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1 Introduction

In this work, we provide an extensive observability analysis for tightly-coupled visual-inertial local-
ization and 6DOF (position and orientation) rigid-body target tracking (VILTT). System observ-
ability is essential for state estimation, because: (1) it provides a deeper insight into a system’s
geometrical properties [1, 2, 3] and determines the minimal measurement modalities or state pa-
rameters needed to initialize the estimator; (2) it can be used to identify degenerate motions [, 5,

, 7] that cause additional unobservable directions and should be avoided or alerted whenever pos-
sible; and (3) the observability constrained (OC) estimators such as OC-EKF [1] and OC-VINS [2]
that enforce the correct observability properties, can be adopted to improve consistency.

In this work, the rigid-body target is represented by a pose (orientation and position) together
with feature points attached to it. The origin of the target frame is chosen from one of these target
feature points as representative point, which will also be used to describe the target position.
We analyze three stochastic motion models of the target, capturing most commonly-seen tracking
scenarios in practice: (1) constant global linear velocity with constant local angular velocity, (2)
constant local linear velocity and constant local angular velocity, and (3) a planar motion model
which assumes constant local yaw rate and local planar velocity. We show that the proposed
VILTT system will have at least 4 unobservable directions inherited from visual-inertial navigation
system (VINS) with additional unobservable directions related to the target state based on the
chosen target motion model. Geometrical interpretations for these unobservable directions are also
provided and discussed.

2 Problem Formulation

2.1 Inertial State

As this work extends the standard MSCKF formulation [8], we first define the IMU state of an
aided inertial navigation system (INS) as follows:

_ T
xi=[ga" b, [ by “pj] (1)

where qu is the unit quaternion of JPL form parameterizing the rotation IGR from the global frame
{G} to the current local frame {I} [9], b, and b, are the gyroscope and accelerometer biases, and
Gy and “py are the velocity and position of the IMU expressed in the global frame, respectively.
Note that the relationship between the vector quantities with true value v, mean value v, and error
state v takes the form v = v + v. For quaternions in JPL convention, with true value ¢, mean
value ¢, and error state 60, we have § = [(60/2)7 1]T ® § with ® as the quaternion multiplication.
The error state corresponding to the INS state (1) is given as:

- ~ T - T
x;=[1607 bl “v] bl “p]] (2)

2.2 IMU Propagation

An IMU attached to the moving platform provides local linear acceleration and angular velocity
measurements. In particular, the measurements a,, and w,,, are related to the true values, a and
w, by:
_ I pdG
an =a+cR7g+b, +n, (3)
Wy =w + by, +1n, (4)
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where g ~ [0 0 9.8] " is the true global gravity, and n, and n,, are the continuous-time Gaussian
noises which corrupt the measurements (note that in the rest of this paper we assume values denoted
n to be denote zero-mean white Gaussian noises). The underlying IMU kinematics is given by [10]:

Ga = 3Qw)6a (5)
Gy =LR"a (6)
“p="Cv (7)
by = npy, (8)
b, = ny, 9)

aw) - |~ v (10)

where |-] denotes the skew symmetric matrix. Using this motion model, the standard EKF prop-
agation step can be performed [3].

2.3 VILTT State

In our VILTT system, we have additional state parameters that we are trying to estimate concur-
rently with the current inertial state. We write the combined state to-be-estimate as the following:

(11)

where x7, x7, “p 7s and Tp rt represents the state for the IMU, the target, the static environment
feature and the target feature (rigidly attached to the target), respectively.

T T

-
x=[x; “pj, xp “pp]

2.4 Target Motion Model

Each of the three target models has different state parameters that we are interested in estimating.
We define ng) as the state of the ¢’th target model. Specifically, for target state propagation, we
define the evolution of each of the three target’s state as the following:

e Model 1: Given constant global linear velocity “vz and constant local angular velocity ©w
assumption, the target state for model 1 and its evolution can be written as:

el 2T w)ta
g (1) w Ny,
Xy = . = 12
T Gy Gy (12)
GvT Ny

e Model 2: Given the constant local linear and angular velocity Zvy and Tw, the target state
for model 2 and its related evolution can be written as:

Il 2T w)Ea
- (2) w Ny
Xy = . = 13
T GPT gRTTVT ( )
T‘.’T Ny,

RPNG-2018-OBSTT 2



e Model 3: Given the planar motion model with constant local planar linear velocity and
constant local angular velocity around local z axis, the target state for model 3 and its
evolution can be written as:

_ - _
1 T =
. 2| |y | | a4
a4 Wz
3) Twz Nwz
. _ G . _ b
Xr' = Pr| = (% (14)
T, TR | 0,
T
Uy Nyz
Noyg
L Ny i

2.5 Feature Measurement - Static Environmental

As the moving IMU sensor platform moves through the environment, static environmental feature
tracks are collected and used to update the state. For simplicity, we assume the camera-to-IMU
extrinsic calibration is identity, so that the static feature measurement can be written as:

7 = h(prs,x[) +ny (15)
Iy,
ts

= ﬁ +1nyg (16)
Tors

where Ipfs = [Imfs nys szS]T can be written as:
prs =R (prs - GPI) (17)

2.6 Feature Measurement - Target Non-Representative

The moving IMU sensor platform also tracks features that reside on the moving target but are
not of the representative point/pose of the target. We represent theses target features in the local
target frame of reference and write them as the following:

Zy = h(X]7 XT, Tpft) + nf2 (18)
Ty,
I
= IZZ/]J: —+ nyo (19)
L

where Ipft = [IIL‘ft nyt Ith]T can be written as:

"ppy=1R ("psr — "pr) (20)
=tRERT (Tpye — GR (“pr — “pr)) (21)
=GR <2RTTP i — (Opr - GPT)) (22)
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2.7 Feature Measurement - Target Representative

A single feature is taken to be the “representative point” that the pose of the rigid-body is estimated
to be at. Visual bearing measurements of this representative point are a direct measurements of
the target’s position, thus we can write the following:

