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Abstract—As sensor calibration plays an important role in
visual-inertial sensor fusion, this paper performs in-depth in-
vestigation of online self-calibration for robust and accurate
visual-inertial state estimation. To this end, we first conduct
complete observability analysis for visual-inertial navigation
systems (VINS) with full calibration of sensing parameters, in-
cluding IMU/camera intrinsics and IMU-camera spatial-temporal
extrinsic calibration, along with readout time of rolling shutter
(RS) cameras (if used). We study different inertial model variants
containing intrinsic parameters that encompass most commonly
used models for low-cost inertial sensors. With these models,
the observability analysis of linearized VINS with full sensor
calibration is performed. Our analysis theoretically proves the
intuition commonly assumed in the literature – that is, VINS
with full sensor calibration has four unobservable directions,
corresponding to the system’s global yaw and position, while all
sensor calibration parameters are observable given fully-excited
motions. Moreover, we, for the first time, identify degenerate mo-
tion primitives for IMU and camera intrinsic calibration, which,
when combined, may produce complex degenerate motions. We
compare the proposed online self-calibration on commonly-used
IMUs against the state-of-art offline calibration toolbox Kalibr,
showing that the proposed system achieves better consistency and
repeatability. Based on our analysis and experimental evaluations,
we also offer practical guidelines for effectively performing online
IMU-camera sensor self-calibration for VINS in practice.

Index Terms—Sensor calibration, self-calibration, visual iner-
tial systems, state estimation, observability analysis, degenerate
motions

I. INTRODUCTION

Due to the decreasing cost of integrated inertial/visual
sensor rigs, visual-inertial navigation system (VINS) – which
fuses high-rate inertial readings from an IMU and images of
the surrounding environment from a camera – has gained great
popularity in 6 degree-of-freedom (6-DoF) motion tracking for
mobile devices and autonomous vehicles [1], such as micro
aerial vehicles (MAV) [2], self-driving cars [3], unmanned
ground vehicles (UGV) [4], [5] and smart phones [6], [7].
Many efficient and robust VINS algorithms have been devel-
oped in recent years, either based on filtering [6], [8]–[11] or
batch least-squares optimization [12]–[16].

There are many factors which attribute to VINS perfor-
mance, such as visual feature tracking, velocity initialization
and sensor calibration. Among them, robust and accurate
sensor calibration – including the rigid transformation be-
tween sensors (spatial calibration), time offset between IMU-
camera (temporal calibration), image line readout time for
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rolling shutter (RS) cameras, and IMU/camera intrinsics – is
crucial, especially when plug-and-play visual-inertial sensor
rigs with widely available off-the-shelf low-cost IMUs and
RS cameras are used. In addition, sensor configuration itself
can be changed slowly due to extended usage, sensor re-
placement, non-rigid sensor mounting, mechanical vibrations,
environmental effects such as varying temperature, humidity,
and among others. For example, IMU biases and intrinsics
suffer from temperature and humidity changes [17], and rigid
transformation between IMU and camera can vary if the sensor
is replaced, reassembled or subjected to vibration. As such,
online sensor self-calibration in VINS has attracted significant
research efforts in recent years [6], [7], [11], [18]–[20], due
to its potential to handle poor prior calibration or calibration
changes, which can degrade estimation accuracy in the case
where these calibrations are blindly treated to be true.

System observability analysis for VINS with online IMU-
camera [21]–[23] or IMU/camera intrinsic [19], [24] calibra-
tion has also been carried out to show that these calibration
parameters can be identified given fully excited motions.
System observability can also be leveraged to improve mo-
tion planning for robust self-calibration [25]. Recent research
efforts [18], [19] have investigated degenerate motions (e.g.,
planar motion or one-axis rotation) that might cause certain
calibration parameters unobservable. However, comprehensive
degeneracy analysis for VINS with full calibration parameters
– including IMU/camera intrinsics, IMU-camera rigid trans-
formation, temporal time offset, and camera RS readout time
– is still missing in the existing literature. In this paper, we
seek to bridge this significant gap.

Blindly performing online calibration is risky, as in most
cases domain knowledge on specific motions and prior dis-
tribution choices are needed to ensure calibration can con-
verge consistently [26]. In the meantime, existing research
efforts [18], [19], [27] have also identified degenerate motions
that cause online self-calibration to fail. Most approaches on
VINS sensor self-calibration are limited to either handheld or
trajectory segments involving rich motion information [17],
[26]. This paper deeply focuses on degenerate motions that
impact the deployment of VINS on mobile robots which
typically have constrained motions, when jointly estimating
IMU/camera intrinsics, IMU-camera spatial-temporal calibra-
tion, and RS readout time.

Our recent work [19] performed observability analysis for
monocular VINS with only IMU intrinsic calibration (includ-
ing scale and axis-misalignment for gyroscope and accelerom-
eter, but without g-sensitivity) and identified their degenerate
motions. In this work, building upon these results, we develop
an accurate and robust monocular VINS estimator with full



self-calibration, while extending that observability analysis to
visual-inertial self-calibration systems and performing degen-
erate motion analysis of all calibration parameters.

Specifically, to highlight the difference from our prior con-
ference publication [19], in this paper, we have incorporated
full calibration parameters including g-sensitivity in IMU
models, camera intrinsics, and readout time of RS cameras,
all of which are missing in [19]. We have performed extensive
numerical studies of IMU model variants with g-sensitivity
on four typical trajectories in simulations. We also thoroughly
evaluate the proposed method using both the public bench-
marking datasets [28] and our own datasets, capturing both
fully-excited and degenerate motions for online calibration.
Additionally, we perform a fair comparison to Kalibr [29] for
the first time, in order to further validate the accuracy and
convergence of the proposed online self-calibration.

In particular, the main contributions of this work include:
• An efficient filter-based visual-inertial estimator capable

of performing self-calibration for all spatial-temporal
extrinsic and intrinsic calibration parameters.

• We perform a comprehensive observability and degen-
eracy analysis for the proposed visual-inertial models
and, for the first time, identify the degenerate motions
that cause IMU and camera intrinsic parameters to be
unobservable.

• Extensive simulations and real-world experiments are
performed to verify the parameter convergence of the
estimator with online self-calibration under fully-excited
6-DoF motion and a series of identified degenerate mo-
tions of practical significance. Additionally, we show that
degenerate motions can and do have a significant negative
impact on the performance of the estimator, leading to a
series of recommendation guidelines.

II. RELATED WORK

Extensive works have studied online or offline IMU and
camera calibration for VINS [1]. The related works can be
divided into the following three categories:

A. IMU Intrinsic Calibration
Generally, the gyroscope and acceleration biases are needed

for accurate inertial modeling. It is a common practice to
estimate biases online in VINS such as [30], [22], [12] and [8].
Besides these biases, the IMU intrinsic parameters – including
the scale correction and axis misalignment for gyroscope and
accelerometer, the rotation from gyroscope or accelerometer
frame to IMU frame, and the g-sensitivity – also need to
be calibrated offline or online, especially for low-cost inertial
sensors. Xiao et al. [31] improved the IMU pre-integration
[13] to incorporate the IMU intrinsic parameters in a keyframe
based VINS algorithm for online self-calibration. Jung et
al. [32] studied IMU intrinsic calibration within multi-state
constrained Kalman filter (MSCKF [8]) by using a stereo
camera and an IMU sensor, where they also examined the
inertial calibration results under planar and random motions.

Building upon our prior work [19], in which we have
investigated online IMU intrinsic calibration with the minimal
sensor configuration of a single IMU and a monocular camera

and compared the performance of four different IMU intrinsic
model variants in VINS, in this work, we perform online self-
calibration and study 18 different IMU intrinsic model variants
which can encompass or be equivalent to most published
IMU models for inertial navigation. Comprehensive analysis
of degenerate motions, which can cause online self-calibration
to fail, is also provided.

B. Joint IMU-Camera Self-Calibration
Extensive works have studied joint sensor calibration in

VINS. For instance, Mirzaei et al. [21] proposed to use an
extended Kalman filter (EKF) for the spatial calibration (i.e.
the rigid transformation between the camera and IMU) of
VINS and performed an observability analysis. They showed
that the rigid transformation is not fully observable under
one-axis rotation. However, the camera intrinsics or IMU-
camera time offset are not calibrated and chessboards are
needed for calibration. Furgale et al. [29] developed the well-
known calibration toolbox: Kalibr, a continuous-time spline-
based batch estimator, for IMU-camera extrinsics, time offset
and camera intrinsics calibration. Rehder et al. [33] extended
Kalibr to incorporate IMU intrinsics (including scaling pa-
rameters, axis misalignments, and g-sensitivity). Huai et al.
[34] further extended the above work to calibrate readout time
for RS cameras. The above mentioned works are all offline
methods and need calibration targets. In addition, they do not
support full-parameter joint optimization of camera intrinsics
with other calibration parameters. Schneider et al. [26] reduced
optimization complexity for IMU-camera calibration by select-
ing the most informative trajectory segments for calibration.

Many recent VINS algorithms perform online IMU-camera
joint calibration. Qin et al. [14] is able to perform online IMU-
camera extrinsic and time offset calibration with natural scene
to improve the system robustness and accuracy. Guo et al. [7]
proposed to use linear pose interpolation to model RS effects
and calibrate readout time. Eckenhoff et al. [11] proposed a
generalized polynomial based pose interpolation for readout
time calibration of RS cameras. However, the IMU intrinsics
were not considered in the above systems. The closest works
to ours are by Li et al. [17] and Huai et al. [35] which
included IMU-camera extrinsics, time offset, rolling-shutter
readout time, camera and IMU intrinsics into the state vector
of VINS. The former is built with MSCKF [8] based visual-
inertial odometry while the latter uses a key-frame sliding-
window filter based VINS. Both systems can calibrate all these
parameters. However, no system observability was present in
[17] and degenerate motion analysis was still missing from
[35]. Instead, system observability and degenerate motion
analysis are the focus of our work along with more extensive
multi-run statistical validations of the calibration results. In
addition, we also evaluate different IMU model variants which
have appeared in literature.

C. Observability, Degeneracy and Noise
Observability analysis plays an important role in state es-

timation [36], especially when the system incorporates biases
and calibration parameters [18], [19], [27], [37], [38]. Her-
nandez et al. [38] studied VINS observability with biases (not



noise) as unknown input to examine the bounds for a set of the
indistinguishable trajectories. The observability analysis in this
paper is performed based on the corresponding deterministic,
noise-free systems (e.g., [39]), in order to understand whether
the states are estimable given measurements. We wish to
identify whether these calibration parameters can be calibrated
with visual-inertial measurements, and also identify degenerate
motions, which might cause calibration to fail. In addition, ob-
servability properties can be leveraged for consistent estimator
design [40], [41]. Kelly et al. [22] studied the IMU-camera
self-calibration and performed nonlinear observability analysis
using Lie derivative to show that the rigid transformation
between IMU-camera is observable given random motions.
Guo et al. [23] simplified the proof and analytically showed
that the spatial calibration between the IMU and RGBD
camera is observable. Li et al. [27] analyzed the identifiability
for IMU-camera temporal calibration given the measurements
of a monocular visual-inertial system and identified a set
of degenerate motions that can cause the IMU-camera time
offset to become unobservable. Tsao et al. [24] built the
observability matrix for linearzied VINS and showed that the
camera intrinsics (only including focal length and principal
points) is observable. However, none of the above mentioned
works ever performed and verified the observability analysis
with full-parameter calibration for VINS.

