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Abstract—As cameras and inertial sensors are becoming ubiq-
uitous in mobile devices and robots, it holds great potential
to design visual-inertial navigation systems (VINS) for efficient
versatile 3D motion tracking which utilize any (multiple) avail-
able cameras and inertial measurement units (IMUs) and are
resilient to sensor failures or measurement depletion. To this
end, rather than the standard VINS paradigm using a minimal
sensing suite of a single camera and IMU, in this paper we design
a real-time consistent multi-IMU multi-camera (MIMC)-VINS
estimator that is able to seamlessly fuse multi-modal information
from an arbitrary number of uncalibrated cameras and IMUs.
Within an efficient multi-state constraint Kalman filter (MSCKF)
framework, the proposed MIMC-VINS algorithm optimally fuses
asynchronous measurements from all sensors, while providing
smooth, uninterrupted, and accurate 3D motion tracking even if
some sensors fail. The key idea of the proposed MIMC-VINS is to
perform high-order on-manifold state interpolation to efficiently
process all available visual measurements without increasing the
computational burden due to estimating additional sensors’ poses
at asynchronous imaging times. In order to fuse the information
from multiple IMUs, we propagate a joint system consisting of
all IMU states while enforcing rigid-body constraints between the
IMUs during the filter update stage. Lastly, we estimate online
both spatiotemporal extrinsic and visual intrinsic parameters to
make our system robust to errors in prior sensor calibration. The
proposed system is extensively validated in both Monte-Carlo
simulations and real-world experiments.

Index Terms—Visual-inertial systems, multi-sensor fusion, sen-
sor calibration, state estimation, Kalman filtering, estimation
consistency, estimation resilience.

I. INTRODUCTION

As cameras and inertial sensors are commonplace in today’s
mobile devices and autonomous vehicles, developing visual-
inertial navigation systems (VINS) for 3D motion tracking has
been arguably at the center of recent simultaneous localization
and mapping (SLAM) research efforts [1]. However, most
of the current VINS algorithms have focused on the case of
minimal sensing where only a single camera and inertial mea-
surement unit (IMU) is considered (e.g., see [2]–[6]). While
3D motion tracking with minimal sensing capability is of
interest, in practice, it is desirable to optimally and efficiently
fuse all information from multiple visual-inertial sensors to
improve estimation robustness and accuracy [7]. In addition,
given the fact that nowadays these sensors have become small
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and affordable, in many scenarios it has become feasible and
even necessary to utilize multiple sensors. In particular, we
note that most single-view systems are susceptible to loss of
texture in a given viewing direction [8], and thus a single-
camera system may suffer greatly from measurement depletion
(i.e. no informative measurements are available). However,
even with multiple cameras, conditions such as poor lighting
may cause the estimator to rely solely on its IMU due to
the lack of visual information. As such, developing visual-
inertial systems that leverage multiple sensors (both cameras
and IMUs) is of practical significance and enabling resilience
of such systems to sensor failures is crucial in practice.

Fusing information from multiple sensors which collect
local information requires knowing the spatial transformation
(relative pose) between each sensor. Moreover, if the sensors
are not hardware synchronized (i.e. they are not electronically
triggered to collect data at the same time) then representing the
state at each sensing time may become computationally infea-
sible. Additionally, due to latency issues, data transfer times,
or different independent sensor clocks, nontrivial time offsets
between different sensor measurement timestamps present an
additional barrier to accurate state estimation [9]. This can be
addressed by manufacturing all sensing components as a single
tightly-coupled time-synchronized unit, but may become pro-
hibitively expensive for widespread applications. Clearly, non-
tightly-coupled sensor design has great impact to endow VINS
with plug-and-play functionality, wherein different sensors can
be freely added/removed without requiring hardware synchro-
nization or exhaustive offline sensor calibration, if these issues
are addressed. Plug-and-play functionality significantly lowers
the technology barriers for end users and thus promotes this
emerging technology in many different application domains
such as augmented reality and autonomous driving.

To achieve the aforementioned plug-and-play functionality,
building upon our recent conference publications [10], [11],
in this paper we design a versatile and resilient multi-IMU
multi-camera (MIMC)-VINS algorithm that can utilize an
arbitrary number of uncalibrated and asynchronous cameras
and IMUs. Within an efficient multi-state constraints Kalman
filter (MSCKF) framework [5], the proposed MIMC-VINS
estimator is able to fuse the information from all sensors while
providing smooth, uninterrupted, accurate 3D motion tracking
even if some sensors fail. The key idea of the proposed MIMC-
VINS is to perform high-order on-manifold state interpolation
to efficiently process all available visual measurements without
increasing the computational burden due to estimating addi-
tional sensors’ poses at asynchronous imaging times. In order
to fuse the information from multiple IMUs, we propagate a
joint system consisting of all IMU states while enforcing rigid-
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body constraints between the IMUs during the filter update
stage. Additionally, we estimate online both spatiotemporal
extrinsic and camera intrinsic parameters to make our system
robust to errors in prior sensor calibration. Lastly, we enforce
the well-known VINS observability constraints in computing
Jacobians to improve estimation consistency.

In particular, the main contributions of this paper include:
• We develop a real-time, easy-to-use, versatile MIMC-

VINS state estimator with online sensor calibration,
which can utilize an arbitrary number of uncalibrated
asynchronized cameras and IMUs while performing on-
line calibration of all sensing parameters including visual
intrinsics and spatial/temporal extrinsics. In particular,
due to the growing computation required to process
increased measurements provided by more sensors, lever-
aging the lightweight MSCKF framework, the proposed
MIMC-VINS estimator focuses on the seamless and
efficient incorporation of multiple sensors.

• We further advance the MIMC-VINS estimator by adapt-
ing the first-estimate Jacobian (FEJ) observability-based
methodology [12] to improve consistency, and by in-
troducing high-order polynomial fitting for on-manifold
interpolation to accurately fuse asynchronous sensor mea-
surements at low computational cost.

• The proposed MIMC-VINS is able to offer resilience to
sensor failures and robustness to measurement depletion
of single views (due to the lack of texture in a viewing
direction) by utilizing redundant sensors.

• We thoroughly validate the proposed MIMC-VINS using
different number of visual and inertial sensors in both
Monte-Carlo simulations and real-world experiments, in
terms of calibration convergence and estimation accuracy,
consistency, and resilience to sensor failures.

The rest of the paper is structured as follows: After review-
ing the related work in the next section, we provide the nec-
essary background about single-camera single-IMU MSCKF-
based VINS in Section III. We present in detail the barebones
multi-camera multi-IMU (MIMC)-VINS in Section IV, which
is future advanced to perform online sensor calibration and
enable consistent resilient estimation in Section V. The pro-
posed MIMC-VINS is validated extensively in Sections VI
and VII. Finally, we conclude the paper in Section VIII along
with possible future research directions.

II. RELATED WORK

In part due to the recent advancements of these two comple-
mentary sensing technologies, visual-inertial state estimation
has attracted significant research attentions in recent years [1].
In this section, we briefly review the related VINS literature
with multiple sensors.

A. Multi-Camera Systems
While monocular-VINS has been widely studied (e.g.,

see [1]–[4], [6], [13]–[16] and references therein), one straight-
forward extended configuration over the monocular setting is
to use a stereo camera, wherein two cameras are mounted
such that they observe the same spatial volume from the offset
camera centers at the same imaging time. Stereo vision enables
3D triangulation of features seen in the overlapping view
without requiring motion of the sensor platform, thus allowing

for the direct recovery of scale if the spatial transforms
between cameras are known.

Outside of VINS, multi-camera systems have been widely
used to improve estimator performance. For example, direct
(photometric-error based) monocular visual-odometry systems
such as LSD-SLAM [17] and DSO [8] have each seen
improvements when extended to stereo cameras [18], [19].
Further improvements can be achieved using an arbitrary
number of cameras, at the cost of increased computation. Liu
et al. [20] proposed a system capable of fusing the information
of an arbitrary number of stereo pairs through tracker and
mapper threads, each seeking to minimize photometric errors.
Tribou et al. [21] proposed a parallel tracking and mapping
system for a multi-camera configuration with non-overlapping
field of views. The authors handled the fact that it is difficult
to recover the true depth of points seen by these cameras
by modeling the depths as being contained on the edge of
a sphere.

Motivated by this increase in robustness offered by adding
cameras, Sun et al. [22] developed the MSCKF-based stereo-
VINS with the particular application to high-speed aerial ve-
hicles. Paul et al. [7] extended the inverse square-root version
of the MSCKF (namely SR-ISWF) [23] to provide real-time
VINS on mobile devices while allowing for a configuration
of both stereo and binocular (non-overlapping) cameras, and
showed that the inclusion of more cameras improves the
estimation accuracy. Jaekel et al. [24] developed a robust
VINS leveraging an arbitrary number of stereo pairs while
modeling the uncertainty of the camera extrinsics. Yang et
al. [25] designed a multi-camera VINS which performed self-
calibration of the spatial transforms between each camera and
IMU, and showed that this gave robustness to random camera
failures (such as loss of illumination, texture, etc).

While stereo cameras provide robustness due to their ability
to perform feature triangulation and scale recovery even with-
out the IMU, they remain vulnerable to dynamic environmental
motion and textureless regions in its given viewing direction.
More importantly, the requirement of an overlapping field of
view and synchronous camera triggering may not easily extend
to an arbitrary number of plug-and-play cameras – which
is a highly-desirable characteristic and could greatly promote
the widespread deployment of VINS in practice. Additionally,
due to the enforcement of cross-image matching (for example
matching features from the left to right stereo image), the
process of visual tracking is coupled and cannot be directly
parallelized to facilitate a large number of cameras. For these
reasons, in our prior work [10], we introduced a general multi-
camera VINS algorithm, which can tightly fuse the visual
information from an arbitrary number of non-overlapping,
asynchronous heterogeneous cameras and an IMU, so that
our approach is robust to environmental conditions and single-
camera failures while allowing for improved estimation per-
formance. Note that in our multi-camera VINS system, we
do not perform any cross-image matching, since we have
non-overlapping images and instead allow each camera image
stream to be processed independently and in parallel. In this
work we further generalize this system to multi-camera and
multi-IMU scenarios.

