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Motivation

* Inertial Measurement Unit (IMU):
— Pros:

* Provide a high frequency of acceleration
(accelerometer) and angular velocity (gyro) data

 Have become cheap and lightweight in recent
years

— Cons:

e MEMS-IMU measurements are noisy and
corrupted by time-varying biases

 Hard to optimally fuse with other sensors
(cameras) at IMU-rates




Preintegration

Preintegration: Integrate multiple IMU measurements in local frame of

reference [Lupton et al."12] ¢ t
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Preintegration (cont.)

* Arrive at three preintegrated measurements
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* (Can be used in estimation techniques such as batch optimization

* Need to compute measurement mean and covariance




Preintegration: Related Work

e State-of-the-art approach [rorster et al. ‘15]:
— Pro: Stable Lie algebra representation of SO(3)

— Con: Based on discrete measurement dynamics

 The proposed approach:

— Formulate and solve preintegration in continuous time to better
model the underlying dynamics

— Derive closed-form expressions for preintegration measurements,
covariance, and bias Jacobians




Preintegrated Measurement Mean

* Relative rotation, ;"'R, computed with quaternion integration
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* Preintegrated measurements, “ai+1and “5i+1, formulated as linear
system
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* Closed form solutions for all preintegrated measurements




Bias-Independent Preintegration

* Evaluating measurement means involves solving a nonlinear
function wrt. biases:
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— Values depend on current linearization point for bias

e Bias Jacobians: remove preintegration dependency on biases via
first-order Taylor-series expansions :
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— Allows for efficient measurement corrections due to bias changes




Preintegrated Measurement Covariance

* Linear system derived for error state
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* C(Closed form discrete-time state-transition matrix

{I'(f. f[]) — F(ﬂ{b(t t[lj
D (1), 1) =1

* Measurement noise covariance computed iteratively
Pry1 = @11, 6:)P- (10, tr)T + Qu




Graph-based Visual-Inertial Navigation

* Loosely coupled visual-inertial sensor fusion *
e Store poses corresponding to imaging times
* Visual factors: »
/
— Use local, relative batch optimization to ° “

find distribution across a sliding window
of states and features detected

— Marginalize out features to yield
constraint of only states

* Fuse w. preintegration and bias factors

Prior




Simulation Results

* Monte Carlo simulations with highly-dynamic motion

— Our proposed approach (continuous) vs. state-of-the-art approach (discrete)
[Forster et al. “15]
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Experimental Results

* Full system validated on The EuRoC MAV
Dataset [Burri ‘16]

e Achieved 0.7% translational drift
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Summary

* Formulated and analytically solved preintegration in continuous
time
* Shown to outperform a state-of-the art counterpart (in particular,
in the case of highly-dynamic motion)
e Extensions (Dirty Laundry):
— To investigate effect of higher IMU measurement rates

— To investigate higher order modeling (spline) of measurements to
solve discrete sampling problem

— To integrate into various aided inertial navigation systems

Thank you!
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