Z3 = h(XT, X71) + n3 (23)
lap
_ [;;; - en
Tap
Note that 'pp = [IIET Tyr IzT]T can be described as:
'pr = tR(“pr — “p1) (25)

3 Observability Analysis

Following the methodology of Hesch et al. [2], we perform the observability analysis for the lin-
earized system. The observability matrix M(x) can constructed as:
_HXO(I)(O7 0)_
Hy, ®(1,0)
M(x) = |Hx2®(2,0) (26)
_kai)(k7 O)_

where Hyy, represents the system measurement Jacobians at time step k, ®(k, 0) represents the state
transition matrix from time 0 to time k. The right nullspace N of the observability matrix M(x)
spans the unobservable directions of the system. For each of the following models, we first compute
the measurement Jacobian matrix Hy, the state transition matrix ®(®), and observability matrix
M® . From this we find the nullspace and offer their geometric interpretation. The procedure can
be found in Fig. 1.

RPNG-2018-OBSTT 4



State Definition x
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Measurement Jacobians H

v

State Transition Matrix &

v

Observabililty Matrix M

Y

Find N so that MN =0

v

Geometric Interpretation for N

Figure 1: Visual diagram of the steps needed to perform observability analysis. For each of the target models we
perform theses steps to find the unobservabile directions of the VILTT system.

4 Observability Analysis - Motion Model 1

4.1 Measurement Jacobians

According to previous sections, we have 3 measurement models: the measurement to static features
in the environment z;, the measurement to the features in target body zs, and the measurement
to the representative point of the rigid body z3. Therefore, the total measurement Jacobians can
be written as:

o5
H; le

Hy, = |H,| = | % (27)
H; e

where H;, ¢ = 1,2, 3, represent the measurement Jacobians of the 3 above measurement models.
We first compute the Jacobians H; as:

0z1 [azl 0%, 9%, 0%, }

H1 = 85( = 8)2[ 8G13fs (95(5«1) an)ft (28)

RPNG-2018-OBSTT 5



where we have:

1 [1z 0o -z
H fs . fs
C1 IZA,JZCS 0 IZfs ~Lgs
821 I A ~ G
0%, =HoigR [[9Prs — “Pr]fR O3x9 —T3]
ai]_ I A
— = Hco1gRI3
8prs ¢
9
Z(ll) 03x12
%\
071
—_— = 03
8Tpfs

The Jacobians Hs can be written as:

0Zo Bz Oz Dzo Dzo
H, = 9% [asq 2B oz an)fs}
where we have:
Iz 0 -1z
Moo= L [T2re ft}
C2 ]2]2”t|:0 szt —1gp
071 . . ) A
prei HeogR “(TRTTPft — (“pr — GPT))J?R O3x9 —I3
0z
— =03
8prt
D7 Lo L AT T
—m = HoeoR [-GRT [T 05 T3 03]
0x,
0z IHRTHRT
— = HmR-R
8Tpft GG

The measurement Jacobians H3 can be written as:

0zo [@ 023 0Ozs s }

Hs =52 = |05 9. ) 9Tpp

where we have:

1 [z 0 —lip
Hes = N N
s [ 0 Tz —lgr

073
okl o1

RPNG-2018-OBSTT
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4.2 State Transition Matrix

The total system state transition matrix can be written as:

®; O 0 0
0 @&, O 0
o o &Y o
0 0 0 @4

o) = (46)

where @7, P, <I>(T1) and ®; represent the state transition matrix for xy, prs, x(Tl) and Tpft,
respectively. Note that ®¢, = I3, ® = I3 and ®; can be written from [2] as:

®; P 03 03 O3
03 I 03 03 O3
®r(k,0)= |P31 P32 I3 P34 03 (47)
03 03 03 Is O3
b5y Py Pz Py I3

where the related items in the matrix can be written as:

1 = ?SR (48)
@13 = —|(“vi, —“vp) + %t x J§R (49)
1
@151 = |“pr + Vit — 5ty — “pr xR (50)
tk
@[12 = —/ ﬁ;RTdT (51)
to
tr s
b3 = / LR Tax| / RTdrds (52)
to to °
t, 0 ts
by = / /gRTLISaxJ IR Tdrdsdd (53)
to Jt to
D53 = I30t, (54)
173
B3y = — / ERTdr (55)
t
-
By = — / LRTdrds (56)
to to

Now we need to solve for the remaining target state transition matrix <I>§F1 ). The linearized system

for the target motion model (12) can be written as:

507 —|T&| I3 03 03] [d60r (O
T/ T ~
< (1) w 03 03 03 03 w I3 03 |:ntw:|
xT = B ~ ~ + 57
T GP_T 03 0; 03 I3| |“pr 03 03| |ng (57)
Gy 03 ©03 03 0] |Cv 0; I3

Thus, the state transition @g} ) evolution can be written as:

—T@] I3 03 03] [®r11 ®ri2 i3 Prua

1) _ 03 03 03 03| |Pr21 P12 Proz Prog (58)
T 03 03 03 I3| [Pr31 Pr3z Pr3z Prag
03 03 03 O] [Pra1 Prao Pruz Pras

RPNG-2018-OBSTT 7



Then, the target state transition matrix can be solved as:

D711 Pri2 03 03
03 I3 03 03
03 03 I3 ®Pr3y

where we have:
@711 =R
t
‘I)Tlg = / gdeT
to T
P13y =130

Therefore, the target state transition matrix can be written as:

T} t T;
TR [/ T'Rdr 03 0

q)(l) _ | 03 I 03 03
=
03 03 Is Is0tg
03 03 03 I3

4.3 Observability Matrix

With abuse of notation, the k’th block of the observability matrix can be written as:

® 0 0 0
0 @ 0 o

MY = Hy @D (k,0) = Hy Js

k k@ (R, 0) 1o o 3 o
0 0 0 &

HCléR 03 03
= 03 HCQIGR 03 X
03 05 HelR

Mi; M2 Mz My Mz Mg Miz Mig Miyg M0 My
Mo Moy Moz Moy Mo Mag Moz Mag Moy Moo Mo

The first row of this matrix can be denoted as:
. . - . . . 1 -
My = [“Pgs — “Pr )i R® 111 — ®51 = [“Pys — “Pry — “V1o0tk + QchStiJ?OR

Mig = [“pss — “Pr )T R® 112 — B2
M3 = —®;53 = —130t;

My = —P54
M5 = —1I3
Mg =13

M7 =Mig =My = M1710 = 1\/-[1,11 =03

RPNG-2018-OBSTT
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The second row of this matrix can be described as:

Mo = £ R Dy — “br, + b1 JT R® 111 — P51 (73)
— [, Rpr + O, — b1, — Conty + OmIRITR (74)
Mj, = I_%ﬁ'Tlsft — b, + 9P JfR® 12 — 5o (75)
Moz = — @53 = —I30t; (76)
Moy = —Py54 (77)
Mys = —1I3 (78)
Mo = 03 (79)
My = G R i) @i = [~ R ppl7 R (80)
Mos = —Z R[TD s ®r12 (81)
Mg = I3 (82)
My 10 = ®r34 = I30t; (83)
M1 =g R (84)
The third row of this matrix can be described as:
Mz = |~“py, + b1 J§ R® 11 — @151 = [“P1, — “Dry — CV1, 0tk + %Gg&iJ%R (85)
Mss = |-“py, + “brJfR® 112 — ®r50 (86)
Mss = —® 53 = —1I3614 (87)
M3y = —Py54 (88)
Mas = —I3 (89)
M3 = 03 (90)
Mjs7; = 03 (91)
Mg = 0 (92)
Msy = Is (93)
M3 10 = ®r3s = I3ty (94)
Ms3 11 = 03 (95)
Therefore, we can rewrite the k’s block of the observability matrix as:
MY = H,,. &0 (k,0) (96)
HolR 03 03
= 03 chéf{ 03 X
03 0; HelR

My My —I3oty My I3 I3 03 03 03 03 O3
My Mgy —I30t, Moy —I3 03 L—%RTﬁfJ%ﬁ Mo I3 136t %ﬁ (97)

Mz, Mz, —I3t, Moy —I3 03 03 05 I3 I3ot, O

Note that given the assumption that constant global velocity vz, we consider the ideal noise free
case in observability analysis, the Gf)Tk can be written as:

“br, = “pr, + CVrdty, (98)

RPNG-2018-OBSTT 9



Based on the constant 7@ assumption, we can have that:

¢
Br1a|T60| = / TRdr([To) =Ty - LR (99)
to
A PR . sin|@(0tg)| 1 - 1 — cos|@(dtk)| 7 . ) A
FRT0=FRPR'w=FR <13 + ol 7o + WL%P o =¢R"G (100)
The unobservable directions N() span the right null space of the observability matrix M), that is:

M®N® = 0. Based on the derivation of the observability matrix, we can have the unobservable
directions as:

[ gﬁcg 03 03 |
03 0; O3
—[%V1,)% 05 03
03 0 03
~%Pr /% I3 0
N = [NgU NE) Ngf)t = |~/ T3 0 (101)
—'R% 03 Iy
03 0; |To]
—1“p1, /% I3 03
—|%V5, /% 03 03
| 03 0s [Tps]
Note that the Nﬂ relate to the global yaw and the global IMU position. N relate to target

IR
body orientation.
But, if without the direct target representative point measurement (due to occlusion), we will
have one additional unobservable direction related the representative point position as:

-
1 i T T
N(GI))T = |01x15 01x3 O1x3 Oix3 <%RTw> 013 — (@) (102)

4.4 Geometrical Interpretation - Verification for Nzg

If we disturb the target orientation by a small angle vector d¢, then we will have the disturbed
target state parameters as:

GR=TR{R~ (I; - [06]) ER (103)
T = ?RTW ~(I3— [0 Tw=Tw+ |Tw|dp (104)
“pr =pr (105)
CGvp =C%vp (106)
pp=7R"pp~ (5= [66)) "ppr = "pp+ |"Ps1) b (107)
Then, we can have:
prv=ELR (%RT/pft —%pr + GPT’) =R <%R§/R?RTPJ% ~%pr+ GPT) (108)
= ps (109)
"'pr =R (“pr = Opir) = GR (Cpr — “pi) (110)
= IpT (111)

RPNG-2018-OBSTT 10



Based on (15)(18)(23), even with the orientation disturbance d¢, the system will still have the same
target feature and target representative point measurements. Therefore, even with measurements,
the system still cannot distinguish the ambiguity caused by this disturbance.

Since we assume d¢ is a small perturbation, we can linearize the disturbed system state vector
x’ at current state estimate x. Thus, the related error states can be written as:

~/ — ~ -

X _ -
G G%I O18x3
pfs Pfs 13
807 001 + o T
F=|To|=]| To+|To)ép | =%+ e 0 =% + Ny 6 (112)
G Gr 03 G
P pr 0
G Gy 3
L . - "Dy
TBp|  U'Bset [TPp)og) - -

It can be seen that the disturbance exactly follow the unobservable directions related to the target
orientation.

4.5 Geometrical Interpretation - Verification for Ng )

pT
(1)

Next, we verify NGlp

representative point position with dp along the direction of the rotation axis %RTw, then we can
have the disturbed state vector as:

' T
cR=gR
T, T,
“pr = “pr + { R wdp

= Tpp =R (“pr — “pr) = [, R wép = Twip

- Without the representative point measurement zs, if we disturb the target

— = = e
e e
N O Ut

GVT/ = GVT

AAA,_\,_\/_\
~— N~ ~— ~— ~— ~—

Tpp=17R("pp—"pr) ="Tpp — Twép

If we only have target feature measurements, then we have:

"pjv = &R (ZR pg — pr + Opr) (119)
~ LR (CT?R%REE’R ("pst — Twdp) — Ops + pr + %RTwap) (120)
= pys (121)

Based on (15)(18), the system will still have the same target feature measurements. That means the
ambiguity caused by the target position disturbance cannot be distinguished by the measurements.
Since dp is assumed to be a small perturbation, if we linearized the disturbed system state x’ at
current state estimate X, then the related error states can be written as:

%] T X7 1 o
. - 1
Gp;fs prs SXS
507 807 3
o/ T ~ T~ S 03 Sz 1)
X = w | = w =X+ |gar | OP=%x+Ng. dp (122)
G Go 4 G RTws R w pr
pr pr + 7R wip
Gg Gz 03
S VL TG
b L Thp—Twop - '

RPNG-2018-OBSTT 11



Similarly, it can be seen that the disturbance exactly follow the unobservable directions related to
the target representative point position.