Houben et al. [26] extended the ORB-SLAM [27] to a
system of multiple cameras with varying viewing directions
and an IMU for UAVs within a graph-SLAM framework but
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assumed known sensor calibration and simultaneous trigger-
ing of all involved cameras. Paul et al. [28] addressed the
problem of increased computational burden in stereo-VINS
and proposed an alternating stereo-VINS algorithm. In their
system, the two cameras in a stereo pair were triggered in
an alternating manner, preventing the need to process both
images at the same time while still taking advantage of the
offset camera centers provided by a stereo configuration.
In addition, they further reduced computation by explicitly
estimating the historical IMU poses corresponding to only one
of the camera’s imaging times, while using pose interpolation
to represent the state at intermediate times corresponding to
the other camera. While in the proposed MIMC-VINS we
leverage a similar interpolation scheme to reduce computation,
we simultaneously perform time offset and spatial calibration
between n ≥ 2 cameras.

An integral part of any multi-sensor fusion system is the
spatial (relative transformation), temporal (time offset), and
intrinsic (e.g. focal length, camera center, rolling shutter read-
out, and distortion parameters) calibration parameters for each
sensor, as errors in the values of these parameters can greatly
degrade localization performance – if not catastrophically.
Calibration can be broadly divided into two main categories.
Offline methods perform a computationally expensive solution
process in exchange for providing highly accurate calibration
estimates. In particular, Furgale et al. [29] developed a multi-
sensor calibration system that performed spatial, temporal, and
intrinsic calibration of an arbitrary number of cameras along
with an IMU. However, performing offline calibration is a
tedious process that limits deployment time and requires the
calibration to be repeated if the sensor configuration changes.
In addition, treating the calibration parameters provided by
these methods as “known” (zero uncertainty) may lead to
unmodeled errors, thereby introducing estimation inconsis-
tency [30]. By contrast, online methods treat the calibration
parameters as random variables with known priors and si-
multaneously estimate them along with the navigation states.
While many VINS algorithms perform online calibration of
the spatial extrinsic transform between the camera and IMU,
relatively few also estimate the time offset between them [22],
[31]. Systems that do perform online temporal calibration [6],
[9], [32], however, are typically limited to a single IMU-
camera pair. As one of the most notably complete systems in
this category, Li et al. [30] performed online calibration of both
the extrinsic parameters between a single IMU and camera as
well as the intrinsics of both sensors. In our recent work [33]
we also have performed in-depth degenerate motion analysis
to understand the effects of motions on sensor calibration.

B. Multi-IMU Systems
To date, almost all VINS algorithms utilize a single IMU,

and thus these algorithms remain vulnerable to single IMU
failure. In reality, sensors certainly may experience failures
preventing the estimator from acquiring new measurements
from the faulty sensor. If this sensor (such as IMUs in VINS)
is required to fully constrain the estimation problem, its failure
will result in the collapse of the entire system’s ability to
provide state estimates. Such failures can occur in practice due
to sensor disconnection (due to impact), high temperatures, or
sensitivity to vibrations [34]. To compensate for this issue,

redundant sensors (i.e. hardware redundancy) are typically
used [35]. As an added benefit, additional IMUs can improve
localization accuracy by providing more information to the
estimator. Therefore, adding more IMUs into VINS appears
to be a straightforward solution for improving the system
while additionally providing resilience against sensor failures,
in particular, given the low cost of IMUs. However, to the
best of our knowledge, few VINS methods utilize multiple
IMUs while performing real-time state estimation due to the
challenges and complexity introduced.

While outside of VINS, fusing multiple IMUs has been
studied [36]–[38], e.g. in the application to human motion
tracking [39], these methods neither perform visual-inertial
fusion nor online spatial/temporal calibration as in this work.
Ma et al. [40] fused a tactical grade IMU, stereo camera,
leg odometry, and GPS measurements in an EKF alongside
a navigation-grade gyroscope for estimating the motion of a
quadruped robot, but without calibration or the ability to use
acceleration measurements from a second IMU.

For offline calibration, Rehder et al. [41] used a continuous-
time basis function representation [29] of the sensor trajectory
to calibrate both the extrinsics and intrinsics of a multi-IMU
system in a batch-based setting. As this B-spline representation
allows for the direct computation of expected local angular
velocity and local linear acceleration, the difference between
the expected and measured inertial readings served as errors in
the batch optimization formulation. Kim et al. [42] reformu-
lated IMU preintegration [43]–[45] by transforming the inertial
readings from a first IMU frame into a second frame. This al-
lowed for spatial calibration with online initialization between
an IMU and other sensors (including other IMUs), but did not
include temporal calibration while also relying on computing
angular accelerations from gyroscope measurements without
optimal characterization of their uncertainty.

Recently, Zhang et al. [46] proposed a method for fusing
multiple IMU’s by setting up a “virtual” IMU and estimating
its acceleration and angular velocity through least-squares
using all the inertial measurements collected by every IMU.
These synthetic readings, which have substantially smaller
noises than those of each individual IMU, could then be used
in VINS directly. While this was shown to offer competitive
results along with large computational savings compared to the
method proposed in our multi-IMU method [47], it requires
perfectly calibrated and synchronized sensors, which may be
difficult to achieve in practice. In addition, we note that
because our system simply applies relative pose constraints
to fuse the information, these updates can be used even if the
calibration is time-varying.

III. PRELIMINARY: SINGLE-CAMERA SINGLE-IMU
MSCKF-BASED VINS

In this section, we provide some background of the standard
VINS with a single pair of calibrated camera and IMU, by
describing the IMU propagation and camera measurement
models within the MSCKF framework [5], which will serve
as the basis of the proposed MIMC-VINS estimator.

Specifically, the state vector of the standard MSCKF-based
VINS consists of the current IMU states and a sliding window
of cloned IMU poses corresponding to the past m images:

xk =
[
x⊤
I,k x⊤

cl,k

]⊤
(1)
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xI,k =
[
I
Gq̄

⊤
k b⊤

g,k
Gv⊤

I,k b⊤
a,k

Gp⊤
I,k

]⊤
(2)

xcl,k =
[
I
Gq̄

⊤
k

Gp⊤
I,k · · · I

Gq̄
⊤
k−m+1

Gp⊤
I,k−m+1

]⊤
(3)

where I
Gq̄ is the unit quaternion that represents the rota-

tion from the global frame of reference {G} to the IMU
frame {I} (i.e. different parametrization of the rotation matrix
R(IGq̄) =: I

GR); GpI and GvI are the IMU position and
velocity in the global frame; bg and ba denote the gyroscope
and accelerometer biases, respectively; and {IGq̄k−i,

GpI,k−i}
(i = 0, · · · ,m− 1) are the cloned IMU poses at time tk−i.1

A. Propagation
The MSCKF propagates the state estimate based on the IMU

continuous-time kinematics of the state (2) [48]:

I
G
˙̄q(t) =

1

2
Ω
(
Iω(t)

)
I
Gq̄(t) (4)

GṗI(t) =
GvI(t) (5)

Gv̇I(t) =
GaI(t) (6)

ḃg(t) = nwg(t) (7)

ḃa(t) = nwa(t) (8)

where Iω = [ω1 ω2 ω3]
⊤ is the rotational velocity of the IMU,

expressed in {I}, GaI is the IMU acceleration in {G}, nwg

and nwa are the white Gaussian noise processes that drive

the IMU biases, and Ω(ω) =

[
−⌊ω×⌋ ω

−ω⊤ 0

]
, where ⌊ω×⌋ is

the skew-symmetric matrix. A canonical 6-axis IMU provides
gyroscope and accelerometer measurements, ωm and am, both
of which are expressed in the IMU local frame {I} and at
time-step tk are given by:

ωm(tk) =
Iω(tk) + bg(tk) + ng(tk) (9)

am(tk) =
I
GR(tk)

(
GaI(tk) +

Gg
)
+ ba(tk) + na(tk) (10)

where Gg is the gravitational acceleration expressed in {G},
and ng and na are zero-mean white Gaussian noise. Using
the inertial measurements collected between the time interval
[tk, tk+1] [see (9) and (10)], denoted by um(tk : tk+1), and
based on the above kinematic model (4)-(8), we can propagate
(via integration) the IMU state in discrete time [49]:

x̂I(tk+1) = f(x̂I(tk),um(tk : tk+1),0) (11)

where last entry, 0, corresponds to the zero-mean noise vector.
To propagate the covariance matrix, we first define the error

state as follows [see (1)]:

x̃(t) =
[
I(t)
G θ̃⊤ b̃⊤

g (t)
Gṽ⊤

I (t) b̃⊤
a (t)

Gp̃⊤
I (t) x̃⊤

cl(t)
]⊤

(12)

where we have employed the multiplicative error model for a
quaternion [48]. That is, the error between the quaternion q̄
and its estimate ˆ̄q is the 3×1 angle-error vector, θ̃, implicitly
defined by the error quaternion: δq̄ = q̄ ⊗ ˆ̄q ≃ [ 12 θ̃

⊤ 1]⊤,
where δq̄ describes the small rotation that causes the true
and estimated attitude to coincide. Then, linearizing (4)-(8)

1Throughout this paper the subscript ℓ|j refers to the estimate of a
quantity at time-step ℓ, after all measurements up to time-step j have been
processed. x̂ is used to denote the estimate of a random variable x, while
x̃ = x − x̂ is the error in this estimate. In and 0n are the n × n identity
and zero matrices, respectively. Finally, the left superscript denotes the frame
of reference with respect to which the vector is expressed.

at the current state estimate yields the following continuous-
time error-state propagation:

˙̃x(t) = Fc(t)x̃(t) +Gc(t)n(t) (13)

where n = [n⊤
g n⊤

wg n⊤
a n⊤

wa]
⊤ is the system noise, Fc is

the continuous-time error-state transition matrix, and Gc is
the input noise matrix [48]. The system noise is modeled
as zero-mean white Gaussian process with autocorrelation
E[n(t)n(τ)⊤] = Qcδ(t − τ), which depends on the IMU
noise characteristics. Based on this continuous-time propaga-
tion model using IMU measurements, the discrete-time state-
transition matrix, Φk := Φ(tk+1, tk), is required in order to
propagate the error covariance from time tk to tk+1. Typi-
cally it is found by solving the following matrix differential
equation:

Φ̇(t, tk) = Fc(t)Φ(t, tk) (14)

with the initial condition Φ(tk, tk) = I15+6m. This can be
solved either numerically [15] or analytically [2], [4], [50].
Once it is computed, the MSCKF propagates the covariance
as in the standard EKF [51]:

Pk+1|k = Φ (tk+1, tk)Pk|kΦ (tk+1, tk)
⊤
+Qd,k (15)

where Qd,k is the discrete-time system noise covariance:

Qd,k =

∫ tk+1

tk

Φ(tk+1, τ)Gc(τ)QcG
⊤
c (τ)Φ

⊤(tk+1, τ)dτ (16)

Note that after propagation the MSCKF performs stochastic
cloning [52] to probabilistically augment the state vector, xcl,k,
and covariance matrix with the current pose estimate.