In our previous work [18], we built the observability ma-
trix for VINS using the linearized system with IMU-camera
spatial-temporal extrinsic calibration and and identified four
degenerate motions that can cause these parameters to become
unobservable. In our recent work [19], we performed observ-
ability analysis for monocular VINS with only IMU intrinsic
calibration. Building upon these, we perform full-parameter
calibration – IMU intrinsics (including g-sensitivity), camera
intrinsics and the IMU-camera spatial-temporal calibration
(including RS readout time) – for VINS with a single IMU
and a monocular RS camera. Comprehensive observability
analysis and degenerate motion identification are performed
for these calibration parameters. Both simulations and real
world experiments are also leveraged to verify our analysis.

To our understanding, it is difficult, if not impossible,
to theoretically quantify the effects of measurement noise
on system observability. Noise is often treated as random,
uninformative input for VINS (and other robotic systems).
In general, since VINS is a nonlinear estimation problem
and often uses a linearized estimator (e.g., EKF or window
BA), large noise can cause large linearization errors (but
not observability), thus degrading its estimation performance,
even overturning its convergence. Specifically, in VINS, the
image and IMU noises affect its performance. In our recent
work [42], the impact of image noise on the VINS accuracy
was investigated, showing that the smaller the image noise
is, the higher the estimation accuracy is. In this paper, we
study the IMU noise impact on calibration, by using different
quality IMUs of small and large noises. The calibration results
confirm our observability analysis that the IMU calibration can
converge to reference value if given fully excited motions. It is
also evident from these results that the IMU noises affect the
calibration; the lower the IMU noise is, the better calibration
convergence can be achieved.

Fig. 1: An IMU sensor composed of accelerometer and gy-
roscope. The base “inertial” frame {I} can be determined to
coincide with either accelerometer frame {a} or gyroscope
frame {w}. {C} represents camera frame.

III. SENSING MODELS

A. IMU Intrinsic Model

We define an IMU as containing two separate frames of
reference (see Fig. 1) : gyroscope frame {w}, accelerometer
frame {a}. The base “inertial” frame {I} should be determined
to coincide with either {w} or {a}. Different from the model
in [26], we define the raw angular velocity reading wωm from
the gyroscope and linear acceleration readings aam from the
accelerometer as follows1:

wωm = Tw
w
I R

Iω +Tg
Ia+ bg + ng (1)

aam = Ta
a
IR

Ia+ ba + na (2)

where Tw and Ta are invertible 3×3 matrices which account
for the scale imperfection and axis misalignment for {w}
and {a}, respectively. w

I R and a
IR denote the rotation from

the gyroscope frame and acceleration frame to base “inertial”
frame {I}, respectively. Note that, if we choose {I} coincides
with {w}, then w

I R = I3. Otherwise, a
IR = I3. bg and ba are

the gyroscope and accelerometer biases, which are modeled as
random walks. ng and na are the zero-mean Gaussian noises
contaminating the measurements. Tg denotes the g-sensitivity
to account for the effects of acceleration to the gyroscope
readings. Note that as in [17] and [26], we do not consider
the translation between the gyroscope and accelerometer, as it
is often negligible or safely excluded from the state vector by
assuming {I} coincides with {a} frame (because any point in
the IMU as a rigid body shares the same angular velocity).
We can write the true (or corrected) angular velocity Iω and
linear acceleration Ia as:

Iω = I
wRDw

(
wωm −Tg

Ia− bg − ng

)
(3)

Ia = I
aRDa (

aam − ba − na) (4)

where Dw = T−1
w and Da = T−1

a . In practice we calibrate
Da, Dw, I

aR (or I
wR) and Tg for convenience. We only

calibrate either I
wR or I

aR in Eq. (3) and Eq. (4) since
the base “inertial” frame coincides with one of these sensor
frames. If both I

wR and I
aR were calibrated, it would make

the rotation between the IMU and camera unobservable due
to over parameterization (validated in Section VIII-D).

1) Intrinsic model variants: Given the general model [see
Eqs. (3) and (4)], different parameters can be chosen to be
estimated and, this results in different IMU intrinsic models
(see [17], [26], [31], [32], [45], [46]). In the following, we
will present and evaluate these variants.

1Note that the IMU measurement model is based on the “flat earth”
assumption, instead of the “rotating earth” model [8], [43], [44], where the
Coriolis effect is considered.



TABLE I: IMU model variants and parameters.

Model Dim. Dw Da
I
wR I

aR Tg

imu0 0 - - - - -

imu1 15 Dw6 Da6
I
wR - -

imu2 15 Dw6 Da6 - I
aR -

imu3 15 Dw9 Da6 - - -
imu4 15 Dw6 Da9 - - -

imu5 18 Dw6 Da6
I
wR I

aR -
imu6 24 D′

w6 D′
a6

I
wR - Tg9

imu11 21 Dw6 Da6
I
wR - Tg6

imu12 21 Dw6 Da6 - I
aR Tg6

imu13 21 Dw9 Da6 - - Tg6

imu14 21 Dw6 Da9 - - Tg6

imu21 24 Dw6 Da6
I
wR - Tg9

imu22 24 Dw6 Da6 - I
aR Tg9

imu23 24 Dw9 Da6 - - Tg9

imu24 24 Dw6 Da9 - - Tg9

imu31 9 - Da9 - - -
imu32 9 Dw9 - - - -
imu33 6 - - - - Tg6

imu34 9 - - - - Tg9

• imu1: includes the rotation I
wR, 6 parameters for Dw

(and thus denoted by Dw6) and 6 parameters for Da

(denoted by Da6), as they assume the upper-triangular
structure:

D∗6 =

d∗1 d∗2 d∗4
0 d∗3 d∗5
0 0 d∗6

 (5)

• imu2: includes the rotation I
aR instead, Da6 and Dw6,

which is the model used by [26].
• imu3: combines imu1’s Dw6 and I

wR into a general
3 × 3 matrix containing 9 parameters in total. Thus, we
estimate the upper-triangle Da6 and a full matrix Dw9

as:

D∗9 =

d∗1 d∗4 d∗7
d∗2 d∗5 d∗8
d∗3 d∗6 d∗9

 (6)

• imu4: is an extension of imu2 with a combination of
the Da6 and I

aR. Similarly, in this variant we estimate
the upper-triangle Dw6 and a full matrix Da9.

• imu1A (A = 1, · · · , 4): combines imuA with a 6-
parameter g-sensitivity Tg6 as:

Tg6 =

tg1 tg2 tg4
0 tg3 tg5
0 0 tg6

 (7)

• imu2A (A = 1, · · · , 4): combines imuA with a the 9-
parameter g-sensitivity Tg9 as:

Tg9 =

tg1 tg4 tg7
tg2 tg5 tg8
tg3 tg6 tg9

 (8)

• imu5: contains Dw6, Da6, I
wR and I

aR. This is a
redundant over-parameterized model which will be used
to verify that I

wR and I
aR should not be calibrated

simultaneously.
• imu6: contains D′

w6, D′
a6, I

wR and Tg9. This is equiv-
alent to the scale-misalignment IMU model [33] used in
Kalibr [29]. D′

∗6 assumes the lower triangular structure:

D′
∗6 =

d∗1 0 0
d∗2 d∗4 0
d∗3 d∗5 d∗6

 (9)

• imu3A (A = 1, · · · , 4): models a subset of the param-
eters of the general model while assuming the others
known; that is, only calibrates Da9 in imu31, Dw9 in
imu32, Tg6 in imu33, and Tg9 in imu34.

These different models are summarized in Table I. For pre-
sentation clarity, imu22{Dw6, Da6, I

aR, Tg9} is used in the
ensuing system derivations and analysis.

B. Camera Model

If a 3D point feature is captured by a camera, the visual
measurement function is:

zC =

[
u
v

]
+ nC (10)

where nC denotes the measurement noise; u and v are the
distorted image pixel coordinates:[

u
v

]
= hd (zn,xCin) (11)

where zn = [un vn]
⊤ represents the normalized image pixel

and hd(·) maps the normalized image pixel onto the image
plane based on the camera intrinsic parameters xCin and
camera model. While a pinhole model with radial-tangential
(radtan) or equivalent-distant (equidist) distortion can be used,
the radtan model is used in the ensuing derivations (see [29],
[47]). Specifically, the radtan xCin and hd(·) are given by:

xCin =
[
fu fv cu cv k1 k2 p1 p2

]⊤
(12)[

u
v

]
=

[
fu 0
0 fv

] [
ud

vd

]
+

[
cu
cv

]
(13)[

ud

vd

]
=

[
dun + 2p1unvn + p2(r

2 + 2u2
n)

dvn + p1(r
2 + 2v2n) + 2p2unvn

]
(14)

where r2 = u2
n + v2n; d = 1 + k1r

2 + k2r
4; fu and fv are

the camera focal length; {cu, cv} denotes the image principal
point; k1 and k2 represent the radial distortion coefficients
while p1 and p2 are tangential distortion coefficients. Nor-
malized image pixel un and vn is obtained by projecting 3D
feature Cpf = [Cxf

Cyf
Czf ]

⊤ into 2D image plane:

zn = hp(
Cpf ) ≜

1
Czf

[
Cxf
Cyf

]
(15)

Cpf = ht(
I
GR,GpI ,

C
I R,CpI ,

Gpf ) (16)

≜ C
I R

I
GR(Gpf − GpI) +

CpI

where {CI R,CpI} represents the rigid transformation between
the IMU and camera frames.

1) Temporal calibration: Global shutter (GS) and rolling
shutter (RS) are two common variants of camera sensing
modes. GS cameras expose all pixels at a single time instance,
while, typically lower-cost, RS cameras expose each row
sequentially. As shown by [7], it may lead to large estimation
errors if this RS effect is not taken into account when using
RS cameras for VINS. Additionally, the camera and IMU
measurement timestamps can be incorrect due to processing
or communication delays, or different clock references. To ad-
dress these, we model both the time offset and camera readout
time to ensure all measurements are processed in a common
clock frame of reference and at the correct corresponding
poses. Specifically, td denotes the time offset between IMU
and camera timeline, and tr denotes the RS readout time
for the whole image. If t denotes the time when the pixel



is captured, the measurement function for pixels captured in
the m-th row (out of total M rows) is:

Cpf = ht(
I(t)
G R,GpI(t),

C
I R,CpI ,

Gpf ) (17)

≜ C
I R

I(t)
G R

(
Gpf − GpI(t)

)
+ CpI

tI = tC + td (18)

t = tI +
m

M
tr (19)

where tI is the IMU state time corresponding to the captured
image time tC when the first row of the image is collected.
If the readout time tr = 0, then the camera is actually a
GS camera and all rows are a function of the same pose.
{GI(t)R,GpI(t)} is the IMU global pose corresponding to the
camera measurement time t.