5 Observability Analysis - Motion Model 2

5.1 Measurement Jacobians

With abuse of notation, the total system measurements for motion model 2 can still be written as:

o5
H; le

Hy = |Hy| = |92 (123)
H; 0%

Based on the motion model 2 for target rigid body, the measurement Jacobians for the static
environment feature Hy, the target feature Hy and the target representative point measurements
Hj3 can be computed respectively. The Jacobians of the measurement to the environmental feature
H; can be written as:

071 93, 0% 9%, 0%,
Hl = 85'( = [65{[ aGf)fs 65((7“2) an)ftj| (124)
where we have:
1 [1z 0 -1i }
H = 79 fS ~ Afs 125
C1 IZ‘?-S |: 0 szs _nys ( )
071 A . B 5
0%, Hcoi LR (19D — “PrfR 0349 —Is (126)
821 I B
=HoioRI 127
s = HolbRIy (127)
0z
T;) = 03x12 (128)
0y
071
=0 129
Tpy (129)
The target feature measurement Jacobians Hy can be written as:
072 O3y 0% D5 079
Hy = o [8,~q il an,ft} (130)
where we have:
s I
Z 0 -z
Heo= 5 | 0 . X t} 131
2= 13 I (131)
0z - ST . . a
6755 = HeLR [L(gRTTpft —(%pr — GPT))JIGR 03x9 —I3 (132)
072
=0 133
Cpy (133)
9% He,LR LR |Tbs] 05 I3 0 (134)
~(2) c2¢ G Pt 3 13 U3
0x,
973 [ATRT
= = HeogRGR 135
anft 2gHvG (135)

RPNG-2018-OBSTT 12



The target representative point measurement Jacobians Hj3 can be written as:

072 07 9z 9z 9z
H3 = 0% = [075(?; 60133}3 (95(;2) 8T133ft:| (136)
where we have:
1 I?:“T 0 —Ii’T
Hes = 3 [ 0 Iz —Ijp (137)
821 2 ~ A~ -
% HesoR[[(%pr — br)JFR 0349 03] (138)
073
=0 139
Cpsy (139)
0z3
— =05 03 Iy 0y (140)
0%,
073
=0 141
o =05 (141)
5.2 State Transition Matrix
The total system state transition matrix can be written as:
®; O 0 0
0O <@ 0 0
3@ = fo (142)

o o &7 o
0 0 0 &y

Note that ®;, ® ¢, and ®; are the same as previous section. We still need to compute the target
state transition matrix ®®2) based on motion model 2. The linearized target motion system based
on motion model 2 can be written as:

607 —|T&| I3 03 03] [d6r 03 03
T* T~
2(2) w 03 03 03 03 w I3 03 |:ntw:|
T = |as | I 2 - |+ 143
T GPT ~SR|Tv] 03 03 $R| |9pr 03 03] [ng (143)
TS 03 03 05 O | |Tvrp 0; I3
From the linearized system, we can get the state transition <I>§ﬂ2 ) evolution as:
—|"@] I3 03 037 [®r11 ®r12 Pz Prug
- (2 03 03 03 O3 | @121 Proo Proz Prog
3P = (144)

—SR|TV] 03 03 $R| |®rsi Pr32 Prss Pras
03 0; 03 O Pry1 Prao Praz Pras

Hence, the target state transition matrix from tg to t; can be solved as:

®r11 Pri2 03 03
0 I 0 0
52 _ 3 3 3 3 145
T DPr3; Pz I3 Pray (145)
03 03 03 I3

RPNG-2018-OBSTT 13



where we have:

T
@11 =R

t
By = / FRdr
to
@3 = —[“v(t)|ER
t
Dryp = —|Ov(t)] [ § Rdr

to
®r3 = —|“pr, — Gf’TOJ%R
t s
Drsy = —/ LGV(S)J %Rdes
to to
t
®r3s= | $Rdr

to

Therefore, the total state transition matrix can be written as:

T ¢
TSR fto TfRdT 03 03
2 0 I 0 0
q’gr): G 3G G R t @ SSGA ’ tG3
%P1, — “Pr IR — ftOL v(s)] fto 7 Rdrds T3 fto 7. Rdr
03 03 03 I3

5.3 Observability Matrix

With abuse of notation, the k’th block of observability matrix can be written as:

MP = H,,. &3 (k,0)

®; O
0o &
= ka: &
0 0
0 0
HCléR 03

0 0

0 0

3 o
0 @
03

= 03 HeolR 03 X

03 03
M1 M2 M3
My May Mos
M3, Ms3; Mg

Then, we can solve this matrix.