B. Update
We detect and track a point feature over images and use

its measurements to update the state estimate and covariance.
Specifically, assuming a calibrated perspective camera, the
normalized measurement of feature f provide by camera j
(captured at time tj) is the perspective projection of the 3D
feature position in the camera frame, Cjpf = [xj yj zj ]

⊤,
onto the image plane (which is normalized with known camera
intrinsics), for j = k + 1, · · · , k −m:

zf,j = Π
(
Cjpf

)
+ nf,j =

1

zj

[
xj

yj

]
+ nz,j (17)

Cjpf = C
I R

Ij
GR

(
Gpf − GpI,j

)
+ CpI (18)

where Gpf is the 3D global position of the observed feature,
and nf,j is the zero-mean white Gaussian measurement noise;
{CI R,CpI} is the rotation and translation between the camera
and IMU, which can be obtained, for example, by performing
camera-IMU extrinsic calibration offline [29], [53]. As the
feature is not kept in the MSCKF state vector [see (1)], in order
to perform EKF update with the above measurement (17), we
first perform bundle adjustment (BA) using all its measure-
ments available in the current window (while fixing the camera
pose estimates) to obtain the linearization point Gp̂f [5].
Linearization of (17) around the current state estimate and this
feature linearization point yields the following measurement
residual [see (12)]:

z̃f,j = Hx,jx̃k+1|k +Hf,j
Gp̃f + nf,j (19)
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By stacking all these measurement residuals for j = k +
1, · · · , k − m, we perform the nullspace operation (linear
marginalization of the feature [54]) to infer the new measure-
ment residual whose noise is independent of the state:

z̃n,k+1

...
z̃n,k−m


︸ ︷︷ ︸

z̃

=


Hx,k+1

...
Hx,k−m


︸ ︷︷ ︸

Hx

x̃k+1|k +


Hf,k+1

...
Hf,k−m


︸ ︷︷ ︸

Hf

Gp̃f +


nf,k+1

...
nf,k−m


︸ ︷︷ ︸

nz

N⊤Hf=0
=⇒ N⊤z̃ = N⊤Hxx̃k+1|k +N⊤nf (20)

which can now be used for the standard EKF update [5].

IV. BAREBONES MULTI-IMU MULTI-CAMERA
(MIMC)-VINS

Building upon our recent multi-IMU [11] and multi-camera
VINS [10], we integrate both functionalities into a tightly-
coupled MSCKF-based multi-IMU multi-camera (MIMC)-
VINS. In this section, we present in detail the barebones
MIMC-VINS by assuming all sensors are calibrated, and will
later extend this system to faulty uncalibrated sensors.

Consider a fully calibrated sensor platform (i.e. the extrinsic
parameters between them are known) consisting of N + 1
IMUs and M + 1 cameras. We will develop an efficient
MSCKF-based VINS estimator to fuse all information pro-
vided by these sensors, which has the following state vector
[see (1)]:

xk =
[
x⊤
I,k x⊤

cl,k

]⊤
=
[
x⊤
I0,k

· · · x⊤
IN ,k x⊤

cl,k

]⊤
(21)

where xIi,k is the navigation state of the i-th IMU [see (2)]. To
allow for utilizing visual feature measurements, we select an
arbitrary IMU to serve as the “base”, denoted by {Ib}, which
can be changed over the trajectory if needed (see Section V-D).
As in the standard MSCKF, we keep a sliding window of
stochastically cloned poses of only this base IMU. Specifically,
at time tk we also maintain a sliding window of the base IMU
clones at m past imaging times tj (j = k, · · · , k−m+ 1) of
the base camera (which is also arbitrarily chosen) [see (3)]:

xcl,k = (22)[
Ib(tk)
G q̄⊤ Gp⊤

Ib(tk)
· · · Ib(tk−m+1)

G q̄⊤ Gp⊤
Ib(tk−m+1)

]⊤
Note that in the above we have used a slightly different
notation from (3) to highlight the exact times of cloned poses.

A. Propagation
As all N + 1 IMUs’ states are included in the state

vector (21), we propagate each IMU’s state estimate and
the joint covariance using each IMU’s measurements as in
the standard MSCKF. Specifically, at the current time step k
(corresponding to the current imaging time of the base camera
tk), we propagate the current IMU state estimate forward to
the next time step k+1 (corresponding to the new image time
tk+1), by using all the IMU measurements available in the
time window [tk, tk+1] as in (11) for each IMU. Similarly, the
error covariance can be propagated as follows [see (15)]:

Pk+1|k = ΦkPk|kΦ
⊤
k +Qd,k (23)

Φk = Diag (Φ0(tk+1, tk), . . . ,ΦN (tk+1, tk), I6m) (24)

Qd,k = Diag (Q0d,k, . . . ,QNd,k,06m) (25)

where Φi(tk+1, tk) is the linearized state-transition matrix
for the error state of the i-th IMU across the time interval
[tk, tk+1] and Qid is the corresponding noise covariance,
while Diag(· · · ) places the argument matrix entries on the
block diagonals of an otherwise zero matrix. Each of these ma-
trices are computed per IMU using its measurements as in the
standard single-IMU/camera case. In the above expressions,
the identity matrix I6m in Φk and the right-bottom zero matrix
06m in Qd,k correspond to the states with zero dynamics. It
is important to note that we are not estimating the state of
each IMU independently, and instead allow for tracking of
all cross correlations between IMUs, which are important for
optimal fusion of multi-sensor measurements. We also note
that when computing (23) we take advantage of the sparse,
block-diagonal structure of (24) to perform the computation
efficiently.

B. Update
In contrast to the single-IMU/camera scenario, in the pro-

posed MIMC-VINS we perform efficient EKF update using
both image feature tracks and multi-IMU relative pose con-
straints.

1) Multi-IMU Constraints: As all IMUs are rigidly con-
nected, at any time t we have the following relative transfor-
mation between the base and non-base IMUs:

Ib
Ii
q̄ =

Ib(t)
G q̄⊗ Ii(t)

G q̄−1 (26)
IbpIi =

Ib(t)
G R

(
GpIi(t)− GpIb(t)

)
(27)

where Ib
Ii
q̄ and IbpIi are the fixed relative pose (extrinsic

calibration) between the base IMU b (say b = 0) and the
i-th IMU (say i = 1, · · · , N ). The residual associated with
this constraint for each IMU can be written as:{

2vec
(
Ib(t)
G q̄⊗ Ii(t)

G q̄−1 ⊗ Ib
Ii
q̄−1

)
= 0

GpIb(t) +
G
Ib(t)

RIbpIi − GpIi(t) = 0
⇒ rIi (x) = 0 (28)

where vec(q̄) = q returns the 3 × 1 vector portion of the
argument quaternion q̄. We stack this constraint for each
auxiliary IMU to form a system of residuals, rI(x) = 0.
Linearization of these residuals at the current estimate yields:

rI (x̂) +
∂rI
∂x̃

x̃ ≈ 0 ⇒ 0− rI (x̂) ≈
∂rI
∂x̃

x̃ (29)

Note that this is a hard constraint that acts as a measurement
with zero noise. Alternatively, we may loosen this constraint
by adding a small, synthetic noise to this measurement. Such
a treatment may be useful to handle unmodeled errors such
as flexible calibration or linearization errors. In practice, these
measurements may quickly degrade performance due to inac-
curacies in the calibrated transforms between sensors, which
motivates us to perform online calibration of these parameters
in the next section.

It should be noted that such relative-pose constraints have
been used in previous multi-IMU systems [55], along with a
constraint on the relationship between the IMUs’ velocities.
However, transferring velocities from one frame to another
requires angular velocity measurements, which have already
been used in the propagation step, and would therefore in-
troduce unmodeled correlations between the propagation and
update noises. As such, we choose to forgo this constraint to
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zi
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Figure 1: Distorting from normalized to a raw image pixel.

ensure consistency. In addition, we utilize these relative-pose
constraints to perform both spatial and temporal calibration of
the sensors as shown in the next section. While in this work
we assume the spatial calibration parameters remain static, i.e.
the sensors are rigidly mounted, they can also be modeled as
random walks when dealing with a more flexible mount and
can be directly introduced in the above framework with ease.

2) Multi-Camera Measurements: Consider a 3D point fea-
ture, Gpf , that is captured by the i-th camera at imaging time
t. This measurement function is given by [see (17)]:

zi(t) = wi

(
Π
(
Ci(t)pf

)
, ζi

)
+ nzi(t) (30)

Ci(t)pf = Ci

I R
I(t)
G R

(
Gpf − GpI(t)

)
+ CipI (31)

where wi(·) is the function mapping the normalized image
coordinates zn,i (17) onto the image plane based on the
camera intrinsics ζi and the camera model used (e.g., radial-
tangential or fisheye [56]), and Ci(t)pf is the position of the
feature expressed in the i-th camera frame at time t [see
also (18)]. Fig. 1 visualizes this image distortion operation.
Note that rather than using the undistorted, normalized pixel
coordinates as measurements as in (17), we here model the
raw image coordinates, which depend on the intrinsics of each
camera ζi that may include the focal lengths, principal point,
and distortion parameters [57]. Importantly, this measurement
model also allows us to calibrate online all cameras’ intrinsic
parameters as presented later in Section V-A.