IV. VINS MODELS WITH SELF-CALIBRATION

A. State Vector

The state vector x of the proposed visual-inertial system in-
cludes the inertial navigation state xI , IMU intrinsic parameter
xin, IMU-camera spatial-temporal extrinsic calibration xIC ,
camera intrinsic calibration xCin and feature positions xf .

x =
[
x⊤
I x⊤

IC x⊤
Cin x⊤

f

]⊤
(20)

xI =
[
x⊤
n | x⊤

b | x⊤
in

]⊤
(21)

=
[
I
Gq̄

⊤ Gp⊤
I

Gv⊤
I | b⊤

g b⊤
a | x⊤

in

]⊤
xin =

[
x⊤
Dw x⊤

Da
I
aq̄

⊤ x⊤
Tg

]⊤
(22)

xIC =
[
C
I q̄

⊤ Cp⊤
I td tr

]⊤
(23)

where I
Gq̄ denotes quaternion with JPL convention [48] and

corresponds to the rotation matrix I
GR, which represents the

rotation from {G} to {I}. GpI and GvI denote the IMU
position and velocity in {G}. xn denotes the IMU navigation
states containing the I

Gq̄, GpI and GvI . xb denotes the IMU
bias states containing bg and ba. {CI q̄,CpI} denotes the rigid
transformation between {C} and {I}. td and tr represent
the IMU-camera time offset and camera readout time. IMU
intrinsics, xin, contains xDw, xDa, xTg and I

aq̄, where xDw,
xDa and xTg are non-zero elements stored column-wise in
Dw, Da and Tg . We have:

xD∗ =
[
d∗1 d∗2 d∗3 d∗4 d∗5 d∗6

]⊤
(24)

xTg =
[
tg1 tg2 tg3 tg4 tg5 tg6 tg7 tg8 tg9

]⊤
(25)

for imu22{Dw6, Da6, I
aR, Tg9}. In this paper, x̂ denotes

the estimated value for state x and x̃ = x − x̂ is the error
state. We use the quaternion left multiplicative error defined by
q̄ ≈ [ 12δθ

⊤ 1]⊤⊗ ˆ̄q, where ⊗ denotes quaternion multiplication
[48]. Rotation error state is equivalent to the SO(3) error,
i.e., I

GR ≈ (I3 − ⌊δθ⌋)IGR̂. Note that ⌊v⌋ denotes the skew-
symmetric matrix [48] of the vector v.

B. Analytic Inertial Integration

The dynamics of inertial navigation state xI is (see [43]):
I
G
˙̄q =

1

2
Ω(Iω)IGq̄ , GṗI = GvI (26)

Gv̇I = I
GR

⊤Ia− Gg , ḃg = nwg , ḃa = nwa

where Ω(ω) =

[
−⌊ω⌋ ω
−ωT 0

]
, nwg and nwa are zero-mean

white Gaussian noises driving bg and ba, respectively, and
the known global gravity assumes Gg = [0 0 9.81]

⊤, while
the rest of the states have zero dynamics.

Based on our previous work [49], we compute the integra-
tion of IMU dynamics (26) from time step tk to tk+1:

Ik+1

G R = ∆R⊤
k
Ik
G R (27)

GpIk+1
= GpIk + GvIkδtk + Ik

G R⊤∆pk − 1

2
Ggδt2k (28)

Gv̂Ik+1
= Gv̂Ik + Ik

G R⊤∆vk − Ggδtk (29)

bgk+1
= bgk +

∫ tk+1

tk

nwgdτ (30)

bak+1
= bak

+
∫ tk+1

tk

nwadτ (31)

where δtk = tk+1 − tk, and the integration quantities are:

∆Rk ≜ Ik
Ik+1

R = exp

(∫ tk+1

tk

Iτωdτ

)
(32)

∆pk ≜
∫ tk+1

tk

∫ s

tk

Ik
Iτ
RIτadτds (33)

∆vk ≜
∫ tk+1

tk

Ik
Iτ
RIτadτ (34)

where exp(·) is the SO(3) matrix exponential [50]. Assuming
constant Ik ω̂ and Ik â within the time interval, we approximate
∆R̂k, ∆p̂k and ∆v̂k as:

∆R̂k ≃ exp
(
Ik ω̂δtk

)
(35)

∆p̂k ≃
(∫ tk+1

tk

∫ s

tk

Ik
Iτ
R̂dτds

)
· Ik â ≜ Ξ2 · Ik â (36)

∆v̂k ≃
(∫ tk+1

tk

Ik
Iτ
R̂dτ

)
· Ik â ≜ Ξ1 · Ik â (37)

where δτ = tτ − tk, Ξ1 and Ξ2 are defined as integration
components which can be evaluated either analytically [19]
or numerically using the Runge–Kutta fourth-order (RK4)
method. Ik ω̂ and Ik â are computed as (note that we drop the
timestamp k for simplicity):

Iω̂ = I
wR̂D̂w

wω̂, I â = I
aR̂D̂a

aâ (38)
wω̂ = wωm − T̂g

I â− b̂g ≜
[
wŵ1

wŵ2
wŵ3

]⊤
(39)

aâ = aam − b̂a ≜
[
aâ1

aâ2
aâ3
]⊤

(40)
where I

wR̂ = I3 for imu22{Dw6, Da6, I
aR, Tg9}.

C. Linearized System Model
The IMU integration components [see Eq. (32)-(34)] can be

linearized as:
∆Rk = ∆R̂k∆R̃k ≜ ∆R̂k exp

(
Jr(∆θ̂k)

Ik ω̃δtk

)
(41)

∆pk = ∆p̂k +∆p̃k ≜ ∆p̂k −Ξ4
Ik ω̃ +Ξ2

Ik ã (42)

∆vk = ∆v̂k +∆ṽk ≜ ∆v̂k −Ξ3
Ik ω̃ +Ξ1

Ik ã (43)
where Jr(∆θ̂k) ≜ Jr

(
Ik ω̂δtk

)
denotes the right Jacobian of

SO(3) [50]. The derivation and the definitions of Ik ω̃ and Ik ã
can be found in Appendix A. The integrated components Ξ3

and Ξ4 are defined as:

Ξ3 ≜
∫ tk+1

tk

Ik
Iτ
R⌊Iτa⌋Jr

(
Ikωδτ

)
δτdτ (44)

Ξ4 ≜
∫ tk+1

tk

∫ s

tk

Ik
Iτ
R⌊Iτa⌋Jr

(
Ikωδτ

)
δτdτds (45)



As such, the linearized error-state system for imu22 is:
x̃Ik+1

≃ ΦI(k+1,k)x̃Ik +GIkndk (46)

ΦI(k+1,k) =

 Φnn ΦwaHb ΦwaHin

06×9 I6 06×24

024×9 024×6 I24

 (47)

GIk =

ΦwaHn 09×6

06 I6δtk
024×6 024×6

 (48)

where ΦI(k+1,k) and GIk are the state transition matrix and
noise Jacobians for the inertial state xI dynamics; Hb, Hin

and Hn are Jacobians related to bias, IMU intrinsics and
noises, which can be found in Appendix A. ndk is the discrete-
time IMU noises, while Φnn and Φwa can be computed as:

Φnn =

 ∆R̂⊤
k 03 03

−Ik
G R̂⊤⌊∆p̂k⌋ I3 I3δtk

−Ik
G R̂⊤⌊∆v̂k⌋ 03 I3

, Φwa =

Jr(δθk)δtk 03

−Ik
G R̂⊤Ξ4

Ik
G R̂⊤Ξ2

−Ik
G R̂⊤Ξ3

Ik
G R̂⊤Ξ1


Without loss of generality, we consider a single 3D feature
Gpf in the state vector xf . Since there is zero dynamics for
xIC , xCin and xf , we can write the state transition matrix
for the whole state vector x as a block-diagonal matrix [see
Eq. (20)] as:

Φk+1,k = diag{ΦI(k+1,k), ΦIC , ΦCin, Φf} (49)
where ΦIC = I8, ΦCin = I8, and Φf = I3n.

D. Linearized Measurement Model
The comprehensive camera measurement model hC(·) is

composed of the distortion function hd(·) [see Eq. (11)], the
projection function hp(·) [see Eq. (15)] and the transformation
function ht(·) [see Eq. (17)]:

zC = hC(x) + nC (50)
= hd(zn,xCin) + nC (51)

= hd(hp(
Ckpf ),xCin) + nC (52)

= hd(hp(ht(
C(t)
G R,GpC(t),

Gpf )),xCin) + nC (53)
To perform observability analysis and build linearized state
estimators, we need to linearize this complicated visual mea-
surement model, which is given by:

z̃C ≃ HC x̃+ nC (54)
where z̃C ≜ zC−hC(x̂) and HC ≜ ∂z̃C

∂x̃ . We get the following
Jacobian matrix with the chain rule of differentiation:

HC =
[
∂z̃C

∂x̃I

∂z̃C

∂x̃IC

∂z̃C

∂x̃Cin

∂z̃C

∂x̃f

]
(55)

=
[
Hpf

∂C p̃f

∂x̃I
Hpf

∂C p̃f

∂x̃IC

∂z̃C

∂x̃Cin
Hpf

∂C p̃f

∂x̃f

]
where Hpf

= ∂z̃C

∂z̃n

∂z̃n

∂C p̃f
. All the pertinent matrices ∂C p̃f

∂x̃I
,

∂C p̃f

∂x̃IC
, ∂C p̃f

∂x̃f
and Hpf

are computed in Appendix B.

V. OBSERVABILITY ANALYSIS

Observability analysis plays an important role in determin-
ing whether or not the states are estimable from given measure-
ments. Observability analysis can also be leveraged to identify
degenerate motions that might negatively affect estimation
performance [40], [51]. While the observability analysis of
VINS has been well studied [39], the observability properties
and degenerate motions of VINS with full self-calibration –
in particular, IMU and camera intrinsic calibration – have not
been sufficiently investigated.

To this end, following [39], we construct the observabil-
ity matrix for the deterministic (noise-free) linearized VINS
models as follows:

O =


O1

O2

...
Ok

 =


HC1Φ1,1

HC2Φ2,1

...
HCkΦk,1

 (56)

The k-th row of O is written as:
Ok =

[
Mn Mb Min MIC MCin Mf

]
(57)

where Mn, Mb, Min, MIC , MCin and Mf represent the
matrix block relating to the IMU navigation, biases, IMU in-
trinsics, IMU-camera extrinsics, camera intrinsics and feature
states [see Eq. (20)], with detailed derivations presented in
Appendix C. We now look to find the unobservable subspace
N such that ON = 0. The following results can be proved:

Lemma 1. Given fully excited motions, monocular VINS
system with online calibration of IMU intrinsics xin, camera
intrinsics xCin and IMU-camera spatial-temporal parameters
xIC (including RS readout time) has 4 unobservable direc-
tions, which relate to the global yaw and global translation.

N =


I1
G R̂Gg 03

−⌊Gp̂I1⌋Gg I3
−⌊Gv̂I1⌋Gg 03

046×1 046×3

−⌊Gp̂f⌋Gg I3

 (58)

Proof. See Appendix D.

A. Remarks

It is clear from Appendix C that the terms Min [see
(106)] and MIC [see (107)] of the observability matrix –
corresponding to IMU intrinsics xin and IMU-camera spatial-
temporal parameters xIC (including RS effects) – contain wω̂,
aâ, Iω̂ and Gv̂I , which represent the sensor platform motion.
This implies that Min and MIC are motion-dependent and
time-varying. From the numerical simulations of VINS with
a monocular RS camera and IMU as shown in Fig. 3, we can
confirm that all these calibration parameters are observable and
can be estimated given fully-excited motions. Note that the
other IMU intrinsic model variants besides imu22 presented
here are also observable given fully-excited motions, while
their derivations and simulation results are omitted for brevity.

Similarly, the camera intrinsics, MCin, are mainly affected
by the environmental structure (the u and v measurements of
the 3D point features). The camera intrinsic parameters are
observable for most motion cases, even for under-actuated
motions (e.g., planar motion), which is validated by our
simulation results shown in Fig. 3-7. Note that these results
also hold for the equidist camera distortion model, which
however are again omitted here but can be found in our
companion technical report [52].

