sensor
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KLT Tracking



https://docs.google.com/file/d/1NyqWMI-iuQ6FHDsnPdiv4ICFidOY9fD8/preview

Projection Function

Features in the 2D image correspond to static 3D points in the environment
(e.g., a corner of a table) with position ~'py.

Image coordinate measurements are related to the sensor state and feature
position by a projection function

z =h X,pr +w

This function first transforms the 3D point into the camera frame of
reference, followed by a projection onto the image plane
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VINS Example
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https://docs.google.com/file/d/1jkawut3u9l9rf2DlmsPlzsjS2x4sm670/preview

Target Tracking

In the standard VINS problem, we assume that the main goal is to simply
navigate in a static, unknown environment

What if our main goal is to instead track a moving target?

“Optimus prime needs to be able to track the motion of Megatron in order to

prevent him from doing evil”
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Motion Model

e Unlike the static features, a target’s state is changing due to motion

e Unlike the robot, we do not have access to the target’s odometry
measurements, and must instead rely on external measurements and a
model for the target’s motion

e Choice of motion model determines which parameters of the target need to
be estimated

X[y =1 (XTk:’ nTk)
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Constant Velocity Model

e Example model: constant velocity

e Requires that we estimate both the target’s position and global velocity

’ 1]

e Choice of noise strength is used to capture a target’s “predictability” based on the
motion model

XT =
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Target Measurements

e Measurement model treats the target as a point mass
e \We assume that we can detect this reference point in our images

e Generates bearing measurements between the robot and target
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Point Particle Target Tracking
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https://docs.google.com/file/d/1qAFt3bCG7lxuV8VUrpNNe4O0K4eFVazU/preview

Cons of the Point Model

e Real targets rarely act as points. In addition, we often lose track of the
reference point due changes of viewing angle
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Rigid Body Target Tracking
e Solution: treat the target as a moving rigid body

e Position of features on the target wrt a reference point are static in the
target’s frame, and can be efficiently estimated
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Constant Local Velocity Model

e With notion of pose, we can assign more “interesting” motion models

e Example: Constant local linear and angular velocity
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Rigid Body Tracking: Constant Local Velocity
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https://docs.google.com/file/d/1dgfvi1NBjRkZQSEgPQt8up_5DySmYzKe/preview

Pseudo-Unicycle Model

e Pseudo-Unicycle Model: vehicle moves “mostly” in its local x direction and
with a rotation about its local z.

e Allows for the target to mostly evolve along planes
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Rigid Body Tracking: Pseudo-Unicycle
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https://docs.google.com/file/d/1LrolhN1fyeLeSK3TEHHwhzMlejP1ARWI/preview

Active Target Tracking

Maneuver #2
Sharp Turn
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https://docs.google.com/file/d/1vMSGknDAiDol20ViyFP_naIfuSn0sDH0/preview