It is important to note that the cloned state xcl (22) only
contains the base IMU poses at the imaging times of the base
camera, while the camera measurements (30) require that for
all non-base cameras we can express the pose at their image
times, which may not align with those of the base camera (see
Figure 2). Clearly, without solving this issue, the inclusion of
all other measurements that are not collected synchronously
with the base camera cannot be written as functions of the state
and used in the MSCKF update. Naively, one could simply
perform stochastic cloning at every imaging time, however
this would lead to a greatly increased computational burden.
For instance, utilizing m distinct asynchronous cameras each
operating at the same frequency would require multiplying
the state size by m due to the large number of required
clones. Therefore, we instead employ SO(3)×R3 on-manifold
linear interpolation between these poses to allow for the
incorporation of measurements at arbitrary times.

Assuming the imaging time of the i-th camera, t, we let
t1 and t2 denote the bounding base camera/IMU clones times
which t falls between. We linearly interpolate the cloned poses
at t1 and t2 to find the pose at the measurement time:

I(t)
G R = Exp

(
λLog

(
I(t2)
G RG

I(t1)
R
))

I(t1)
G R (32)

GpI(t) = (1− λ)GpI(t1) + λGpI(t2) (33)

where λ = (t − t1)/(t2 − t1), and Log(·) is the inverse
operation of Exp(·) which maps a rotation matrix to a vector

fC1(t1)g
fCb(t0)g fCb(t4)g

fC2(t2)g
fC1(t3)g

Figure 2: Illustration of how asynchronous multi-camera mea-
surements are collected. We have cloned at the base camera
imaging times: {Cb(t0)}, {Cb(t4)} (blue). A series of mea-
surements between these times from non-base cameras C1 and
C2 are received. We can interpolate to these pose times using
the base camera cloned poses.

in R3 [58]. These equations essentially interpolate both the
orientation and position under the approximation of constant
linear and angular velocity over the interval. This may serve
as a good approximation in cases where the base camera
arrives at high rates (e.g. around 20 Hz) as compared to
the physical camera motion. In addition, due to the fact that
marginalization is only ever performed on the oldest clone, any
required camera pose is typically within 25 milliseconds of a
clone. Note that a similar interpolation scheme was also used
in [28] to reduce the complexity of processing a synchronized
stereo pair. Nevertheless, such linear interpolation may not
be accurate for fast motions, which will be addressed by
employing high-order polynomial interpolation introduced in
Section V-A4.

As evident, the above linear interpolation [see (32) and
(33)] causes the visual measurement [see (30) and (31)] to be
dependent on the base IMU clones that are in the state vector
[see (22)], resulting in nontrivial computation of measurement
Jacobians. Specifically, let η(t1), η(t2) and η(t) be the IMU
cloned poses, η = {IGR, GpI}, at the neighboring times and
the interpolated value, respectively. By substituting (32) and
(33) into the measurement function (18) and thus (31), we
have the following Jacobians with respect to the bounding
IMU clones using the chain rule of differentiation:

∂z̃i(t)

∂η̃(t1)
=

∂z̃i(t)

∂z̃ni(t)

∂z̃ni(t)

∂Ci(t)p̃f

∂Ci(t)p̃f

∂η̃(t)

∂η̃(t)

∂η̃(t1)
(34)

∂z̃i(t)

∂η̃(t2)
=

∂z̃i(t)

∂z̃ni(t)

∂z̃ni(t)

∂Ci(t)p̃f

∂Ci(t)p̃f

∂η̃(t)

∂η̃(t)

∂η̃(t2)
(35)

In computing these Jacobians, while the derivatives (the first
three terms) of image raw pixels with respect to the interpo-
lated pose are straightforward, the last term ∂η̃(t)

∂η̃(ti)
(i = 1, 2)

requires derivatives of the interpolation function with respect
to the bounding clones. For brevity, we include the detailed
derivations for general interpolation in Appendix A. Lastly,
we note that both the interpolation-based multi-camera vision
update described here, as well as the multi-IMU updates from
Section IV-B1 are performed every time a new base camera
image arrives, immediately after the propagation phase.

3) Parallelizing Visual Tracking: A key advantage of the
proposed MIMC-VINS estimator is the ability to parallelize
such visual tracking front-end. Since all cameras can be pro-
cessed independently, we argue that one can perform “camera-
edge” visual tracking allowing for the horizontal scaling of the
visual front-ends. As seen in Figure 3, the visual front-ends
can be treated as independent and images from all cameras can
be processed in parallel. For example, in practice one could
let each camera have a local micro-computer or hardware
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Figure 3: Illustrate how the proposed system horizontally
scales as more images are added. Simply scaling of the visual
tracker (VT) allows for the parallelization of feature tracking,
which feeds these tracks to the centralized estimator (EST) for
processing.

embedded processor (“camera-edge” processing) that performs
feature tracking that upon completion can be sent to the
centralized estimator for asynchronous fusion. In this work,
we perform simple multi-threaded optimization such that each
camera has its own thread to perform feature extract, tracking,
and outlier rejection. We note, however, that we lose some
potential accuracy that could be achieved by introducing inter-
camera constraints. However, we stress that we gain compu-
tational improvements due the described ability to parallelize.
In addition, the required matching would become even more
difficult in the scenario where cameras do not have much
overlapping field of views.

V. ADVANCED MIMC-VINS WITH ONLINE CALIBRATION

To advance the barebones MIMC-VINS presented in the
preceding section, the proposed VINS estimator is able to: (1)
perform online calibration of both intrinsic and spatiotemporal
extrinsic parameters to enable plug-and-play functionality, thus
lowering the technology barriers for end users; (2) enforce
VINS observability constraints in computing filter Jacobians
to improve estimation consistency; and (3) offer smooth, unin-
terrupted, resilient estimates when faced with sensor failures.

A. Incorporating Online Sensor Calibration
Treating the spatial extrinsic calibration parameters (i.e.

the 6DOF rigid-body transformation) as known may lead
to large errors which affect the estimation performance, in
particular, when working with low-cost sensor systems (e.g.
[59]). To combat this, we model these quantities as random
variables and add them into our filtering framework. More-
over, asynchronous independent IMUs with non-negligible
time offsets relative to the base IMU clock (which can be
arbitrarily chosen, say b = 0), along with uncertain rigid
IMU to IMU transformations can greatly impact the multi-
IMU constraints (28) which are crucial to ensuring high quality
state estimation and sensor resiliency. Thus, we are motivated
to perform online estimation of these parameters. This involves
storing these parameters in our static calibration state and com-
puting the Jacobians with respect to these quantities whenever
they appear in our measurement functions.

We model each IMU’s time offset from the clock of the base
IMU, which may be due to hardware or data transfer latency.
In particular, consider a time Iit as expressed in the i-th IMU’s
clock, which is related to the same instant represented in the
base IMU clock, Ibt, by a time offset IbtIi :

Iit = Ibt+ IbtIi (36)

where IbtIi is estimated online. We represent the relationship
between the true time offset, its estimate, and error, as IbtIi =

Ib t̂Ii +
Ib t̃Ii . Similarly, the time reported by a (base) camera

will differ from the same time expressed in the base IMU’s
clock by a time offset CbtIb :

Ibt = Cbt+ CbtIb (37)

Lastly, we also need to estimate the time offset CitCb
between

the i-th camera’s clock and the base camera (which can also be
arbitrarily chosen) in order to properly fuse the multi-camera
measurements:

Cbt = Cit+ CitCb
(38)

From this, we augment our MIMC-VINS state vector (21)
to include our spatiotemporal extrinsics between the N + 1
IMUs and M +1 cameras as well as every cameras’ intrinsic
parameters [see (30)]:

xk =
[
x⊤
Ib,k

x⊤
I1,k

· · · x⊤
IN ,k x⊤

cl,k x⊤
cal,k

]⊤
(39)

xcal,k =
[
x⊤
e1 · · · x⊤

eN x⊤
cb x⊤

c1 · · · x⊤
cM

]⊤
(40)

xei =
[
Ib
Ii
q̄⊤ Ibp⊤

Ii
IbtIi

]⊤
(41)

xcb =
[
Cb

Ib
q̄⊤ Cbp⊤

Ib
CbtIb ζ⊤

b

]⊤
(42)

xci =
[
Ci
Ib
q̄⊤ Cip⊤

Ib
CitCb

ζ⊤
i

]⊤
(43)

ζb/i =
[
fxi fyi pxi pyi d⊤

i

]⊤
(44)

where xei is the spatial and temporal calibration parame-
ters between i-th and the base IMUs; that is, the relative
pose between each auxiliary IMU and the base, IbxIi =
[IbIi q̄

⊤ Ibp⊤
Ii
]⊤, and the time offsets between them, IitIb ;

xcb is the base camera’s calibration parameters including
the spatiotemproal extrinsics between the base camera and
the base IMU and the camera intrinsic parameters ζb. and
similarly, xci is the calibration parameters for the i-th camera
where we estimate the time offset between the i-th camera
and the base camera. For the camera intrinsics ζb/i, fxi, fyi
represent the focal lengths, pxi, pyi denote the location of
the principal point, and di refers to the vector of distortion
parameters whose length/definition depends on the camera
model being used (see [57]).

In what follows we present in detail the key modifications
required in each of the main steps of the proposed MIMC-
VINS when jointly estimating the above calibration parameters
xcal within the MSCKF framework.