VI. DEGENERATE MOTION ANALYSIS

While the observability properties found in the preceding
section hold with fully-excited motions, this may not always
be the case in reality. As such, identifying degenerate motion
profiles, which cause extra unobservable directions in the state
space, is of practical importance. As the degenerate motion



analysis of VINS navigation state has been studied in the prior
work [41], [53]–[55], we here focus only on motions that cause
the calibration parameters to become unobservable.

A. IMU Intrinsic Parameters

A selection of basic motion types, which can cause the IMU
intrinsics to become unobservable for imu22{Dw6, Da6, I

aR,
Tg9}, are identified. Note that similar results hold for other
IMU model variants.

1) Degenerate motions for Dw: As the gyroscope related
IMU intrinsics Dw are coupled with gyroscope bias bg and
the angular velocity readings wω from the IMU, we have the
following results:

Lemma 2. If any component of wω (including wω1, wω2,
wω3) is constant, then Dw will become unobservable.

Proof. If ww1 is constant, dw1 will be unobservable with
unobservable directions as:

Nw1 =
[
01×9 (D̂−1

w
I
wR̂

⊤e1)
⊤ww1 01×3 1 01×42

]⊤
(59)

If ww2 is constant, dw2 and dw3 will be unobservable with
unobservable directions as:

Nw2 =

[
01×9 (D̂−1

w
I
wR̂

⊤e1)
⊤ww2 01×4 1 01×41

01×9 (D̂−1
w

I
wR̂

⊤e2)
⊤ww2 01×5 1 01×40

]⊤
(60)

If ww3 is constant, dw4, dw5 and dw6 are unobservable with
unobservable directions as:

Nw3 =

01×9 (D̂−1
w

I
wR̂

⊤e1)
⊤ww3 01×6 1 01×39

01×9 (D̂−1
w

I
wR̂

⊤e2)
⊤ww3 01×7 1 01×38

01×9 (D̂−1
w

I
wR̂

⊤e3)
⊤ww3 01×8 1 01×37


⊤

(61)

2) Degenerate motions for Da: Similarly, as aa can affect
the observability property for the accelerometer related IMU
intrinsics Da, we have:

Lemma 3. If any component of aa (including aa1, aa2 and
aa3) is constant, then Da will become unobservable.

Proof. If aa1 is constant, da1, pitch and yaw of I
aR are

unobservable with unobservable directions as:

Na1 =



012×1 012×1 012×1

D̂−1
a e1

aa1 D̂−1
a e2d̂a1

aa1 D̂−1
a e3d̂a1d̂a3

aa1
06×1 06×1 06×1

1 0 0

0 d̂a3 0

0 −d̂a2 0

0 d̂a5 d̂a6d̂a3
0 −d̂a4 −d̂a2d̂a6
0 0 d̂a2d̂a5 − d̂a4d̂a3

03×1 −I
aR̂e3

I
aR̂(e1d̂a2 + e2d̂a3)

028×1 028×1 028×1



(62)

TABLE II: Degenerate motions for imu22{Dw6, Da6, I
aR,

Tg9} intrinsic parameters.

Motion Types Dim. Unobservable Parameters

constant wω1 1 dw1

constant wω2 2 dw2, dw3

constant wω3 3 dw4, dw5, dw6

constant aa1 3 da1, pitch and yaw of I
aR

constant aa2 3 da2, da3, roll of I
aR

constant aa3 3 da4, da5, da6

constant Ia1 3 tg1, tg2, tg3
constant Ia2 3 tg4, tg5, tg6
constant Ia3 3 tg7, tg8, tg9

If aa2 is constant, da2, da3 and roll of I
aR are unobservable

with unobservable directions as:

Na2 =



012×1 012×1 012×1

D̂−1
a e1

aa2 D̂−1
a e2

aa2 D̂−1
a e3d̂a3

aa2
06×1 06×1 06×1

0 0 0
1 0 0
0 1 0
0 0 0

0 0 d̂a6
0 0 −d̂a5

03×1 03×1 −I
aR̂e1

028×1 028×1 028×1



(63)

If aa3 is constant, da4, da5 and da6 are unobservable with
unobservable directions as:

Na3 =

01×12 (D̂−1
a e1)

⊤aa3 01×9 1 01×33

01×12 (D̂−1
a e2)

⊤aa3 01×10 1 01×32

01×12 (D̂−1
a e3)

⊤aa3 01×11 1 01×31


⊤

(64)

3) Degenerate motions for Tg: As Ia (the acceleration in
IMU frame) can affect the observability property for the g-
sensitivity Tg , by close inspection of special configurations
for Ia, we have:

Lemma 4. If any component of Ia (including Ia1, Ia2 and
Ia3) is constant, then Tg will become unobservable.

Proof. If Ia1 is constant, tg1, tg2 and tg3 are unobservable
with unobservable directions as:

Ng1 =
[
03×9 I3

Ia1 03×18 −I3 03×25

]⊤
If Ia2 is constant, tg4, tg5 and tg6 are unobservable with
unobservable directions as:

Ng2 =
[
03×9 I3

Ia2 03×21 −I3 03×22

]⊤
If Ia3 is constant, tg7, tg8 and tg9 are unobservable with
unobservable directions as:

Ng3 =
[
03×9 I3

Ia3 03×24 −I3 03×19

]⊤
4) Remarks: It is evident from the above analysis that the

IMU intrinsic calibration is sensitive to sensor motion and
thus all 6 axes need to be excited to ensure all of them can be
calibrated. These findings are summarized in Table II. It should
be noted that any combination of these primitive motions is
still degenerate and causes all related parameters to become
unobservable (e.g., planar motion with constant acceleration).
It is also important to mention that it is common that I

aR ≃ I3



TABLE III: Degenerate motions for IMU-camera spatial-
temporal calibration.

Motion Types Unobservable Parameters Observable

pure translation CpI
C
I R, td, tr

one-axis rotation CpI along rotation axis C
I R, td, tr

constant Iω td and C
I R, trconstant Iv CpI along rotation axis

constant Iω td and C
I R, trconstant Ga CpI along rotation axis

and Da ≃ I3 for most IMUs, and thus, aâ ≃ Ia. As such, the
degenerate motions for Da will also lead to the unobservability
of Tg , and vice-versa. Again, this degenerate motion analysis
can be extended to other model variants, which is omitted here
for brevity.

B. IMU-Camera Spatial-Temporal Parameters
In our previous work [18] which investigated four

commonly-seen degenerate motions of VINS with only IMU-
camera spatial-temporal calibration, we here show these de-
generate motions hold true for VINS with full-parameter
calibration:

Lemma 5. The IMU-camera spatial-temporal calibration will
become unobservable, if the sensor platform undergoes the
following degenerate motions:

• Pure translation
• One-axis rotation
• Constant local angular and linear velocity
• Constant local angular velocity and global linear accel-

eration

Proof. If the system undergoes pure translation (no rotation),
the translation part CpI of the spatial calibration will be unob-
servable, residing along the following unobservable directions:

Npt =
[
03×45 I3 03×10 −(GI1R̂

I
CR̂)⊤

]⊤
(65)

If the system undergoes random (general) translation but with
only one-axis rotation, the translation calibration CpI along
the rotation axis will be unobservable, with the following
unobservable direction:

Noa =
[
01×45 (CI R̂

I k̂)⊤ 01×10 −(GI1R̂
I k̂)⊤

]⊤
(66)

where Ik is the constant rotation axis in the IMU frame {I}.
If the VINS undergoes constant local angular velocity Iω and
linear velocity Iv, the time offset td will be unobservable with
the following unobservable direction:

Nt1=
[
01×42 (CI R̂

Iω̂)⊤ −(CI R̂
I v̂)⊤ −1 01×12

]⊤
(67)

If the VINS undergoes constant local angular velocity Iω and
global acceleration Ga, the time offset td will be unobservable
with the following unobservable direction:

Nt2 = (68)[
01×6

Gâ 01×30 (CI R̂
Iω̂)⊤ 01×3 −1 01×9 −(Gv̂I1)

⊤
]⊤

Table III summarizes these degenerate motions for com-
pleteness. It is important to note that unlike td (whose Jacobian

is mainly affected by the sensor motion), the Jacobian for RS
readout time, tr, is also affected by the feature observations
due to the term m

M [see Eq. (99)], and is observable, as
hundreds of features can be observed from different image
rows during exploration.

C. Camera Intrinsic Parameters

As mentioned before, the camera intrinsics are mainly
affected by the observed feature structure. By investigating
special feature configurations, we find the following degener-
ate case for camera calibration when using a radtan distortion
model:

Lemma 6. The camera intrinsics will become unobservable
if the following conditions are satisfied:

• The features keep the same depth relative to the camera
(e.g., Czf is constant in value).

• The camera moves with one-axis rotation and the rotation
axis is defined as Ck = e3.

Proof. The camera focal length fu, fv , the camera distortion
model k1, k2, p1 and p2 will become unobservable along with
the unobservable direction:

NCin =
[
01×47 fu fv 01×2 2k1 4k2 p1 p2

Gk⊤
]⊤

(69)

with Gk = G
I0
R̂I

CR̂
CkCzf .

As an example, if a ground vehicle is performing planar
motion with an upward-facing camera only observing features
from the ceilings, the above two conditions will hold and
thus the camera intrinsics with radtan distortion model will
be unobservable. Nevertheless, since it is common to observe
hundreds of features, it might be rarely the case that every
feature maintains the same relative depth, Czf , to the camera,
and thus, this degeneracy may not happen in practice if
features are tracked uniformly throughout images.

It is interesting to point out that this degenerate case does
not hold for camera models with equidist distortion. By noting
that the following equidist model dislikes the radtan distortion
model (14), it is not difficult to verify that the above radtan
unobservable subspace (69) is no longer valid if using the
equidist model:[

ud

vd

]
=

[
un

r θ(1 + k1θ
2 + k2θ

4 + p1θ
6 + p2θ

8)
vn
r θ(1 + k1θ

2 + k2θ
4 + p1θ

6 + p2θ
8)

]
(70)

where θ = atan(r). For example, in an extreme case, if
distortion parameters are all zeros (i.e., k1 = k2 = p1 =
p2 = 0), images with the radtan model become distortion-free,

i.e.,
[
ud

vd

]
=

[
un

vn

]
, while the equidist model still possesses

the radical distortion, i.e.,
[
ud

vd

]
=

[
un

r θ
vn
r θ

]
. In fact, we are

unable to analytically find a similar unobservable subspace
for the camera intrinsics with equidist distortion even when
all features have the same relative depth.

VII. VISUAL-INERTIAL ESTIMATOR DESIGN

Leveraging our MSCKF-based VINS estimator [10], the
proposed estimator extends the state vector xk at time step
k to include the current IMU state xIk , a sliding window of



cloned IMU poses xc, the camera calibration parameters (xIC

and xCin) and feature state xf .

xk =
[
x⊤
Ik

x⊤
c x⊤

IC x⊤
Cin x⊤

f

]⊤
(71)

xc =
[
Ick−1

G q̄⊤ Gp⊤
Ick−1

. . .
Ick−n

G q̄⊤ Gp⊤
Ick−n

]⊤
(72)

where xI , xIC , xCin and xf are the same as Eq. (20), xc

denotes the sliding window containing n cloned IMU poses
with index from ck−n to ck−1. Note that the IMU intrinsics
xin are contained in the current IMU state xIk .