HosLR
My Mis Mg My Mg Mg Miig My
May Mo Mo Moy Moy Mag Mg Moy
Msy Mszs Mg Mgy Mszg Mgzg M3 Ms 1

The first row of this matrix can be denoted as:

. . A . . . 1 ~
Mt = [“Prs — D1 )T R® 111 — 151 = [“Prs — “Pry — “V1e 0tk + 5Gg5t%J%R

My = [P — Gf)lngR‘I’nQ — P50

M3 = —®153 = —1I361;

My = —Pys4
M5 = —1I3
M = I3

M7 = Mg = Mg = M1 10 = My 11 = 03

RPNG-2018-OBSTT
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(154)
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The second row of this matrix can be described as:

My, = {%@RTﬁft —“py, + GﬁTkJiR‘I’I11 — P51

AT A R . 1
= {%CRTpft + Gka — Gpjo — GVIO(Stk + ingtiJ%R

—%RLTﬁﬁj P11+ Prs1 = L—%RTﬁﬁ — b, + GﬁTOJ%R

N

My, = {%Cf{Tf)ft —%pr, + GﬁTkJﬁR¢112 — @5
Mpyz = —® 53 = —I36t4

Moy = — P54

Mys = —1I3

My = 03

My =

Mog = —%RLTf)ftJ P+ Pr3o

My =13

t
M2710 = ‘1’T34 = / gTRd’T
to

M1 = %R

The third row of this matrix can be described as:

M3 = |“pr, — GﬁIkJiR‘13111 — &5 = |“pr,

Msz = |“br, — “Pr, |7 R® 112 — ®152
M3s3 = —® 53 = —I36t4

Msy = — P54

Mss = —1I3

M3 = 03

A~

Ms; = —®r31 = [“pr, — “pr /T, R
Ms7 = —=®r32

Mg = —1I3
M3 10 = Pr34
M3 11 = 03

Therefore, we can rewrite the equation as:

MP = H,, 3 (k, 0)

HoilR 05 03
= 05 Hcgéf{ 03 X
03 0; HelR
My M —I30ty, My —I3 I3 )
Mg, Mgy —I3dty My —I3 03 [-F RTpp —
Mz 03 —I30tp Mz —I3 O3 1“1,

RPNG-2018-OBSTT

1

Gy Gy G G

- P, — "V, + 3 gét%JIOR
03 03 O3
“pr, + GE)TOJ%R Mo I3

- “pr I3, R Mss —I3

(174)

(175)

I S =
0 0 ~ N ~ =
_ O © 00 g O

[ —
o o0 0o o
T = W N

—
e3¢}
(=)
P N s N N N i N

o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~

(187)
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Based on the constant local velocity assumption, the 7w and Tvy are constant. Therefore, we have:

t t
®rol"o) = [ FRArT6) = [ FR[Twldr=JR-FR-L-HR (9
to to
t s
B3| 70| = — / Sv(s)) [ ¢ Rdrds|"w) (190)
t t
y b )
_ _/ Ov(s)) (R -G R) ds (191)
to
t
. / Sv(s)$ Rds — [Spr, — ppy J$ R (192)
to
t
_ / 6 R(Tv|ds - [%pr, — ppy |9 R (193)
to
t t
Bry|’w]= [ $RA7|T@) = | (R|Twldr = %R - %R (194)

to to

The unobservable directions N(2) span the right null space of the observability matrix M(?), that is:
M®@N®@ = 0. Based on the derivation of the observability matrix, we can have the unobservable
directions as:

¢R% 03 03 ]
03 03 03
—{G\A/']OJGg 03 03
03 03 03
—1%p, |% I3 03
9 9 2 i
N@ = [N NG NG| = | -[9Pn)% L 0 (195)
_%;DRGg 03 13
03 0s |[Tw)
—1%pr, /% I3 03
03 03 |Tv]
E 03 "Dyl ]

If without the representative point “p7 measurement, there will be one more unobservable direc-
tions regarding to the representative point position of the target as:

N®

Spr

.
A\ T NT
=05 05 05 05 05 05 05 (§R) (@) Ty (196)

5.4 Geometrical Interpretation - Verification of N(T21)1
G
If we disturb the target orientation by d¢, then we will have the disturbed state vector as:
tR=TRER = (I; - [00)) ER (197)
To=TRTw=~ (I3~ [0¢)) Tw=Tw+ [Tw|i¢ (198)
“pr =“pr (199)
T/VT/ = ;/RTVT >~ (13 — L(Sd)J)TVT = TVT + LTVTJ (5d) ( )
(201)

Tpp=TR"ps~ (15— [00)) "pse = "o + | "psi )00
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Then, for the target feature measurements and target representative point measurement, we have:

Ipjv =R (%RT/pft —%pr+ GPT’) =GR (?R%R?RTP 5= Cpr+ GPT) (202)
="py (203)
"'pr =R (“pr — Opr) = LR (pr — “pr) (204)
='pr (205)

Hence, after the orientation disturbance, the system will still have the same target feature and
target representative point measurements. Since we assume d¢ is a small perturbation, we can
linearize the disturbed system state vector at X, then the related error states can be written as:

~/ _ - -

G)E{ G)EI [ 0183 |
el 11 5 L
v T T
=|To|=| To+|Twlép | =%+ LO“’J 0¢ = % + N{ .00 (206)
Gf)T’ Gf)T LT‘73 J ¢
T,{’T’ TVT + LT‘A’TJ Yo LT A TJ
Tbp]  UPpt TDrelo) PI

5.5 Geometrical Interpretation - Verification of N(GQI))T

Similarly, we can verify unobservable directions related to the target representative point position
Ne¢p,,. We assume there is a small disturbance to representative position as dp, then we can have
the disturbed state parameters as:

GR=[R

(207)

T, =T, (208)
“pr =pr+FRép = "pr = LR (“pr — “pr) = op (209)
e =T R ("ve + [T@]op) (210)
"pp=17R("ppe — Tpr) ="pp — 0p (211)

Therefore, the related target feature in IMU frame can be written as:

"oy = &R (FR by — “pr+ Oprr) = GR(FR (Tpye — 0p) — “pr + Cpr + fRD)  (212)
=Tppy (213)

That means, the system will have the the same target feature measurements even given the distance

disturbance. Hence, with the disturbance to target position, we can write the disturbed error states
as:

XI X[ _0
B, “Brs o
507 507 03
¥=|To|= Tg =%+ | of |OP=%+ N& op (214)
G5, Gz GRS T
/pT PT + T p I_T“A"J
T {IT’ T{’T + I_TL:JJ 6]) _13
7D . TPy —dp | -
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6 Observability Analysis - Motion Model 3