1) Propagation: We propagate the base IMU (b = 0) state
in analogy to [30]. With the estimate of the time offset Cb t̂Ib ,
whenever we receive the (k+ 1)-th image with reported time
Cbtk+1 (corresponding to the discrete time step k + 1), we
perform propagation of the base IMU up to the estimated time
of the image as expressed in the base IMU clock [see (37)]:
Ib t̂k+1 = Cbtk+1 + Cb t̂Ib . Specifically, we propagate the
base IMU from its current time Ib t̂k up to this new time by
processing all the base IMU measurements collected over the
time interval [Ib t̂k, Ib t̂k+1] [see (11)]:

x̂I0(
Ib t̂k+1) = f

(
x̂I0(

Ib t̂k),um0(
Ib t̂k : Ib t̂k+1),0

)
(45)

Similarly, we propagate each auxiliary IMU state to the
same base IMU time, in order to correctly enforce the asyn-
chronous multi-IMU relative pose constraints (28). Specifi-
cally, we propagate the i-th IMU’s (i = 1, · · · , N ) state up to
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the estimate of the current base IMU time as expressed in the
i-th IMU clock, Ii t̂ = Ib t̂+ Ib t̂Ii :

x̂Ii(
Ii t̂k+1) = f

(
x̂Ii(

Ii t̂k),umi(
Ii t̂k : Ii t̂k+1),0

)
(46)

As a result, the IMU state after propagation at time step
k + 1 can be written as (noting again b = 0):

xI(
Ib t̂k+1) =

[
xI0(

I0 t̂k+1)
⊤ · · · xIN (IN t̂k+1)

⊤
]⊤

(47)

where xIi(
Ii t̂k+1) is the state of the i-th IMU at the estimated

time Ii t̂k+1 in its own clock.
2) State Augmentation: After propagating from timestep

k to k + 1, we have the (base) IMU state estimates at the
estimated time Ib t̂k+1 [see (47)]. However, in order to update
with all cameras’ measurements at time step k+1, we actually
need to express them as a function of the base IMU pose at the
true time Ibtk+1. To accomplish this, we perform the following
linearized stochastic cloning in order to create an estimate of
the base IMU at this true time [30]:

GpI(
Ibtk+1) ≈ GpI(

Ib t̂k+1) +
GvI(

Ib t̂k+1)
Cb t̃Ib (48)

I(Ib tk+1)
G R ≈ Exp

(
−Ibω

(
Ib t̂k+1

)
Cb t̃Ib

) I(Ib t̂k+1)
G R (49)

where Ibω
(
Ib t̂k+1

)
is the true local angular velocity at time

Ib t̂k+1. It is important to notice that, because we can express
the pose at the true time as a function of the pose at the
estimated time (from propagation), as well as the time offset
error (both of which are contained in our state vector (39)),
we can clone this new pose at the true time to include it into
our state vector through stochastic cloning [52].

3) FEJ Update with Multi-IMU Constraints: We note that
in order to enforce the multi-IMU constraints, we need to
express each IMU at the same time. However, because we
have uncertain time offsets, we have actually propagated each
IMU to slightly different times (47). As such, we use a first-
order approximation for the motion of each IMU and express
the state of the i-th IMU at the exact time of the base IMU as
a function of the state at the time we propagated to and the
error in the time offset estimate. In particular, with abuse of
notation, let Ibt = Cbtk+1 +

Cb t̂Ib be the time the base IMU
was propagated to. We approximate the i-th IMU pose at this
true time as:

GpIi(
Iit) = GpIi(

Ibt+Ib t̂Ii+
Ib t̃Ii)

= GpIi(
Ii t̂+Ib t̃Ii)

≈ GpIi(
Ii t̂) + GvIi(

Ii t̂)Ib t̃Ii (50)
Ii(

Ii t)
G R ≈ Exp

(
−Iiω(Ii t̂)Ib t̃Ii

) Ii(Ii t̂)
G R (51)

where Iiω(Ii t̂) is the angular velocity of the i-th IMU. With
that, we rewrite (28) in a residual form:

rθi= 2vec

Ib(
Ib t)

G q̄⊗ Ii(
Ii t̂)

G q̄−1 ⊗

[
1
2
Iiω(Ii t̂)Ib t̃Ii

1

]−1

⊗ Ib
Ii
q̄−1

 (52)

rpi
= GpIb(

Ibt) +
Ib(

Ib t)
G R⊤IbpIi − GpIi(

Ii t̂)− GvIi(
Ii t̂)Ib t̃Ii (53)

It is important to note that the proposed MIMC-VINS lever-
ages FEJ [12], [60] for all state variables (except calibration
parameters) to perform EKF update with these multi-IMU
measurements in order to improve estimation consistency,
which is different from our previous work [11]. The FEJ-based
observability constraints have been shown to greatly improve

the MSCKF-based single-IMU/camera VINS [4] and we have
also experimentally found that this FEJ treatment leads to large
performance gains for the proposed MIMC-VINS estimator
(see Section VI-D2).

In particular, we apply FEJ to analytically compute the state-
transition matrix as in [2]. As compared to the standard single-
IMU case, to maintain consistency across the multi-IMU
constraints, at every timestep we use the first estimate for the
base IMU pose along with the best estimate for the calibration
in order to form the linearization points for the auxiliary IMUs.
Owing to the fact that we perform FEJ-based linearization in
this described way, the multi-IMU measurement Jacobians can
be obtained as follows (see [11]):

∂rθi
∂Ib t̃Ii

= −Ib
Ii
R̂
(
ωmi − b̂gi

)
,

∂rθi
∂Ib
Ii
θ̃
= −I3,

∂rθi

∂
Ib(

Ib t̂)
G θ̃

= I3,
∂rθi

∂
Ii(Ii t)
G θ̃

= −Ib
Ii
R̂ (54)

∂rpi

∂Gp̃Ii(
Ii t̂)

= −I3,
∂rpi

∂Gp̃Ib(
Ibt)

= I3,
∂rpi

∂Ib t̃Ii
= −Gv̂Ii(

Ii t̂),

∂rpi

∂
Ib(

Ib t)
G θ̃

= −G
Ib(

Ib t)R̂⌊Ib p̂Ii×⌋, rpi

∂Ib p̃Ii

= G
Ib(

Ib t)R̂ (55)

Note that as in the stochastic cloning of state augmentation,
the value of the angular velocity used in the linearization
[see (51)] comes from the i-th IMU’s gyro measurements (i.e.
ωmi(

Ii t̂)−b̂gi(
Ii t̂)). As before, errors in the linear and angular

velocities are multiplied by Ib t̃Ii , and thus do not affect the
measurement up to first order. It is also important to note that,
after update with the multi-IMU relative-pose constraints, the
state of the base IMU will still be at the prior estimate at
time Ib t̂k+1|k (i.e., the time we last propagated to), while we
will have an updated estimate for the time offset Cb t̂Ib . To
compensate for this, when we receive a new camera image
at time Cbtk+2, we actually propagate the base IMU from
Ib t̂k+1|k to Ib t̂k+2|k+1 = Cbtk+2 +

Cb t̂Ib [see (45)]. Similarly,
the i-th non-base IMU will still be at the prior estimate at
time Ii t̂k+1|k, while we will have an updated estimate for the
time offset Ib t̂Ii . When we receive a new camera image at
time Ibtk+2, propagation for each non-base IMU is performed
over the interval [Ii t̂k+1|k,

Ii t̂k+2|k+1] [see (46)].
4) FEJ Update with Multi-Camera Measurements: The

linear interpolation in the barebones MIMC-VINS [see (32)
and (33)] relies on the assumption of linear evolution in the
orientation and position of the platform. While this may be
adequate in many scenarios, in the case of highly-dynamic
motion, this model does not hold. In particular, if perform-
ing update using this improper model, this constant-velocity
motion assumption adds information to the estimator that may
be inconsistent, thereby destroying any performance gain from
the addition sensors.

To address this issue, we generalize the linear interpolation
to higher-order interpolation to capture more complex motion
profiles seen in practice. Consider an image captured by the
i-th camera, with reported timestamp Cit, which corresponds
to time Cbt = Cit + CitCb

as expressed in the base camera
clock. In order to process these measurements, we then need to
be represent the pose at this true imaging time. In particular,
we fit a polynomial of degree n in terms of time to a set
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of n + 1 known poses (for simplicity of nations, we denote
Cit+ CitCb

=: t):

I(t)
G R = Exp

(
n∑

i=1

aθi∆ti

)
I(t0)
G R (56)

GpI(t) =
GpI(t0) +

n∑
i=1

api∆ti (57)

where t0 := Cbt0 represents the time of the oldest pose being
fitted to as expressed in the base camera’s clock and ∆t =
t − t0. Note that due to representing the interpolated pose
as a polynomial function of the “time change from t0”, we
trivially recover the pose at t0 when plugging in ∆t = 0.
Fitting this polynomial involves estimating the parameters aθi
and api. To do so, we require n additional poses that, at each
corresponding time, the polynomial should fit exactly (with
corresponding time difference ∆tk = tk − t0:

I(tk)
G R= Exp

(
n∑

i=1

aθi∆tik

)
I(t0)
G R (58)

⇒
n∑

i=1

aθi∆tik = Log
(
I(tk)
G R

I(t0)
G R⊤

)
:= ∆ϕk (59)

GpI(tk) =
GpI(t0) +

n∑
i=1

api∆tik (60)

⇒
n∑

i=1

api∆tik = GpI(tk)− GpI(t0) := ∆pk (61)

These constraints can be stacked in order to solve for the
stacked vectors of coefficients [see (59)]:

∆ϕ1

∆ϕ2

...
∆ϕn


︸ ︷︷ ︸

∆ϕ

=


∆t1 ∆t21 · · · ∆tn1
∆t2 ∆t22 · · · ∆tn2

...
...

. . .
...

∆tn ∆t2n · · · ∆tnn


︸ ︷︷ ︸

V


aθ1
aθ2

...
aθn


︸ ︷︷ ︸

aθ

(62)

aθ = V−1∆ϕ (63)

ap = V−1∆p (64)

These equations (63) and (64) reveal that the interpolated
pose and thus the corresponding measurements are dependent
on the n+ 1 known poses which are in the state vector. Note
that this interpolated pose is additionally a function of the un-
known time offset, and thus we take the Jacobian with respect
to this parameter and estimate it online. These measurement
Jacobians can be computed as shown in Appendix A.