As xc, xIC , xCin and xf have zero dynamics, we only
propagate the estimate and covariance of the next IMU state
based on Eq. (27)-(31) and Eq. (46), which all incorporate the
IMU intrinsics xin.

As in [6], we handle the IMU-camera time offset td when
we clone the “true” IMU pose corresponding to image mea-
surements. For example, if we clone the current IMU pose
{IkG q̄,GpIk} into the sliding window as {IckG q̄,GpIck} using:

G
Ick

R ≃ G
Ik
R exp(Ik ω̂t̃d) (73)

GpIck ≃ GpIk + GvIk t̃d (74)

with the linearized clone Jacobians as:[
δθIck
Gp̃Ick

]
≃
[
I3 03

Ik ω̂
03 I3

Gv̂Ik

] δθIkGp̃Ik

t̃d

 (75)

Both xin and td will be updated through correlations when
visual feature measurements are present.

We utilize first-estimates Jacobians (FEJ) [6], [36] to pre-
serve the system unobservable subspace and improve the
estimator consistency. We directly model the camera intrinsic
and IMU-camera spatial calibration through the visual mea-
surement functions [see Eq. (50)] and update them in the filter
with Jacobians in Eq. (55).

For the RS cameras, the feature measurements from dif-
ferent image rows are captured at different timestamps. This
indicates that we cannot directly find a cloned pose in the
sliding window for {GI(t)R,GpI(t)} shown in Eq. (17). There-
fore, for the readout time calibration, we model the feature
measurement affected by RS effects through pose interpolation
[7], [11]. For example, if the feature measurement is in the
m-th row with total M rows in an image, we can find two
bounding clones ci−1 and ci based on the measurement time t.
Hence, the corresponding time t is between two clones within
the sliding window, that is: tck−n ≤ tci−1 ≤ t ≤ tci ≤ tck. We
can then find the virtual IMU pose {GI(t)R,GpI(t)} between
clones ci− 1 and ci with:

λ = (tI +
m

M
tr − tci−1)/(tci − tci−1) (76)

G
I(t)R = G

Ici−1
R exp

(
λ log

(
G
Ici−1

R⊤G
IciR

))
(77)

GpI(t) = (1− λ)GpIci−1 + λGpIci (78)

To summarize, feature measurements which occur at differ-
ent rows of the image can be related to the state vector defined
in Eq. (71) through the above linear pose interpolation. This
measurement function can then be linearized for use in the
EKF update [56]. Note that a higher-order polynomial pose
interpolation is used by [11] and can be utilized if necessary.

TABLE IV: Simulation parameters and prior σs that perturba-
tions were drawn from.

Parameter Value Parameter Value

IMU Scale 0.006 IMU Skew 0.006
Rot. atoI (rad) 0.008 Rot. wtoI (rad) 0.008

Gyro. Noise (rad s−1
√
Hz−1) 1.6968e-04 Gyro. Bias (rad s−2

√
Hz−1) 1.9393e-05

Accel. Noise (ms−2
√
Hz−1) 0.002 Accel. Bias (ms−3

√
Hz−1) 0.003

Focal Len. (px/m) 1.0 Cam. Center (px) 1.0
d1 and d2 0.008 d3 and d4 0.002

Rot. CtoI (rad) 0.010 Pos. IinC (m) 0.010
Readout Time (ms) 0.5 Timeoff (s) 0.005

Cam Freq. (Hz) 20 IMU Freq. (Hz) 400

VIII. SIMULATION ANALYSIS

The proposed estimator is implemented within OpenVINS
[10], which contains a visual-inertial simulator and a real-
time modular sliding window EKF-based VINS estimator. The
basic configurations for our simulator are listed in Table IV.
To simulate RS visual bearing measurements, we follow the
logic presented by [6] and [11]. Static environmental features
are first generated along the length of the trajectory at random
depths and bearings. Then, for a given imaging time of features
in view, we project each into the current image frame using
the true camera intrinsic and distortion model to find the
corresponding observation row. Given this projected row and
image time, we can find the pose at which that RS row should
have been exposed. We can then re-project this feature into
the new pose and iterate until the projected row does not
change (which typically requires 2-3 iterations). We now have
a feature measurement which occurs at the correct pose given
its RS row. This measurement is then corrupted with white
noise. The imaging timestamp corresponding to the starting
row is then shifted by the true IMU-camera time offset td to
simulate cross-sensor delay.

It is important to note that in the following we only present
the most prominent results due to space limits, while the
comprehensive simulation and experimental results can be
found in our companion technical report [52].

A. Simulation with Fully-Excited Motion

We first perform a simulation with full calibration on a fully-
excited trajectory. Note that the perturbations added to initial
calibration are similar or larger than real-world situations.
For example, the perturbations to IMU scale scalars can be
as large as 0.02, which is even larger than the real world
results (see Fig. 14). The perturbations to each component
of camera translation can be as large as 2.5 cm, which is
also challenging. The trajectory, shown in the left of Figure
2, is designed based on tum corridor sequence of TUM
visual-inertial dataset with full excitation of all 6 axes and
provides a realistic 3D hand-held motion [57]. From the results
shown in Figure 3, the estimation errors and 3σ bounds for
the calibration parameters (including imu22{Dw6, Da6, I

aR,
Tg9} and radtan) can converge quite nicely, verifying that the
analysis for general motions holds true. We plot results from
six different realizations of the initial calibration guesses based
on the specified priors, and it is clear that the estimates for all
these calibration parameters are able to converge from different
initial guesses to near the ground truth. Each parameter is
able to “gain” information since their 3σ bounds shrink. These



Fig. 2: Simulated trajectories. Left: tum corridor with fully excited 3D motion; Middle left: tum room with 1 axis rotation and
3D translation; Middle right: sine 3d with constant centripetal acceleration along local IMU x-axis (red-axis); Right: udel gore
planar motion with constant z and only yaw rotation. The green triangle and red circle denote the beginning and ending of
these trajectories, respectively.

Fig. 3: Evaluation on tum corridor with fully excited motion (using imu22{Dw6, Da6, I
aR, Tg9} and radtan). 3σ bounds

(dotted lines) and estimation errors (solid lines) for six different runs (different colors) are shown.

results verify our Lemma 1 that all these calibration parameters
are observable given a fully-excited motion.

B. Sensitivities to Perturbations
The next question is how robust the system is to the initial

perturbations and whether the use of online sensor calibration
enables improvements in robustness and accuracy. Shown in
Figure 4, for each of the different calibration parameters we
perturb with different noise level (following Gaussian distri-
bution with σ from x-axis of each plot) on the tum corridor
trajectory (note that we also change the initial prior provided to
the filter as its distribution has changed). For example, when
perturbing the IMU accelerometer scale parameter, the da1,
da3 and da6 from the diagonal of Da6 are all perturbed. The
perturbed values might be as large as the 3σ indicated from
the x-axis.

We can see that the proposed estimator is relatively invariant
to the initial inaccuracies of the parameters and is, in general,

able to output a near constant trajectory error. A filter, which
does not perform this online estimation, has its trajectory
estimation error quickly increase to non-usable levels. It is
interesting to see that even small of perturbations to calibration
parameters can cause huge trajectory errors which further
verifies the motivations to perform online calibration.

C. Degenerate Motion Verification

We now verify the identified degenerate motions and present
simulation results for three special motions. In all simulations,
we perform full-parameter calibration. The trajectories2 shown
in Figure 2 are created as follows:

• One-axis rotation with a modified tum room trajectory,
see middle left, which removes roll and pitch changes and
creates a yaw-only dataset but still with 3D translation.

2A demo video can be found at: https://youtu.be/MP4ADABtqXQ



Fig. 4: Absolute trajectory errors (ATE) using imu22{Dw6, Da6, I
aR, Tg9} and radtan on the tum corridor with full 3D

motion given different levels of perturbation. Only the calibrated parameter was perturbed while other parameters were initialized
to their true values and not estimated. ATE above eight meters were not reported and can be considered as divergence.

Fig. 5: Evaluation on tum room with one-axis rotation using
imu22{Dw6, Da6, I

aR, Tg9}. Note that the estimation errors
and 3σ bounds for dw1, dw2, dw3 and the IMU-camera position
calibration along the rotation axis can not converge.

Fig. 6: Evaluation on the sine 3d with constant acceleration
along x-axis using imu22{Dw6, Da6, I

aR, Tg9}. The esti-
mation errors and 3σ bounds for da1, pitch and yaw of I

aR
cannot converge. Note that tg1, tg2 and tg3 also converge very
slow.

• Constant local Iax with modified sine 3d, see middle
right, for which we have a constant global pitch and make
the global yaw rotation tangent to the trajectory in the x-y
plane (gives constant centripetal acceleration along local
IMU x-axis).

• Planar motion with modified udel gore, see right, which
removes roll and pitch changes and all poses are projected

to the x-y plane by removing z (planar motion in the
global x-y plane).

1) One-axis rotation motion: Shown in Figure 5, the first 3
parameters (dw1, dw2 and dw3) for Dw do not converge at all
(the 3σ bounds are almost straight lines), which matches our
analysis, see Table II. These parameters should be unobserv-
able in the case of one-axis rotation with wwx (roll) and wwy

(pitch) are constant. Additionally, the translation between IMU
and camera does not converge either. The x-error of the IMU-
camera translation even diverges reinforcing the undesirability
of degenerate motions and verifies the analysis in Table III.

2) Constant local acceleration motion: The results shown
in Figure 6, where we have enforced that the local acceleration
along the x-axis, ax, is constant. The da1, and pitch and yaw
of I

aR does not converge, thus validating our analysis shown
in Table II. Note that in the simulation, we have set I

aR ≃ I3
and Da ≃ I3. Hence, aâ ≃ Ia and Iax is also near constant.
Therefore, three terms of g-sensitivity (tg1, tg2 and tg2) are
also unobservable and converge much slower than other terms.

3) Planar motion: Shown in Figure 7, with one-axis rota-
tion (yaw axis) for planar motion the dw1, dw2 and dw3 for
Dw and the IMU-camera translation are unobservable and do
not converge. Since the Iaz is constant, the last three terms
of g-sensitivity (tg7, tg8 and tg9) become unobservable and
cannot converge. Both these results verify our analysis shown
in Tables II and III. Additionally, this trajectory is quite smooth
with small excitation of linear acceleration, hence, the terms
of Da and I

aR in general converge much slower than the fully
excited motion case.

D. Simulated over Parametrization

We now look to investigate the impact of poor choice
of calibration parameters which over parameterizes the IMU
intrinsics. The imu5{Dw6, Da6, IwR, IaR} model, see Table I,
is an over parametrization since we calibrate both 9 parameters
for gyroscope and accelerometer. This causes the IMU-camera
orientation to be affected since the intermediate inertial frame
{I} is not constrained. If we change the relative rotation from
{I} to {C}, then this perturbed rotation can be absorbed
into the {a} to {I} and {w} to {I} terms. Thus, it means
we have an extra 3-DoF for rotation not constrained by
our measurements. We compare imu5{Dw6, Da6, I

wR, I
aR}



Fig. 7: Evaluation on udel gore with planar motion using imu22{Dw6, Da6, I
aR, Tg9} and radtan. With planar motion, the

estimation errors and 3σ bounds of dw1, dw2, dw3, tg7, tg8, tg9 and the IMU-camera position cannot converge. Due to lack
of motion excitation, the parameters of Da and I

aR converge much slower than the other motion cases.