6.1 Measurement Jacobians

Based on motion model 3, the measurement Jacobians can be written as:

H; 8@;

H, = |Hy| = |92
Z3

Hj 0%

The Jacobians of the measurement to the environmental feature H; can be written as:

H, 0z1 [azl 071 0n__Oh }

T ox L% 9%Bss 0zl 9Thg
where we have:

1 [z 0 -1z
H- — fso - “fs
Cl= T3 [ 0 IZfS —nys

fs
071 - . R -
Frale HoGR (|9, — “PrJ§R 050 T3]
X1
071 I A
—— =H RI
957, cigRI3
55
% = 03x9
o%§
071
=0
Tpr

The target feature measurement Jacobians Hs can be written as:

Ozy [0 030 03y 0
H2 = 9% = [85(1 6Gf’fs 85(5?) 8T13ft:|
where we have:
Iz I
Zp 0 — wft]
Hoo = — A
2 IZJ%t [ 0 szt _nyt
07z . . R A
v HootR [L(ZRT s — (1 — br)) J§R 0349 —I3]
0Z9
— =03
aprs
02 NP
_(3) =Hea(R [“IRT[TDs] 0351 I3 0342
0%,
0% _ He,LRIRT
TPy

The target representative point measurement Jacobians can be written as:

0z [@ 07y 0zg 7 }

Hy =25 =[x 2% o) 7o

RPNG-2018-OBSTT
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(216)

(217)

(218)
(219)

(220)

(221)

(222)

(223)

(224)
(225)

(226)

(227)

(228)
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where we have:

1 Tzp 0 —lip
Hes = ]2% 0 IéT _IQT (229)
921 _ IR (G G5 ) IGR
9%, =HesgR [[(“Pr — Pr) JfR 0349 03] (230)
0Z3
=0 231
Cpsy (231)
073
o (03 0351 I3 O3x2] (232)
0X,
073
=0 233
Tpp (233)
6.2 State Transition Matrix
The total system state transition matrix can be written as:
®; O 0 0
0 & 0 0
3B = e (234)

o o &Y o
0 0 0 &

Note that ®;, ®;, and P, are the same as previous sections. We still need to solve the target

state transition matrix @g? ). We first linearize the related state evolution functions based on model

3, and get:

56 = —0, | e300 + ez, + [ L. ] [”"”] (235)
O1x2| [Nw,
‘ [ [
“br=—LRT[ |0, |]007 +ERT |5, | + LR esn,. (236)
0 0

The linearized system can be written as:

_ [~ es] e3 03  O3x1 O3y ]|
00T 01«3 0 01«3 0 0 601
:Z'g) = GIL)T = —gRTL f)y J 03><1 03 ERTel gRTeg Gf)T
T, 0 T3,
T, 01x3 0 Oixs 0 0 T,
01x3 0  Oix3 0 0 |
[012 ] O3x1  Ozx1  Ozxq Ogsr | | 02
1x2 Ny
n O1x2 04 . AlT 0 0 NTwz (237)
O3x2  O3x1 R'es 03x1 03x1 N
01><2 01 0 1 0 Ny
L 01><2 01 0 0 1 1L nTy |
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From the linearized system, we can get the state transition matrix ®,

3)

evolution as:

[ 0. |es] e3 03 031 03x1 ]
O1x3 0 Oix3 0 0 P P2 P13 Py D5
3 e R ) P Py Paz Py Pos
‘I’T = —gRTL IA)y J 03><1 03 gRTel ERTGQ (I)gl ‘1)32 ‘1’33 @34 @35 (238)
0 Py Py Py3 Py Py
013 0  O1x3 0 0 P51 P52 Pz Py Pss
| O1x3 0  Oix3 0 0 ]
Therefore, we can define the state transition matrix as:
P71 Pri2 03 03x1 O3x1
) O1x3 1 O1x3 O 0
;) = | Pra1 Pr3p Iz Py Prss (239)
01x3 0  Oix3 1 0
013 0 Oix3 O 1
where we have:
@ _ TlcR 24
T = 75 (240)
¢
By = / 7 Rdres (241)
to
®r5 = —[“vr(t)|ER (242)
_ ¢
®rsp = —[“vr(t)] | § Rdres (243)
to
®r31 = —|“pr, — “P1 ] R (244)
t s
Bry=— [ |“vr(s)] %Rdeseg (245)
to to
¢
<I>T34 = gT Rdrel (246)
¢
+
‘I>T35 = gr Rd’i‘eg (247)
to
Therefore, the target state transition matrix can be written as:
[ %R fti ;’f Rdres 03 03x1 O3x1 |
@) 01x3 1 01x3 0 0
. . - t ¢ ¢
(I)T = | — LGka — GpTOJ%)R — fto LGVT(S)J j;‘/f) %r Rdese3 Ig fto %_RdTel j;/o %r RdT62
01x3 0 01x3 1 0
i O1x3 0 O1x3 0 1 ]
(248)
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6.3 Observability Matrix

With abuse of notation, the k’th block of the observability matrix can be written as:

M® = Hy, 3 (1, 0)
b, 0 0 0
0

o o &Y o

0 0 0 &
Ho LR 03 03

= 03 Hoo LR 03

03 03 HestR

M1 Mz Miz My Mys
My Moy Moz Moy Mos
M3 Ms3, M3z Mszy Mg

Then, we can solve this matrix row by row. The first row of this matrix can be denoted as:

M7
My7
\Y BV

Mg
Mg
Mg

Mg
Mg
Mg

M; 10
Mo 10
M3 10

M 11
Mo 11
M3 11

M; 12
Mo 12
M3 12

1
M = [“pss — “pr )i R® 111 — @151 = [“Pyrs — “Pry — “vioOts + QGg&iJ[GOR

Miz = |“pss — “pr | R® 112 — P50

M3 = —®;53 = —I361;