In order to implement this in the proposed MIMC-VINS, for
each auxiliary camera measurement we query the poses which
bound estimated measurement time to form the polynomial for
fitting. We attempt to make the segment that the measurement
falls in to be in the “middle” of the set of poses. For example,
when forming an odd order polynomial, we try to ensure
that we have (n + 1)/2 poses earlier and newer than the
measurement. If we do not have enough poses earlier or later,
we simply grab the earliest/latest n+ 1 poses.

It is important to note that we also employ the FEJ method-
ology when computing measurement Jacobians involved with
the above interpolation in order to improve estimation con-
sistency, but use the similar methods in [28], [61] when

computing the residual. In particular, we use the saved IMU
readings to propagate from the closest neighbor clone estimate
to compute Gp̂I(t̂) and I(t̂)

G R̂, as this offers a more accurate
estimate for the interpolated pose.

B. FEJ Update with SLAM Features
In order to further improve estimation accuracy, as in

[62], we selectively keep certain visual features (aka SLAM
features) – which can be reliably tracked beyond the sliding
window and are denoted by xm = [Gp⊤

f1 · · · Gp⊤
fk]

⊤ –
in the state vector [see (39)] till they get lost and are then
marginalized. Importantly, when performing EKF update with
the measurements of these SLAM features, we again enforce
the FEJ-based observability constraints in computing these
measurement Jacobians in order to further improve estimation
consistency and thus accuracy [12]. Note that we use the
process of delayed initialization to add these features to our
state [61].

C. Extending to Rolling-Shutter Cameras
We have thus far assumed global-shutter cameras wherein

all measured pixel intensities for single image correspond to
the same instance in time. However, low-cost cameras often
utilize a rolling shutter (RS), wherein each row of the image
is captured sequentially. This may lead to large errors in the
estimation if this RS effect is not taken into account [63]. To
address this issue, we also perform online calibration of the
RS readout time. Specifically, let the total readout time of the
i-th camera be tri, and t denote the time that the pixel was
captured. The RS measurement function for a pixel captured
in the m-th row (out of M in total) of the i-th camera is given
by [see (30)]:

zi(t) = wi

(
Π
(
Ci(t)pf

)
, ζi

)
+ nzi(t) (65)

t = Cit+ CitCb
+

m

M
tri (66)

where Cit is the nominal imaging start time in the i-th camera
clock and CitCb

is the time offset as previously discussed. Note
that one may define this nominal imaging time in different
ways (e.g. start of image, end of image, middle of image),
which simply requires minor modification of (66) [32], [63].

The RS effect simply adds a further offset into the time
the measurement was captured. These measurements can be
seamlessly incorporated into our MIMC-VINS estimator with
one slight modification; all measurements, even the base
camera, must be expressed using the proposed high-order
polynomial interpolation. In addition, we will have an extra
Jacobian with respect to the unknown RS readout time when
updating with camera measurements:

∂zi

∂t̃ri
=

m

M

∂zi

∂Ci t̃Cb

(67)

D. Resilience to Sensor Failures
When navigating in challenging environments, robustness to

sensor failures is key to persistent localization. The proposed
MIMC-VINS is resilient to up to N IMU and M camera
sensor failures. While the failure of cameras might not be
catastrophic as failed cameras simply do not provide any
measurements for update, the failure of the IMU prevents
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VINS from performing state estimation (as the IMU is the
backbone of propagation). In the case that the base camera
fails, we simply perform stochastic cloning at an arbitrarily
chosen frequency.

We consider the more challenging scenario where the base
IMU sensor fails, as when a non-base IMU sensor fails it
is trivial to marginalize its navigation state. During the base
failure, we “promote” an auxiliary sensor to be the new base
(which is denoted as the n-th IMU). We then transform the
quantities in our state to be expressed with respect to this new
base. Specifically, each IMU clone refers to the base IMU
sensor frame at the true imaging time, tj , and we can write
the following transformations for each:

In(tj)
G R = Ib

In
R⊤Ib(tj)

G R (68)
GpIn(tj) =

GpIb(tj) +
Ib(tj)
G R⊤IbpIn (69)

Additionally we can propagate the IMU-IMU and camera-
IMU transforms:

In
Ii
R = In

Ib
R⊤Ib

Ii
R, InpIi =

In
Ib
R
(
IbpIi − IbpIn

)
(70)

Ck

In
R = Ck

Ib
RIb

In
R⊤, CkpIn = CkpIb +

Ck

Ib
RIbpIn (71)

Moreover, the relationship between any clock, the base clock,
and the new base clock takes the form:

Ibt+ IbtIi =
Int+ IntIi ⇒ IntIi =

IbtIi − IbtIn (72)
Using these constraints, we can modify the estimates such that
the n-th IMU serves as the new base, through a proper mean
and covariance propagation. It is important to note that this
procedure can be triggered at any point, such as when base
sensor failure is detected, thus allowing for continuous and
uninterrupted estimation.

E. Remarks and Summary
At this point, we have explained in detail the key advanced

features of the proposed MIMC-VINS with online sensor
calibration, improved resilience, and consistency, which en-
ables the plug-and-play functionality and accurate estimation
performance. We here share some important remarks:

• Online sensor calibration of both intrinsics and extrinsics
is important, and not only enables the plug-and-play
functionality (and thus lowers the technology barriers for
end users) but often improves the estimation performance.
We also note that we chose to not perform online IMU
intrinsic calibration due to the high number of degenerate
motions which can adversely affect accuracy [64].

• The FEJ-based methodology is essential for improving
estimation consistency/accuracy and has been utilized in
multiple new ways; in addition to being used in pro-
cessing SLAM feature measurements in analogy to EKF-
SLAM [60], it is employed in both multi-IMU constraints
and high-order interpolated multi-camera measurements.

• It is often required in autonomous robots to provide con-
tinuous uninterrupted localization solutions, for example,
in order to support motion planning, even when some
sensor fails during operation. The proposed MIMC-VINS
offers such resilience by seamlessly switching the failed
sensor states to the healthy ones without interrupting
localization continuity, and thus greatly improves system
reliability and extends mission duration.

The main steps of the proposed MIMC-VINS have been
summarized and outlined in Algorithm 1.

Algorithm 1 Versatile and Resilient MIMC-VINS Estimation

Input: N + 1 IMUs and M + 1 cameras’ measurements.
Output: Inertial navigation states and intrinsic/extrinsic
calibration parameters, as well as their error covariance.

1: Initialization: Initialize state estimate and covari-
ance with first few inertial/visual measurements. Assume
the first IMU and camera are the respective base sensors.

2: loop
3: Propagation: When all IMU measurements avail-

able in the consecutive base imaging time interval
[Ii t̂k,

Ii t̂k+1] (i = 0, · · · , N ):
4: if IMU sensor failure detected then
5: if Failed IMU is the base then
6: Switch to an arbitrarily chosen new IMU base [see

(68) and (69)].
7: end if
8: Marginalize the failed IMU state (by removing the

corresponding state estimate and covariance blocks).
9: end if

10: Propagate each IMU state from time Ii t̂k to Ii t̂k+1 =
Cbtk+1 +

Cb t̂Ib +
Ib t̂Ii [see (45) and (46)].

11: State Augmentation: Stochastic cloning of the
base IMU pose at the true time Cbtk+1 [see (48) and
(49)].

12: Inertial Update: EKF update with multi-IMU
relative-pose constraints [see (52) and (53)], where FEJ
is imposed in computing their Jacobians.

13: Visual Update: When camera images available at
the base imaging time Cbtk+1:

14: if Camera failure detected then
15: if Failed camera is the base then
16: Switch to arbitrarily cloning at a fixed frequency.
17: end if
18: Skip this faulty camera.
19: end if
20: Perform KLT-based visual feature tracking for each

healthy camera, which can be parallelized if possible
(see Section IV-B3).

21: Perform FEJ-MSCKF update with multi-camera (RS)
measurements [see (65)], where the high-order polyno-
mial interpolation is employed [see (56) and (57)], and
FEJ is imposed in processing all feature observations.

22: end loop

VI. SIMULATION RESULTS

The proposed MIMC-VINS estimator is developed within
our recently open-sourced OpenVINS [16]. This codebase
provides a visual-inertial MSCKF-based estimation framework
including a set of simulation and evaluations tools, and its
basic single-camera/IMU VINS has been shown to outper-
form existing open-sourced state-of-the-art methods. To fully
understand the effects of sensing properties on estimation per-
formance and validate the proposed algorithm, in this section
we perform extensive simulation tests on the synthetic data
generated by our general visual-inertial simulator. We believe
this is important because simulations can help crystallize
and validate our design choices on the scenarios of interest
that may be hard to encounter in experiments, establish the
limitations of the state of the art, and demonstrate issues to
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Table I: Simulation parameters and prior single standard
deviations that perturbations of measurements and initial states
were drawn from. Note that if values were applied uniformly
to all sensors only a single value is reported in this table.

Parameter Value Parameter Value

Cam Freq. (hz) 10,11,13,23,18,22 IMU Freq. (hz) 400
Num. Feats Per Camera 25 Num. SLAM feats 0
Num. Base Cam. Clones 10 Feat. Rep. GLOBAL
Gyro. Bias Turn-on Prior 0.01 Accel. Bias Turn-on Prior 0.01

Gyro. White Noise 1.6968e-04 Gyro. Rand. Walk 1.9393e-05
Accel. White Noise 2.0000e-3 Accel. Rand. Walk 3.0000e-3

Pixel Noise 1 Multi-IMU Constraint Noise 5e-4
Prior Calib Ori. (rad) 0.017 Prior Calib Pos. (m) 0.01
Prior Calib Toff (sec) 0.01 Prior Readout (sec) 0.003

Prior Cam Proj 1.0 Prior Cam Dist 0.01

Figure 4: Simulated trajectories, axes are in units of meters.
Going from top to bottom: Gore, Outdoor, and Tum. Green
square denotes the start and red diamond denotes the end.

be addressed.