Fig. 8: Camera to IMU orientation errors when using IMU
imu2{Dw6, Da6, I

aR} (left) and the over parameterized
imu5{Dw6, Da6, I

wR, I
aR} (right). Note that only the IMU

intrinsics and relative pose between IMU and camera were
online calibrated.

model to its close equivalent imu2{Dw6, Da6, I
aR} model

in Figure 8. We can see that even though the trajectory fully
excites the sensor platform, the convergence of C

I R becomes
much worse if we calibrate IMU-camera extrinsics and all
18 parameters for imu5{Dw6, Da6, I

wR, I
aR} even when the

same priors and measurements are used. This further motivates
the use of minimal calibration parameters to ensure fast and
robust convergence of all states.

IX. REAL-WORLD EXPERIMENTAL VALIDATION ON TUM
RS VIO DATASETS

The proposed algorithm is first evaluated on the TUM RS
VIO dataset, which contains a time-synchronized stereo pair of
two uEye UI-3241LE-M-GL cameras (left: global-shutter and
right: rolling-shutter) and a Bosch BMI160 IMU [28]. When
collecting data, the cameras were operated at 20Hz while the
IMU operated at 200Hz and an OptiTrack system captured the
ground truth motion. The dataset is provided in both “raw”
and “calibrated” formats. The “calibrated” dataset has had

TABLE V: Averaged absolute trajectory errors (ATE) of 5
runs over all 8 sequences of the TUM RS VIO datasets with
full-parameter calibration.

ATE imu0 imu1 imu2 imu3 imu4

Ori. (deg) 72.994 2.574 2.679 2.590 2.205
Pos. (m) 363.610 0.092 0.094 0.093 0.076

ATE imu5 imu11 imu12 imu13 imu14

Ori. (deg) 3.418 2.422 2.778 2.510 2.524
Pos. (m) 0.149 0.074 0.098 0.075 0.084

calibrated IMU intrinsics pre-applied to the “raw” dataset.
We evaluate our proposed system by using the right (RS)
camera directly with the raw datasets, which has much noisier
measurements with varying sensing rates than the “calibrated”
ones. Hence, the raw datasets are more challenging compared
to the calibrated datasets. We re-calibrated the camera intrin-
sics and IMU-camera spacial-temporal parameters using the
raw calibration datasets. Note that we set the initial values for
Da, Dw, I

aR and I
wR as identity and Tg as zeros, while the

initial readout time for the whole RS image is set to 20ms as
prior calibration. All IMU intrinsic models listed in Table I
were run with and without RS calibration. The results are
presented in the following sections.

A. RS Self-Calibration

The results are shown in Figure 10 and 11, with and
without RS readout calibration, respectively. It is clear that
the systems without RS readout time calibration and without
IMU intrinsic calibration (imu0{no intrinsics}, imu31{Da9}
- imu34{Tg9}) are unstable and diverge with large pose
errors. With IMU intrinsic calibration (imu1{Dw6, Da6, IwR}
- imu24{Dw6, Da9, Tg9}) but without RS calibration, the
system still fails for certain datasets, while online readout
time calibration will greatly improve the system robustness
for RS cameras. The finally estimated RS readout time for
each image is around 30ms, which means given the image
resolution of 1280 × 1024, the row readout time should be



Fig. 9: IMU intrinsic evaluation of Bosch BMI160 IMU used in TUM Rolling Shutter VIO datasets using the proposed method
(blue, left) and Kalibr (magenta, right) relative to the “ideal” sensor intrinsics. Red + denotes outliers.

Fig. 10: Results on TUM RS VIO Dataset without readout time
calibration, with different IMU intrinsic models. The averaged
absolute trajectory errors (ATE) of 5 runs in degree (top) and
meters (bottom) are provided. Note that the camera intrinsics,
and IMU-camera spatial-temporal parameters are calibrated.

around 29 µs, which matches with values provided by the
camera manufacturer [28].

B. IMU Intrinsic Self-Calibration
We focus on the results in Figure 11 which has RS enabled.

It is clear from the performance of imu0{no intrinsics} that
the BMI160 IMU will cause large trajectory errors without
IMU intrinsic calibration, while performing intrinsic calibra-
tion will achieve accuracy more than an order of magnitude.
Table V shows the average error over all sequences for the 10
IMU models. It can be seen that the imu5{Dw6, Da6, I

wR,
I
aR} model which over parameterizes the intrinsics has worst
accuracy in both orientation and position trajectory estimates,
while the accuracy of the other models (imu1{Dw6, Da6,
I
wR} - imu4{Dw6, Da9}, imu11{Dw6, Da6, I

wR, Tg6}
- imu14{Dw6, Da9, Tg6})) is comparable to each other
(similar accuracy level). We further do an ablation study with
models imu31{Da9} - imu34{Tg9} to find the individual
impact of each of the IMU intrinsic parameters. We can
see that the imu32{Dw9} model, which estimates Dw9, has
large accuracy gains over the other four. This indicates that
the readings from gyroscope of BMI160 are very noisy. The
calibration of Dw9 dominates the performance of this VINS

Fig. 11: Results on TUM RS VIO Dataset with readout time
calibration, with different IMU intrinsic models. The averaged
absolute trajectory errors (ATE) of 5 runs in degree (top) and
meters (bottom) are provided. Note that camera intrinsics, and
IMU-camera spatial-temporal parameters are calibrated.

system. Through these results, we show that online IMU
intrinsic calibration can enhance both the system robustness
and accuracy.

C. Comparison to Kalibr Calibration

We run Kalibr’s offline calibration with scale-misalignment3

IMU model on 5 calibration datasets (see [57] and [28]) for
the Bosch BMI160 IMU and treat these results as reference
values when evaluating the proposed online calibration system.
The Kalibr calibration datasets were collected with the stereo
camera pair both operating in the global shutter mode along
with an AprilTag board [29]. By contrast, the proposed system
is run with only one camera of the above stereo pair — the
right camera, which is set as rolling shutter mode — without
AprilTag on the 8 data sequences but with the same IMU
sensor [28]. Note that imu6{D′

w6, D′
a6, I

wR, Tg9}, which
is equivalent to the scale-misalignment IMU model of Kalibr,
is used. For the evaluation, we directly report the estimation
errors of D′

w = (T′
w)

−1, D′
a = (T′

a)
−1 and w

I R = I
wR

⊤ for
the Kalibr and our proposed system.

3https://github.com/ethz-asl/kalibr/wiki/Multi-IMU-and-IMU-intrinsic-
calibration



As shown in Figure 9, even though we run on more
challenging datasets, our proposed system can still achieve
reasonable calibration results for D′

w, D′
a and Tg . The val-

ues of g-sensitivity Tg of the BMI160 IMU are generally
one or two orders smaller than the other IMU intrinsics in
magnitude. This matches the results presented in Figure 11,
for which the estimation errors of imu1{Dw6, Da6, I

wR}
- imu4{Dw6, Da9} (without g-sensitivity) are similarly to
those of imu11{Dw6, Da6, I

wR, Tg6} - imu14{Dw6, Da9,
Tg6}) (with 6-DoF g-sensitivity) and imu21{Dw6, Da6, I

wR,
Tg9} - imu24{Dw6, Da9, Tg9} (with 9-DoF g-sensitivity).
This means that the proposed system performance is less
sensitive to g-sensitivity, no matter 0, 6 or 9 parameterization.

The term values in scale-misalignment for gyroscope D′
w

are much larger than those of D′
a and Tg . This again confirms

that the calibration of D′
w dominates the performance.

X. REAL-WORLD EXPERIMENTAL VALIDATION ON
SELF-MADE VI-RIG

The proposed self-calibration system is further evaluated
on a self-made visual-inertial sensor rig (VI-Rig, shown in
Figure 12), which contains multiple IMU and camera sensors.
Specifically, it contains a MS-GX5-25, MS-GX5-35, Xsens
MTi 100, FLIR blackfly camera and RealSense T265 tracking
camera which contains an integrated BMI055 IMU along with
a fisheye stereo camera. All cameras are not rolling shutter to
ensure fair comparison against the baseline Kalibr [29] which
only supports IMU-camera calibration with global shutter
cameras. Total 10 datasets were collected with an AprilTag
board, on which both the proposed system and the Kalibr
calibration toolbox were run to report repeatbility statistics
and expected real-world performance of both systems. During
data collection, all 6-axis motion of VI-Rig were excited to
avoid degenerate motions for calibration parameters.

To provide a fair comparison, we modified the front-end
of the proposed system to directly and only use the same
AprilTag detection as Kalibr. Additionally, while the proposed
system was only run with one of the four IMUs and either the
Blackfly or left T265 Realsense camera, Kalibr used all the
available sensors to ensure the highest and most consistent
performance (4 IMUs and 3 cameras). The imu6{D′

w6, D′
a6,

I
wR, Tg9} model is used during evaluation, which is equivalent
to the scale-misalignment IMU model of Kalibr. We define
the “ideal” IMU sensor intrinsics as D′

w = D′
a = I3,

I
wR = I

aR = I3 and Tg = 03 if factory or offline calibration
has been pre-applied. Generally, these values are what the
users expect for a ready-to-use IMU, and are the initial values
that the proposed estimator starts from. The quality of each
IMU can be evaluated by how close the converged calibrated
values are to these “ideal” values.

A. IMU-Camera Spatiotemporal Extrinsics and Intrinsics

The convergence of camera related parameters are inves-
tigated. The results shown in Figure 13 demonstrate that
the proposed system is able to calibrate the spatial-temporal
parameters with both high repeatability and accuracy relative
to the offline Kalibr calibration baseline. Additionally shown is
the convergence of camera intrinsics estimated by the proposed

Fig. 12: Visual-Inertial Sensor Rig contains a MS-GX5-25
IMU, MS-GX5-35, Xsens MTi 100, FLIR Blackfly camera
and RealSense T265 tracking camera (containing an integrated
IMU and a fisheye stereo camera).

algorithm relative to the Kalibr static calibration results which
are fixed during their IMU-camera calibration.

B. IMU Intrinsic Parameters
As shown in Figure 14, the average calibration errors of

the proposed system are quite close to the results of Kalibr,
and the proposed system demonstrates better repeatability than
Kalibr, as our calibration errors have smaller variances and less
outliers. In general, concerning the IMUs presented throughout
the paper (see Figure 9 and 14), we have:

• The MS-GX5-25, MS-GX5-35 and Xsens MTi-100 IMU
are more close to “ideal” IMU than T265 IMU and
BMI160 IMU. This is reasonable since both the MicroS-
train and Xsens IMU are more expensive high-end IMUs
with likely more sophisticate out-of-factory calibration.

• For each IMU, the g-sensitivity terms are, in general,
much smaller than the other terms of the IMU intrinsic
model. This suggests that the g-sensitivity should not
have significant effects on system performance. This
is likely due to the levels of achievable acceleration
magnitudes in hand-held motions.

• The BMI160 IMU (Figure 9), has a much more sig-
nificant gyroscope calibration, D′

w, compared to its
accelerometer calibration and other IMUs. Thus the
BMI160 can see large accuracy gains from only calibrat-
ing D′

w, while for other IMUs, the calibration of D′
a

should be more impactful.