My = —Pys4
M5 = —1I3
Mg =13

M7 = Mg = My,12 = 03
Mig = My 10 = My,11 = 03x1

RPNG-2018-OBSTT
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The second row of this matrix can be described as:

My, = {%@RTﬁft —“py, + GﬁTkJiR‘I’I11 — P51

A . . . 1 ~
= {%CRTpft + Gka — Gpjo — GVIO(Stk + ingtiJ%R

Mo = L%C}:{Tf)ft — by, + GﬁTkJﬁR¢112 — ®5

Moz = — P53 = —1I361;

Moy = —Prs4
Mos = —1I3
My = 03

My7 = —%RLTﬁfd P11+ Prs1 = L—%RTﬁﬁ —Spr, + GﬁTOJ%R

Mas = =7 R|TPse] ®r12 + ®rso

t
G
My 1o = Pr34 = / 7. Rdre;
to

¢
M1 = Pr35 = / %Rdﬂ%

to

~

Mz12 =GR
The third row of this matrix can be described as:
Mz = |~“pr, + “brJ§ R® 11 — @151 = |91, — by

Msz = [~“py, + b1 | R® 112 — B1so
Mazz = —® 153 = —1I361;

Msy = — P54
Mjs = —1I3
Mj3s = 03
Ms; = &3 = [~ pry, + b1 | R
Mg = P32
Msg = I3
t
Ms3 10 = Pr3s = %RdTe1
.
M3 11 = Pr3s = t %RdTez
0
M3 12 = 03

RPNG-2018-OBSTT
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Similarly, based on the constant angular velocity 7w, and linear velocity 7 v, and Tvy assumption,
we can have that:

cos (w,0t) —sin (w,0tx) O
PR = |sin (&.6t;)  cos(@:0t;) 0 (285)
0 0 1
" ¢t [cos(wy(m—t)) —sin(w.(r—1t)) 0
<I’T12:/ %Rdfeg:/ sin (Wy(7 —t))  cos(w,(r—t)) 0| dres = ezdty (286)
to to 0 0
¢ ot ¢ [cos (w,07)
B340, = / f Rdreiw. =% R / P Rdre;. =R sin (©,07) | drw, (287)
to to to 0
—sin ((,Z)z(stk) R
= TOR — | cos(w,0t) | +ex | = %R (Ig - %R) e (288)
0
t R + ) t —Sin ((.:)2(57')
By, = / ¢ Rdres, =R / PRdrew. = 7R cos (W,07) | drdv, (289)
to to to 0
R cos (W, 0ty) A X
=GR [sin(@.0ty) | —er | =GR <§2R - 13) el (290)
0
Myresw, = |— %R Prt — Spr. + GIAJTOJ%IA{E?,WZ (291)
= —ZR|"Dse)dzes — [“Pr, — “Pry JT, Resd. (292)
= -0 R|Tpp)i.es — |“Pr, + TR / PR vdr — “pr, |G Res. (293)
=-¢R|" R (PR -1 R ~ R (PR-T R
= - Pjilw.es + L T, 3 e2JT0 es’ 0, |7 3 elJT es” Oy
(294)
—%C].:A{{Tf)fd (21263 + %RelTﬁz + %CRGQT@y - %)RelT’lA)z — gORGQT@y (295)
Therefore, we can rewrite the equation as:
MY = Hy ) (k,0) (296)
HolR 03 03
= 03 HcgéR 03 X
03 03 HeosbR
My My Loty My I3 I 03 O3x1 03 O3x1 031 O3
M1 My —I36t;, Moy —I3 03 \Y D A Mo I3 Moo Moy %R
Ms; Msy —Isdty Msy —I3 03 |-“pr +pr )R Mg Is Mz Msi 03
(297)

The unobservable directions N®) span the right null space of the observability matrix M), that is:
MOGING) = 0. Based on the derivation of the observability matrix, we can have the unobservable
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directions as:

QRGg 03 03x1

03x1 03 03
—1%¥1,)% 03 031
03«1 03 03x1

—1%pr, /% Iy 03x1
—1%pss/%g I3 03x1

3) _ [n®) (3) 371 _
N™ = N7 Nyj NgR]— _TiRGg 0y e (298)
0, 03 0
—9pn, )% s 03x1
0 0143 Uy
0, O1x3 — U
0351 05 |Tpsi)es]

However, If without the measurement of the target representative point, the system will have
additional 3 unobservable directions related to the target representative point position as:

. T T
O1x15 O1x3 O1x3 01 (%Re;;) 0, 0; —ej

3 T R
NE:I))T: 01><15 01><3 01><3 01 (%)Rez) —W, 01 —e; (299)

AT
O1x15 O1x3 Oixz 0y (%Rm) 0 @. —ef

(3)

6.4 Geometrical Interpretation - Verification of Ny
G

We assume there is a small angle 6 change to the orientation, then, the disturbance to the state
can be written as:

GR=TRER = (I; — |es]00) GR (300)

T =ERTps = (I3 — le3]00) Ty =~ Tpy + [T psi) €30 (301)
/ ! vy

Tvp =L RTvy = (I3 — |e308)) Tvp = Tvp + |Tvresdd = Tvp + | —v, | 66 (302)
0

Similar to previous sections, the target feature measurements and the target representative point
measurements will remain the same:

"pje =GR (FR"psi— Opr + pr) = (R (FRERT R p —“pr+pr)  (303)
~ oy (304)
Tpr = &R (“pr — “pr) = (R (“pr — “pi) (305)
= 'pr (306)
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Hence, the disturbed error states can be written as:

~/ _

X ~
% G%I [ O18x1 |
Prys Pfs o
007 507 + e30 0?
T ~ T ~
=~/ w @ ~ i (3)
GPTI GPT le R ( )
r (o Vg + ﬁy59 g
"' T35, — 0,60 —0s
Uy Uy Uz T e
_T,f)ft_ _Tf)ft + LTIA)ftJeg(se_ —L pftJ 3

6.5 Geometrical Interpretation - Verification of Ng’l))

If we disturb the target position by dp along the direction of %f{eg, then we will have:

“pr = “pr + § Resdp (308)
Tpr = &R (Cpr — “pr) = e30p (309)
Tpp=1R ("pst — e30p) (310)

Similar to previous sections, the target feature measurements will remain the same. Hence, the
disturbed error state can be written as:

%] T X7 _ _
G/ G= 018><1
pfs Pfs 0351
607 007 03X1
T ~ T ~ X
- @ @ _ G A
X = ~ — ~ A~ = X —|— Re (S 311
“pr “pr + ¢ Resdp o 3| P (311)
T’,ﬁ T,f)
x - 0
T/~ T~
Uy . v e
TPy Pt — €30p - -

Follow the same way, if we disturb the target position by dp along the direction of gR627 then we
will have the disturbed state as:

“pr = “pr + {Readp (312)
Tpr =ER (“pr — “pr) = exdp (313)
T/pft = %/R (Tpft — egép) (314)
Ty = ?R (TVT + |w.e3]e2dp) (315)

Similarly, the target feature measurements will remain the same. Hence, the disturbed error state
can be written as:

- ~ 5 _
XI X7 0 -
G/ G = 18x1
pfs Dfs 03x1
007 001
T’&; Tc:) 03><1
oS! _ = G A
X' = - = | - =X+ Res | 0 316
GPT’ “pr + $Reydp To_w 2 1)
T 6:)3 T’Dz - d}z(sp 0 :
T"" T~
Uy . v ey
U] L TPp—e2dp ) -
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Again, if we disturb the target position by dp along the direction of gRel, then we will have the
disturbed state and error states as:

G 317

pr = “pr + $Reidp )
Tor =ER (“pr — “pr) = e1dp 318)
T/Pft = %,R (Tpft - e15p) )

)

Ty = %'R (TVT + szegjelép)

(
(
(319
(320

Similarly, the target feature measurements will remain the same. Hence, the disturbed error state
can be written as:

X7 [ X1 i "0
- - 18x3
Gp‘/fS prS OX
8607 867 3
T’GJ T 03
A e ) — %+ |GRei | s 321
* “pr “br + FRexdp X | dher| oF (321)
T/,a T,l'} 0
, g @
5, T8y, + @.0p ?
T ~ T~ . 5 L —€1 |
" Pyt L~ Pyft —e€30p |

7 Summary and Discussion

Given motion model 1 (constant Gy and constant Tw), with static feature, target feature, and
representative point measurements, the system will have at least 7 unobservable directions related
to global yaw, global IMU position “p;, and the target orientation :(F;R. The first 4 unobservable
directions are inherited from VINS [2]. If measurements of the target’s representative point are
unavailable (due to occlusion), the system will have one more unobservable direction related to the
representative point position along the rotation axis of Tw. The standard and extra unobservable
directions related to the target can be respectively written as:

.
N = (05 05 T (")’ 05 05 ("be))] (322)
T
. T
N(clg,T:[lels 01x3 O1x3 O1x3 (%RT&J> 01x3 (—TGJ)T} (323)

For motion model 2 (constant “vy and constant Tw), with all measurements, the system will
also have at least 7 unobservable directions, which have the same geometric interpretation as those
of model 1. Similarly, without representative point measurements, the system will have 3 additional
unobservable directions related to the full 3D position of the representative point. The standard
and extra unobservable directions related to the target can be respectively written as:

T

NEE = (005 05 T ("))’ 05 ("vr))" ("bse))] (324)
T
N(GZP),T:[Osxw 03 03 (%R)T (T@)) " —13] (325)

For motion model 3 (planar motion with constant w,, v,, and v,), with all measurements, unlike
with the above two models, the target’s roll and pitch become observable and the system has at least
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5 unobservable directions where 4 are inherited from VINS and 1 is related to target orientation
yaw. Without the representative point measurements, similar to model 2, the system will also gain
additional 3 unobservable directions related to the full 3D position of the representative point. The
standard and extra unobservable directions related to the target can be respectively written as:

-
3 N N . T
Néf){ = [01><15 O1x3 e;;r 01 O3x1 Uy —Ug (LTpftJGS) } (326)
A T T
O1x15 O1x3 Oixz 0y (%Reg) 0, 0, —ej
3 L \T
NE;I))T = |0ix15 Oix3 Oix3 0Oy (%Reg) —w, 0] —eg (327)

Ghaa ) T
O1x15 O1x3 Oi1x3 O (T0R91> 01 w. —ef

Based on these observability analysis results, it can be seen that VILTT systems will have at
least 4 unobservable directions inherited from VINS which correspond to the initial global yaw
and global IMU position, while additional unobservable directions depend on the chosen target
motion model. In addition, it is not trivial to choose an appropriate representative point that will
be frequently measured. A representative point that is occluded frequently or cannot be tracked
reliably will make the system suffer from the introduction of additional unobservable directions.
On the other hand, unobservable parameters can yield simpler initialization schemes as the initial
value of these parameters can be freely chosen. For example, in model 1 and 2, the initial target
orientation can be arbitrarily chosen due to its unobservability, while for model 3, the orientation
initialization procedure needs to be carefully addressed based on measurements.

Table 1: Summary for unobservable directions of VILTT with the 3 proposed motion models. The number before
the unobservable direction indicates its dimension.

Motion Model All Measurements Without Representative Point
(1) Global yaw

Model 1 (1) Global yaw (3) Global IMU sensor position
Constant Cv (3) Global IMU position (3) Target orientation SR
T (3) Target orientation LR (1) Representative point position
Constant * w
= 7 in total along rotation axis
= 8 in total

(1) Global yaw

(3) Global IMU position
(3) Target orientation LR
= 7 in total

Model 2
Constant T'v
Constant Tw

(1)
(3) Global IMU position
E ; Target orientation LR

Model 3 (1) Global yaw

Planar Motion (3) Global IMU position
Constant vy, vy (1) Target orientation yaw
Constant w, = 5 in total

= 8 in total
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