A. MIMC-VINS Simulator
The new MIMC-VINS simulator is generalized from the

OpenVINS simulator [16] to be able to encompass an arbitrary
number of IMUs and cameras and simulate the proposed
measurement models. In the following we explain in detail
the key designs of this general simulator, while the exact
parameters used in the simulations presented below are given
in Table I.

1) B-Spline Trajectory Representation: At the center of our
simulator is a SE(3) B-spline representing a continuous-time
trajectory of 6DOF poses, which allows for the calculation
of the pose, velocity, and accelerations at any given timestep
along the trajectory. For the simulation results presented in this
section, the input is a pose trajectory file which is uniformly
sampled and a cubic B-spline is fitted to. The three simulated
but realistic trajectories used to evaluate the proposed approach
are depicted in Figure 4: (i) The first simulated dataset is
called “Gore” and is based on a 240 meter dataset collected in
the University of Delaware’s Gore Hall in which three floors
are traversed; (ii) The second dataset is called “Outdoor” and

was collected by a VINS system mounted on a car which
travels along three levels of a parking garage before exiting and
driving along the road, and has total length of approximately
1800 meters; (iii) The third scenario is highly dynamic and
based on the “Tum Corridor 1” dataset from the TUM VI
benchmark datasets [65] which we simply term “Tum” and is
approximately 295 meters.

2) Inertial Measurements: By computing the time deriva-
tives of the B-spline, we can obtain the true angular velocity
and linear acceleration of a single IMU (i.e., the base simulated
IMU Ib) that is attached to the trajectory. Specifically, we
leverage the B-spline to compute the linear velocity GṗIb =
GvIb and acceleration Gp̈Ib = GaIb , while the angular rate
IbωIb and angular acceleration IbαIb are given by:

G
Ib
Ṙ= G

Ib
R⌊IbωIb×⌋ (73)

⇒ IbωIb=
(
G
Ib
R⊤G

Ib
Ṙ
)∨

(74)
G
Ib
R̈ = G

Ib
Ṙ⌊IbωIb×⌋+ G

Ib
R⌊IbαIb×⌋ (75)

⇒ IbαIb=
(
G
Ib
R⊤

(
G
Ib
R̈− G

Ib
Ṙ⌊IbωIb×⌋

))∨
(76)

where (·)∨ extracts the vector of a skew symmetric matrix.
With these kinematics, the linear acceleration and angular
velocity of a non-base IMU Ii can be computed based on
the rigid-body constraints between the two IMUs [41]:
GaIi =

GaIb +
G
Ib
R
(
⌊IbωIb×⌋⌊IbωIb×⌋+ ⌊IbαIb×⌋

)
IbpIi

IiωIi =
Ii
Ib
RIbωIb (77)

Based on the above kinematic equations, we generate the
synthetic true inertial measurements for each IMU at any given
time with any given extrinsic transformation, which are then
corrupted using the random walk biases and white noise to
simulate realistic IMU readings. Note that when simulating
with non-zero time offset between the the base and non-base
IMUs, the true timestamp is changed based on the true time
offset between the two.

3) Visual Bearing Measurements: After generating the B-
spline-based trajectory, static environmental features are in-
cremented along the trajectory and if the number of projected
features fall below the desired feature count threshold, random
feature bearing rays are generated from each camera and
assigned random depths. These features are then appended to
the environmental map and projected into future frames.

In the case of a global shutter camera, visual feature
measurements are simulated by projecting the corresponding
environmental features into the camera frame using the true
camera parameters. These true raw pixel coordinates are then
corrupted using their corresponding white noise.

In the case of a rolling shutter camera, feature measurements
were generated with an additional modification to the feature
projection procedure [32]. In particular, due to the RS effect
one cannot simply utilize the groundtruth feature positions and
camera poses to project onto the image plane, as each row
was captured at a different time. Therefore, we start with the
nominal image time t0, and perform standard global shutter
projection for a given feature. This projection yields a row m0

that the feature projected to. With this row, we then compute
a new imaging time based on the RS effect [see (66)]:

t1 = t0 +
m0

M
tri (78)
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Using this new time, we recompute the projection using the
camera pose at t1, and iterate this process until t converges
(which typically requires 2-3 iterations). This ensures that for
a given feature, it is captured at the pose time corresponding
to the image measurement time plus the rolling shutter readout
time. These true raw pixel coordinates are then corrupted by
white noise. Lastly, in order to mimic poor prior calibration,
we perturbed each of the calibration parameters by sampling
from their prior distributions (see Table I for all parameters
used in the simulations).

Based on this general visual-inertial simulator, in the fol-
lowing, we first perform numerical studies of the impact of
camera and inertial sensors on estimation performance, and
then present the full MIMC-VINS running in simulations.

B. Multi-Camera Simulations
1) Effect of Adding Cameras: To investigate the benefit

of adding extra cameras into the multi-camera visual-inertial
system, we first perform 30 Monte-Carlo simulations for each
dataset and each number of cameras. For these runs we report
both the Absolute Trajectory Error (ATE), which is the average
RMSE across the dataset, and the Relative Pose Error (RPE)
[66]. For these experiments, each camera was allowed to track
25 features to mimic the effects of measurement depletion in
a given viewing direction. The results are shown in Tables II
and III, which clearly show that adding more cameras tends
to improve the estimation performance in term of both ATE
and RPE. In particular, the six-camera configuration has errors
almost half of the monocular VINS, which greatly validates
our desire to add more cameras into the system for building
more accurate VINS, even if the system suffers from poor
prior calibration.

2) Implication of Multi-Camera Features: In general, as
more cameras are added and provide a larger field of view,
the total number of tracked features would increase (e.g. if one
camera tracks 50 features in total, then for two cameras 100
features may be tracked). The increased features can provide
more information to the VINS estimator, thus allowing to
further reduce uncertainty and increase accuracy. One may
ask what happens if the total number of tracked features is
simply kept constant as we add more cameras (e.g. one camera
extracts 100 features, two cameras each extract 50). While a
more intelligent and adaptive feature selection strategy can
be devised, in this simulation (where features are roughly
uniformly distributed in the environment), we proportionally
reduce the number of features that each camera tracks if adding
more cameras in order to keep the same total number of
tracked features.

The results in Table IV show that a single camera which
extracts 150 features is able to achieve the same level of accu-
racy as a three camera system which extracts the same number
of features. However, this makes sense in this particular test
as there is approximately the same amount of information
added into the system due to the fact that the features can
be uniformly tracked by different cameras, which typically is
not the case in practice. One of the key benefits to including
multiple cameras even if the amount of tracked features
is not increased is to improve the robustness to viewpoint
failures. For example, if one camera faces a textureless wall,
it would be unable to extract features and provide motion

information, while in a multi-camera system the other cameras
provide robustness by viewing the environment from different
directions.

3) Choice of Interpolation Order: To understand how the
choice of interpolation order affects performance, we tested
on the most dynamic of the three datasets, Tum, and used an
extremely low frequency of 5 Hz for the base camera. Six
cameras were utilized in total, and calibration was performed
online. The RPE and ATE results are shown in Tables V and
VI. Interestingly, while accuracy (in terms of both metrics)
is improved when moving from order one to order three,
adding additional complexity to the polynomials tends to cause
a decrease in accuracy. We conjecture that there may be
overfitting in the polynomial regression as the system “inter-
prets” small errors in the estimates as higher-order motion.
This is especially problematic as we leverage FEJ to compute
Jacobians, and thus the system attempts to fit a polynomial to a
series of suboptimal, initial estimates, rather than a smoothed
window of the current full estimates. Overall, we found that
order-three polynomials offer the best performance, albeit by a
small margin. We also note that one could alternatively utilize
different orders for the position and orientation interpolation
independently.

C. Multi-IMU Simulations
1) Effect of Adding IMUs: We next numerically evaluated

the accuracy gains when adding additional IMUs into the sys-
tem. In this test, we initialized the velocities and biases of each
IMU, along with the pose of the base IMU, as the groundtruth.
We then used the uncertain imperfect calibration parameters
to clone the pose estimates of each auxiliary IMU. For these
experiments, six noisy IMUs were simulated with varying
spatial extrinsics. We performed 30 Monte-Carlo simulations
of the proposed estimator for each number of IMU used. The
RPE and ATE results are shown in Tables VII and VIII, which
clearly reveal that adding more IMUs always improves both
the ATE and the RPE for every segment tested. Overall, these
results confirm that adding IMUs can dramatically improve
estimation even with poor prior calibration and validate our
desire to add additional inertial sensors into the visual-inertial
system.

D. Complete MIMC-VINS Simulations
1) Calibration Consistency and Convergence: We validated

the consistency of the pose and calibration estimates for a
three IMU and three camera MIMC system on the synthetic
Tum dataset. We employed an interpolation order of three and
the cameras were simulated at 10, 11, and 13 fps, and the
RS readout times of 10, 15, and 20 milliseconds, respectively,
while the estimator started with the initial guess of 0 for each.
As shown in Figure 5, the estimation errors reveal good consis-
tency (that is, they stay within the 3σ bounds reported by the
covariance), and additionally all calibration converges to the
correct value. For these experiments, we found that inflating
the noise associated with the auxiliary camera measurements
during the first few seconds of the simulation leads to better
consistency and convergence; and similarly, inflating the noise
of the multi-IMU rigid-body constraints during the first few
seconds of the run before switching to a very small value
(rather than purely zero) offered the best performance/stability.



IEEE TRANSACTIONS ON ROBOTICS, VOL. 37, NO. 5, OCTOBER 2021 1372

Table II: ATE in degrees/meters when performing online calibration with multiple cameras.

Number of Cameras Outdoor Tum Gore Average

1 0.277 / 1.480 1.173 / 0.828 1.824 / 0.639 1.091 / 0.982
3 0.231 / 1.017 0.649 / 0.374 0.752 / 0.375 0.544 / 0.589
6 0.205 / 0.816 0.329 / 0.221 0.460 / 0.238 0.331 / 0.425

Table III: RPE in degrees/meters for the simulated datasets using different numbers of cameras.