C. Timing Evaluation
The measurements from MS-GX5-25 IMU and the left cam-

era of T265 are run for timing evaluation on the 10 recorded
datasets. In order to get more realistic timing evaluation, no
AprilTags are detected and only the natural features tracked
from images are used. The average execution time of the
proposed system with online calibration is 22.4ms per frame,
which shows relatively small increases than 18.8ms, which is
the average running time without online calibration.

XI. REAL-WORLD EXPERIMENTAL VALIDATION OF
DEGENERATE MOTION DEMONSTRATION AND ANALYSIS

The proposed system is also evaluated on a collection of
real-world datasets which exhibit varying degrees of degen-
erate motions. The g-sensitivity is not estimated since it has
been shown that it is not significant for VINS performance.



Fig. 13: Evaluation of Kalibr and the proposed methods, while for camera intrinsics only the proposed is reported since Kalibr
fixes this during optimization. Kalibr (magenta, right in each group) was run with all cameras and IMUs available over 10
datasets, while the proposed system (blue, left) was run with either the Blackfly camera or left T265 fisheye and the MS-GX5-
25 IMU resulting in 10 runs for each. Red + denotes outliers.

Fig. 14: Comparison of the proposed method with imu6{D′
w6, D′

a6, I
wR, Tg9} and Kalibr relative to the “ideal” sensor

intrinsics. Kalibr (magenta, right in each group) was run with all cameras and IMUs available over 10 datasets, while the
proposed system (blue, left) was run with either the Blackfly camera or left T265 fisheye resulting in 20 runs. Red + denotes
outliers.

Note again that more real-world results can be found in our
companion technical report [52].

A. EuRoC MAV: Under-Actuated Motion

The EuRoC MAV dataset [58] contains a series of tra-
jectories from a MAV and provides 20Hz grayscale stereo
images, 200Hz inertial readings, and an external groundtruth
pose from a motion capture system. The proposed estimator
is run with just the left camera on each of the Vicon room
datasets and report the results in Table VI. It can be seen
that imu0{no intrinsics} model, for which IMU intrinsics is
not calibrated, outperforms the methods which additionally
estimate the IMU intrinsics. This makes sense since the IMU

intrinsics suffer from a large number of degenerate motions
which can be expected for the under-actuated MAV platform.
Additionally, we believe that this is specifically caused by the
MAV being unable to fully excite its 6-DoF motion for a given
small time interval and thus undergoes (nearly) degenerate
motions locally throughout the whole trajectory, hurting the
sliding-window filter.

In order to verify the above reasoning, we use the
groundtruth trajectories of EuRoc V1 02 and tum room1 (with
fully-excited motions as comparison) to simulate synthetic
inertial and visual feature measurements (see Section VIII)
and evaluate our system with these simulated data. Figure
15 shows four different runs with estimation errors and 3σ



TABLE VI: Absolute Trajectory Error (ATE) on EuRoC MAV Vicon room sequences (with units degrees/meters).

IMU Model V1 01 easy V1 02 medium V1 03 difficult V2 01 easy V2 02 medium V2 03 difficult Average

imu0 0.657 / 0.043 1.805 / 0.060 2.437 / 0.069 0.869 / 0.109 1.373 / 0.080 1.277 / 0.180 1.403 / 0.090
imu1 0.601 / 0.055 1.924 / 0.065 2.334 / 0.073 1.201 / 0.115 1.342 / 0.086 1.710 / 0.168 1.519 / 0.094
imu2 0.552 / 0.054 1.990 / 0.062 2.197 / 0.083 0.960 / 0.107 1.453 / 0.085 1.666 / 0.216 1.470 / 0.101
imu3 0.606 / 0.055 1.905 / 0.065 2.359 / 0.073 1.180 / 0.114 1.335 / 0.088 1.640 / 0.167 1.504 / 0.094
imu4 0.569 / 0.056 1.969 / 0.069 2.165 / 0.076 0.846 / 0.127 1.636 / 0.094 1.577 / 0.195 1.461 / 0.103

Fig. 15: Evaluation of the proposed system for Da with
tum room1 (left) and EuRoc V1 02 (right) trajectories using
imu2{Dw6, Da6, IaR}. 3σ (dotted lines) and estimation errors
(solid lines) for four different runs (different colors) are drawn.
The convergence of da4, da5 and da6 is poor for the EuRoc
V1 02 due to lack of motion excitation.

bounds for Da. It is clear that the motion of sensor on
the EuRoc V1 02 trajectory (right) is mildly excited within
local window, causing poor convergence of the Da with
relatively slower convergence of 3σ bounds as compared to the
tum room1 (left). This verifies that the online IMU intrinsic
calibration will benefit VINS with fully-excited motion (e.g.,
the tum room1 trajectory) and might not be a good option for
under-actuated motions such as the EuRoc V1 02 trajectory.

B. VI-Rig Planar Motion Datasets
We also evaluate on 4 datasets collected with VI-Rig (shown

in Figure 12) under planar motion. In this evaluation, MS-
GX5-25 and the left camera of T265 are used. When collecting
data, we put the VI-Rig on a chair and moved ensuring that
the VI-Rig is performing planar motion with global yaw as
rotation axis, which is also the y-axis (pointing downward)
of the camera. We calibrate all parameters using imu2{Dw6,
Da6, I

aR} and equidist when running the system. Since T265
is a global shutter camera, the readout time is zero.

The calibration results for the translation parameters CpI ,
time offset td, readout time tr and the Dw are shown in
Figure 16. All the temporal calibration can converge well
to the reference values based on offline calibration results of
Kalibr. Note that tr converges to almost zero as expected and
td converges from 15ms to 5ms with reference values as 7ms.
The final estimation errors are around 2ms, which is pretty
small. While the x and z components of CpI can also converge
well to the reference values with small standard deviations
(smaller than 4mm), the y component diverges with estimation
errors more than 5 cm and the standard deviation reach 3 cm
since it is along the rotation axis of the camera and hence,

unobservable. Since the system has only yaw rotation for the
IMU sensor, the dw1, dw2 and dw3 are also unobservable (see
Table II), and their calibration results diverge a lot compared to
those of dw4, dw5 and dw6. This result verifies our degenerate
motion analysis for IMU-camera and IMU intrinsic calibration.
As comparison, we also plot the online calibration results of
the proposed system running on another four datasets from
Section X with fully excited motions in Figure 17. We use the
same scale to plot the results for both Figure 16 and 17. It
is clear that all these calibration parameters (tr, td, CpI and
Dw) can converge much better in fully excited motions than
planar motion.

XII. DISCUSSION AND RECOMMENDATION

As learnt from the preceding extensive simulation analysis
and real-world experimental validations, we generally rec-
ommend online self-calibration for VINS, especially in the
following scenarios:

• Poor calibration priors are provided.
• Low-end IMUs or cameras are used.
• RS cameras are used.
• The sensor platform undergoes fully-excited motions.

Specifically, as shown in Figures 10 and 11, if starting with im-
perfect calibration, the system without online self-calibration
is highly likely to fail, as clearly demonstrated in Figure 4. In
comparison, performing online calibration can greatly improve
the system robustness and accuracy.

If using quality IMUs (e.g., ADIS16470) or well-calibrated
IMUs (e.g., pre-calibrated IMU data from TUM VI dataset
[57]), VINS performance gain might be marginal if performing
online IMU calibration. However, it is evident from Figure
11 that it is necessary to perform online calibration for the
low-end IMU (e.g., BMI160) with uncalibrated raw data and
RS readout time for improved accuracy and robustness. Note
that OpenVINS [10] and VINS-Mono [14] assume good IMU
intrinsic calibration and thus are unable to work well on
the uncalibrated raw datasets. This has also motivated us
to perform online self-calibration to lower the technological
barriers of VINS.

Interestingly, based on the results from the EuRoC MAV
dataset as shown in Table VI, online calibration, especially
IMU intrinsic calibration, can hurt the system performance
when the robot undergoes underactuated motions. As shown
in our degenerate motion analysis, there are a large number
of motion types that prohibit accurate calibration of the IMU
intrinsics and IMU-camera spatial calibration, while the cam-
era intrinsics and IMU-camera temporal calibration are more
robust to different motions. More importantly, in the most
commonly-seen motion cases of aerial and ground vehicles,



Fig. 16: Calibration results (four VI-Rig planar motion datasets with colored solid lines) for CpI , td, tr and Dw of the proposed
system evaluated using imu2{Dw6, Da6, I

aR} and equi-dist. Red and blue dotted lines denote the reference value from Kalibr
and initial (perturbed) values, respectively. The y component of CpI , dw1, dw2 and dw3 diverges.

Fig. 17: Calibration results (from four 3D-motion datasets in Section X with colored solid lines) for CpI , td, tr and Dw of the
proposed system evaluated using imu2{Dw6, Da6, I

aR} and equidist. Red and blue dotted lines denote the reference value
from Kalibr and initial (perturbed) values, respectively.

there is usually at least one unobservable direction for cali-
bration, due to these robots traveling with either underactuated
3D or planar motion.

Due to the high likelihood of experiencing degenerate
motions for some periods of time, solely based on our analysis
and results, we do not recommend performing online IMU
intrinsic and IMU-camera spatial calibration during real-time
operations for most underactuated motions (e.g., planar motion
and one-axis rotation for most ground vehicles). The exception
to this is the handheld cases (e.g., mobile AR/VR), which
often exhibit full 6-DoF motions and thus is recommended
to perform online calibration to improve estimation accuracy,
especially when low-end IMUs or RS cameras are used.
For these applications, we do recommend using an offline
batch optimization to obtain an accurate initial calibration
for the state estimator and/or keep the calibration parameters
(especially intrinsics) fixed if one knows they are going
to experience degenerate motions. For online IMU intrinsic
calibration, it is not necessary to calibrate the full IMU model
and instead one may calibrate only the dominating parameters
in the inertial models, for example, Dw for BMI160 IMU or
Da for MicroStrain, Xsens and T265 IMUs.

XIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have comprehensively studied the prob-
lem of online full-parameter self-calibration for visual-inertial
navigation in order to achieve accurate and robust estimation
performance. We have first investigated different IMU intrinsic

model variants which uses different parameterizations to ac-
count for scale correction, axis misalignment and g-sensitivity.
These variants encompass commonly-used inertial models in
practice. Along with the inertial intrinsics, we have examined
the full visual measurement model that accounts for full IMU-
camera spatial-temporal parameters including RS readout time.
Based on these models, we have performed the observability
analysis for linearized VINS with full self-calibration to show
that it truly has only 4 unobservable directions corresponding
to global yaw and global translation, while all the calibration
parameters are observable given fully excited motions, thus
reassuring the intuitions assumed in the literature. Moreover,
we have for the first time identified the basic degenerate
motion patterns for IMU/camera intrinsics, whose combination
would still cause unobservable directions.

More importantly, we have developed the MSCKF-based
VINS estimator with full self-calibration. With that, we have
performed extensive simulation analysis and real-world exper-
imental validations to verify our observability and degenerate
motion analysis. Solely based on our analysis and valida-
tions, we have offered our self-calibration recommendations.
While in general online self-calibration can improve the VINS
robustness and accuracy, online IMU intrinsic calibration is
risky due to its dependence on the motion profile to ensure
observability. For example, in the case of autonomous (ground)
vehicles, most trajectories have degenerate motions, thus not
recommending online calibration of IMU intrinsics for under-
actuated robots. By contrast, in the case of handheld motions,



we found that the estimation of calibration parameters im-
proved performance as expected.

In the future, we will investigate a complete degenerate
motion analysis for multi-visual-inertial system along with
robust estimation algorithms (e.g., Schmidt-KF [59]) to enable
online calibration under degenerate motions.
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APPENDIX A
IMU INTRINSIC JACOBIANS

The Jacobians for all the variables that might appear in the
IMU models, including I

wR and I
aR, will be derived. More

derivations can be found in our companion technical report
[52]. To simplify the derivations, we define I â and I ã as:

I â = I
aR̂D̂a

(
aam − b̂a

)
I ã = I

aR̂HDax̃Da + ⌊I â⌋δθIa − I
aR̂D̂ab̃a − I

aR̂D̂ana

We define Iω̂ and Iω̃ as:
Iω̂ = I

wR̂D̂w

(
wωm − T̂g

I â− b̂g

)
Iω̃ = −I

wR̂D̂wb̃g +
I
wR̂D̂wT̂g

I
aR̂D̂ab̃a

+ I
wR̂HDwx̃Dw − I

wR̂D̂wT̂g
I
aR̂HDax̃Da

+ ⌊Iω̂⌋δθIw − I
wR̂D̂wT̂g⌊I â⌋δθIa

− I
wR̂D̂wHTgx̃Tg − I

wR̂D̂wng

+ I
wR̂D̂wT̂g

I
aR̂D̂ana

where we have:
HDw =

[
wŵ1e1

wŵ2e1
wŵ2e2

wŵ3I3
]

(79)
HDa =

[
aâ1e1

aâ2e1
aâ2e2

aâ3I3
]

(80)
HTg =

[
I â1I3

I â2I3
I â3I3

]
(81)

By summarizing the above equations, we have:[
Ik ω̃
Ik ã

]
=
[
Hb Hin

] [ x̃b

x̃in

]
+Hn

[
ng

na

]
(82)

where we have defined:

Hb = Hn =

[
−I

wR̂D̂w
I
wR̂D̂wT̂g

I
aR̂D̂a

03 −I
aR̂D̂a

]
(83)

Hin =
[
Hw Ha HIw HIa Hg

]
(84)

Hw =

[
I
wR̂HDw

03

]
, Ha =

[
−I

wR̂D̂wT̂g
I
aR̂HDa

I
aR̂HDa

]
(85)

HIw =
[
⌊Iω̂⌋
03

]
, HIa =

[
−I

aR̂D̂wT̂⌊I â⌋
⌊I â⌋

]
(86)

Hg =

[
−I

wR̂D̂wHTg

03

]
(87)

ndI = [n⊤
dg n⊤

da n⊤
dwg n⊤

dwa]
⊤ denotes the discretized IMU

noises; nd∗ ∼ N (0,
σ2
∗I3
δtk

) and the covariance for ndI can be
written block-diagonal matrix as:

QdI = diag{
σ2
g

δtk
I3,

σ2
a

δtk
I3,

σ2
wg

δtk
I3,

σ2
wa

δtk
I3} (88)

APPENDIX B
CAMERA MEASUREMENT JACOBIANS

The camera intrinsic Jacobians HCin can be written as:

HCin =

[
∂z̃C

∂

[
f̃u f̃v c̃u c̃v

]⊤
∂z̃C

∂

[
k̃1 k̃2 p̃1 p̃2

]⊤

]
(89)

∂z̃C

∂
[
f̃u f̃v c̃u c̃v

]⊤ =
[
ud 0 1 0
0 vd 0 1

]
(90)

∂z̃C

∂
[
k̃1 k̃2

]⊤ =
[
fuunr

2 fuunr
4

fvvnr
2 fvvnr

4

]
(91)

∂z̃C

∂
[
p̃1 p̃2

]⊤ =
[

2fuunvn fu(r
2 + 2u2

n)
fv(r

2 + 2v2n) 2fvunvn

]
(92)

∂z̃C

∂z̃n
and ∂z̃n

∂C p̃f
for Hpf

within Eq. (55) are written as:
∂z̃C
∂z̃n

=
[
h11 h12

h21 h22

]
,

∂z̃n
∂C p̃f

=
1

Cz2f

[
Czf 0 −Cxf

0 Czf −Cyf

]
(93)

with h11, h12, h21 and h22 defined as:
h11 = fu(d+ 2k1u

2
n + 4k2u

2
nr

2 + 2p1vn + 6p2un)

h12 = fu(2k1unvn + 4k2unvnr
2 + 2p1un + 2p2vn)

h21 = fv(2k1unvn + 4k2unvnr
2 + 2p1un + 2p2vn)

h22 = fv(d+ 2k1v
2
n + 4k2v

2
nr

2 + 6p1vn + 2p2un)

The Jacobians of Cpf regarding to xI are written as:
∂C p̃f

∂x̃I
=
[
∂C p̃f

∂x̃n

∂C p̃f

∂x̃b

∂C p̃f

∂x̃in

]
(94)

∂C p̃f

∂x̃n
= C

I R̂
I
GR̂

[
⌊Gp̂f − Gp̂I⌋GI R̂ −I3 03

]
(95)

∂C p̃f

∂x̃b
= 03×6,

∂C p̃f

∂x̃in
= 03×24 (96)

The Jacobians of Cpf regarding to the IMU-camera spatial-
temporal calibration state xIC are written as:

∂C p̃f

∂x̃IC
=
[

∂C p̃f

∂δθIC

∂C p̃f

∂C p̃I

∂C p̃f

∂t̃d

∂C p̃f

∂t̃r

]
(97)

∂C p̃f

∂δθIC
= ⌊CI R̂I

GR̂
(
Gp̂f − Gp̂I

)
⌋ (98)

∂C p̃f

∂C p̃I
= I3,

∂C p̃f

∂t̃r
=

m

M

∂C p̃f

∂t̃d
(99)

∂C p̃f

∂t̃d
= C

I R̂
I
GR̂

(
⌊
(
Gp̂f − Gp̂I

)
⌋GI R̂Iω̂ − Gv̂I

)
(100)

Note that when computing the Jacobians for td and tr, we are
using the following linearization:

G
I(t)R ≃ G

I(t̂)
R̂ exp(δθI) exp(

Iω̂t̃d +
m

M
Iω̂t̃r) (101)

GpI(t) ≃ Gp̂I(t̂) +
Gp̃I +

Gv̂I t̃d +
m

M
Gv̂I t̃r (102)

The Jacobians of Cpf regarding to xf is written as:
∂C p̃f

∂x̃f
=

∂C p̃f

∂δGp̃f
= C

I R̂
I
GR̂ (103)

APPENDIX C
OBSERVABILITY MATRIX

The Mn is computed as:
Mn = Hpf

C
I R̂

Ik
G R̂

[
Γ1 Γ2 Γ3

]
(104)

Γ1 = ⌊Gp̂f − Gp̂I1 − Gv̂I1δtk +
1

2
Ggδt2k⌋GI1R̂

Γ2 = −I3 ,Γ3 = −I3δtk



The Mb is computed as:
Mb = Hpf

C
I R̂

Ik
G R̂

[
Γ4 Γ5

]
(105)

Γ4 = −
(
⌊Gp̂f − Gp̂Ik⌋GIkR̂Jr

(
∆θ̂k

)
δtk + G

Ik
R̂Ξ4

)
I
wR̂D̂w

Γ5 =
(
⌊Gp̂f − Gp̂Ik⌋GIkR̂Jr

(
∆θ̂k

)
I
wR̂D̂wT̂gδtk

+ G
Ik
R̂
(
Ξ4

I
wR̂D̂wT̂g +Ξ2

))
I
aR̂D̂a

The Min can be computed as:
Min = Hpf

C
I R̂

Ik
G R̂

[
Γ6 Γ7 Γ8 Γ9

]
(106)

Γ6 =
(
⌊Gp̂f − Gp̂Ik⌋GIkR̂Jr

(
∆θ̂k

)
δtk + G

Ik
R̂Ξ4

)
HDw

Γ7 = −
(
⌊Gp̂f − Gp̂Ik⌋GIkR̂Jr

(
∆θ̂k

)
I
wR̂D̂wT̂gδtk

+ G
Ik
R̂
(
Ξ4

I
wR̂D̂wT̂g +Ξ2

))
I
aR̂HDa

Γ8 = −
(
⌊Gp̂f − Gp̂Ik⌋GIkR̂Jr

(
∆θ̂k

)
I
wR̂D̂wT̂gδtk

+ G
Ik
R̂
(
Ξ4

I
wR̂D̂wT̂g +Ξ2

))
⌊Ik â⌋

Γ9 = −
(
⌊Gp̂f − Gp̂Ik⌋GIkR̂Jr

(
∆θ̂k

)
δtk + G

Ik
R̂Ξ4

)
I
wR̂D̂wHTg

The MIC can be computed as:
MIC = Hpf

C
I R̂

Ik
G R̂

[
Γ10 Γ11 Γ12 Γ13

]
(107)

Γ10 = ⌊
(
Gp̂f − Gp̂Ik

)
⌋GIkR̂

I
CR̂ (108)

Γ11 = G
Ik
R̂I

CR̂, Γ13 =
m

M
Γ12 (109)

Γ12 = ⌊
(
Gp̂f − Gp̂Ik

)
⌋GIkR̂

Ik ω̂ − Gv̂Ik (110)

The MCin and Mf can be written as:
MCin = HCin, Mf = Hpf

C
I R̂

Ik
G R̂ (111)

APPENDIX D
PROOF OF LEMMA 1

For Eq. (58), we first verify ON = 0 as:(
Γ1

I1
G R̂− Γ2⌊Gp̂I1⌋ − Γ3⌊Gv̂I1⌋ − ⌊Gp̂f⌋

)
Gg = 0

Hence, O has at least 4 unobservable directions.
In the following, we will try to show that there are only 4

unobservable directions under general situations. With abusing
of notion, we rewrite the observability matrix by segmenting
the columns as:
O ≜

[
OI Oin OIC Of

]
≜


Mn,1 Mb,1 Mf,1 Min,1 MIC,1 MCin,1

...
...

...
...

...
...

Mn,k Mb,k Mf,k Min,k MIC,k MCin,k

 (112)

OI corresponds to the IMU navigation state, IMU bias
state and feature state. OI is equivalent to the standard VINS
observability matrix in [41] and it has a 4DoF null space.

Oin corresponds to the IMU intrinsic parameters. By check-
ing the Eq. (106), it is clearly that Oin will be affected by
time-varying wω(t) (in HDw), aa(t) (in HDa) and Ia(t) (in
⌊Ia⌋ and HTg). Under fully-excited motions, Oin can be of
full column rank.
OIC corresponds to the IMU-camera spatial and temporal

calibration parameters. By checking the Eq. (107), we can

see that the OIC is affected by the time-varying IMU pose
{IGR(t),GpI(t)} and the IMU kinematics {Iω(t), Iv(t)}. In
addition, Γ13 in MIC are also affected by the point feature
measurement through m

M , of which m will change under
general measurement assumptions. Hence, OIC can be of full
column rank with random motions.
OCin corresponds to the camera intrinsic parameters. It is

clear that OCin is only affected the environmental structure
and is of full column rank as long as {un, vn} varies in
different image tracks.

Since Oin, OIC and OCin are affected by different
system parameters, and under general motion conditions,
[Oin OIC OCin] is also of full column rank. Therefore, the
column rank of O is determined by OI . Since OI has a 4
DoF null space, the O also has 4 DoF. We also verify this
conclusion through simulation in Figure 3.
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