Num. Cameras 8m 16m 24m 32m 40m 48m

1 0.117 / 0.138 0.156 / 0.192 0.181 / 0.237 0.204 / 0.277 0.218 / 0.309 0.233 / 0.342
3 0.083 / 0.077 0.111 / 0.110 0.127 / 0.137 0.142 / 0.159 0.151 / 0.179 0.159 / 0.195
6 0.062 / 0.051 0.082 / 0.073 0.094 / 0.091 0.103 / 0.108 0.110 / 0.123 0.117 / 0.136

Table IV: ATE in degrees/meters for adding more features and
a constant total number as tested on the Tum dataset.

Num. Camera Feat. Per Cam. Feat. Total ATE

1 150 150 0.507 / 0.362
2 75 150 0.589 / 0.298
3 50 150 0.564 / 0.304

1 50 50 0.950 / 0.744
2 50 100 0.747 / 0.354
3 50 150 0.564 / 0.304

Table V: ATE in degrees/meters for the Tum dataset when
using different interpolation orders for six cameras.

Interp. Order ATE

1 0.274 / 0.180
3 0.270 / 0.179
5 0.273 / 0.180
7 0.302 / 0.181

We conjecture that this is due to the fact that in the beginning,
the calibration estimates are at their “worst”, and thus the
system suffers the most from linearization errors. Inflating the
noise then allows us to handle these initial errors consistently,
as the EKF only models the error coming from the sensor
noises and the uncertainty of the state, and does not explicitly
model the error of the linearization itself. After the calibration
parameters converge towards their true value, this inflation is
no longer needed. Thus the IMU calibration parameters can be
seen to change from slow to fast convergence after this switch
(in these experiments, we used the first 5 seconds). Overall,
these results validate the proposed MIMC-VINS calibration
performance and consistency.

2) FEJ Impact: We now look to investigate the impact of
using FEJ within our MIMC-VINS framework. As shown in
Table IX and X, there is a clear advantage to using FEJ.
Even as more sensors are added the benefit of using FEJ to
improve estimator consistency has a clear impact on the final
accuracy of the system. It is interesting to see that without FEJ,
three camera/IMU sensors are needed to outperform the single
camera/IMU pair which uses FEJ, which further motivates us
to leverage FEJ to improve estimation performance.

3) Resilience to Sensor Failures: In order to validate the
proposed MIMC-VINS robustness to sensor dropouts, we
simulated three cameras and three IMUs travelling along the
Tum trajectory. For this experiment, each IMU was associated

with a partner camera, such that the entire system was made
up of three components. At 96 seconds, the first component
that contained the base IMU and camera was turned off, such
that no more camera or IMU data were generated. This forced
a switch to utilizing the second component as the base. Note
that even though no actual base camera data was collected,
we still generated stochastic clones at the same rate as if it
were still active. At 192 seconds, we simulated a failure of the
second component, so that only the third remained. The pose
errors and their 3σ bounds are shown in Figure 6. As evident,
despite the fact that 4 out of 6 sensors have failed throughout
the run, including the base IMU, the proposed MIMC-VINS
is resilient to provide continuous and accurate pose estimates
of the sensor platform.

It should be pointed out that the continuous state estimates
always refer to the same sensor frame in order for ease of
external systems to continuously use these localization outputs
without any interruption even in the case of sensor failure.
That is, the first-ever base IMU sensor frame, denoted {I0},
is selected for which the state estimate is always expressed
in. To achieve this, we maintain the transformation from the
frame {I0} to the current base IMU frame in the state even
if the base IMU has failed. Its estimate will be updated over
time and will have the same covariance propagation applied to
it if additional base IMU fails. This estimated transformation
is used to obtain the state estimate in {I0} by transforming
the current base IMU pose estimate into it and performing
covariance propagation to ensure that the correct covariance
of the pose estimate in the global frame is published.

VII. REAL-WORLD EXPERIMENTAL RESULTS

To further evaluate the proposed MIMC-VINS on real-world
data, we have built a MIMC sensor platform that consists of
three 640x480 ELP-960P2CAM-V90-VC USB 2.0 RS-stereo
cameras operating at 30 Hz, and two IMUs including an
XSENS MT-100 and Microstrain 3DM-GX-25 (see Figure 7).
Note that the three stereo pairs were placed in a semi-circular
pattern giving an overall large field of view greater then 180◦

while only the left image of each stereo pair was leveraged
in the experimental results presented below. Multiple datasets
were collected in a large Vicon warehouse, providing highly
accurate groundtruth for comparison. The trajectories of these
datasets (labeled as multicam 1-4) are 74, 91, 185, and 108
meters in total length, respectively.

In these experiments, we initialized the estimator from
a stationary position. In particular, the base IMU collected
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Figure 5: The proposed MIMC-VINS calibration for a three camera and IMU configuration on the simulated Tum dataset. Black,
red and blue respectively denote parameters relating to the base, second, and third camera/IMU respectively. For calibration
parameters, only the first fifteen seconds are shown. Solid lines refer to the errors, while dotted lines are the 3σ reported by
the estimator, demonstrating consistency of the estimator. Note that for camera time offset the time offset of the base shown
(black) is the offset between the base camera and base IMU as compared to the camera-camera time offset.
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Table VI: RPE in degrees/meters for the simulated datasets using different interpolation orders.

Interp. Order 8m 16m 24m 32m 40m 48m

1 0.070 / 0.027 0.084 / 0.036 0.092 / 0.043 0.099 / 0.050 0.105 / 0.056 0.113 / 0.064
3 0.063 / 0.027 0.077 / 0.035 0.085 / 0.042 0.093 / 0.049 0.099 / 0.054 0.107 / 0.062
5 0.068 / 0.027 0.082 / 0.036 0.090 / 0.043 0.097 / 0.050 0.103 / 0.055 0.111 / 0.063
7 0.075 / 0.027 0.088 / 0.036 0.097 / 0.043 0.104 / 0.050 0.111 / 0.056 0.118 / 0.064

Table VII: ATE in degrees/meters when performing online calibration with multiple IMUs.

Num. IMU Outdoor Tum Gore Average

1 0.277 / 1.480 1.173 / 0.829 1.824 / 0.640 1.091 / 0.983
3 0.190 / 1.078 1.018 / 0.655 1.418 / 0.465 0.875 / 0.733
6 0.166 / 0.922 0.663 / 0.571 1.143 / 0.398 0.657 / 0.630

Table VIII: RPE in degrees/meters for the large-scale simulated dataset using different numbers of IMUs.

Num. IMU 8m 16m 24m 32m 40m 48m

1 0.117 / 0.138 0.156 / 0.192 0.181 / 0.237 0.204 / 0.277 0.218 / 0.309 0.233 / 0.342
3 0.091 / 0.120 0.123 / 0.167 0.144 / 0.206 0.163 / 0.236 0.177 / 0.264 0.182 / 0.289
6 0.075 / 0.110 0.101 / 0.152 0.121 / 0.185 0.134 / 0.213 0.145 / 0.237 0.153 / 0.257

Table IX: ATE simulation errors in degrees/meters of the proposed MIMC-VINS with and without FEJ enabled.

Num. IMU / Cam. Outdoor Tum Gore Average

With FEJ
1, 1 0.239 / 0.886 0.237 / 0.153 0.768 / 0.223 0.415 / 0.421
2, 2 0.174 / 0.588 0.224 / 0.115 0.466 / 0.153 0.288 / 0.285
3, 3 0.145 / 0.525 0.177 / 0.113 0.307 / 0.112 0.210 / 0.250

Without FEJ
1, 1 0.351 / 1.048 0.369 / 0.194 2.345 / 0.428 1.021 / 0.557
2, 2 0.257 / 0.767 0.325 / 0.151 1.165 / 0.236 0.583 / 0.385
3, 3 0.297 / 0.859 0.330 / 0.151 0.760 / 0.173 0.462 / 0.394

Figure 6: The orientation and position of the proposed MIMC-
VINS in the presence of sensor dropouts. The segments of
the trajectory are broken into three parts: in the first (red),
all three components are operational. In the second (blue), the
first component pair has failed. In the final (green), the second
component pair has also failed, leaving only one IMU-camera
pair operational. Despite these failures, redundant sensing
allows for continuous and accurate estimation of the platform.

accelerometer data during this period to estimate the direction
of gravity, while the initial velocity estimate of each IMU
was set to zero. Once a sufficient excitation of the base
IMU was detected, the system computes initial pose estimates
of the auxiliary IMUs using the prior calibration as in the

simulations. After initialization, propagation and update began
as normal as outlined in Algorithm 1. All sensing parameters
were calibrated online with the initial guesses provided by
offline calibration using the Kalibr toolbox [29], [67], [68].
We also found that there was about 18ms readout time for the
RS cameras used.

Features were extracted uniformly using FAST [69] and
tracked independently (see Section IV-B3) for each camera’s
image stream using KLT [70] along with outlier rejection via
8-point RANSAC. Each camera tracked at most 100 features
in its image stream. Up to 25 features that were tracked longer
than the sliding window size of 12 were added as SLAM
features into the state vector. For other features, the MSCKF
update was performed if the feature’s first measurement was
collected before the second oldest sliding window clone (i.e.
if it has measurements that would become “too old” after the
next marginalization phase). When processing measurement
updates, we slightly inflated the assumed noise sigma to
2 pixels in order to account for the unmodeled effect of
image patch warping due to the RS images, which we found
experimentally led to improved accuracy of our system.2

A. Estimation Accuracy Validation
To further validate our choice of increased VI-sensors, we

processed each of the datasets (multicam 1-4) using different

2A video of these experiments is available: http://www.udel.edu/007455.

http://www.udel.edu/007455
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Table X: RPE simulation errors in degrees/meters of the proposed MIMC-VINS with and without FEJ enabled.

Num. IMU / Cam. 8m 16m 24m 32m 40m 48m

With FEJ
1, 1 0.055 / 0.045 0.071 / 0.064 0.081 / 0.080 0.090 / 0.093 0.096 / 0.103 0.103 / 0.111
2, 2 0.042 / 0.032 0.054 / 0.045 0.062 / 0.055 0.069 / 0.064 0.073 / 0.071 0.078 / 0.076
3, 3 0.036 / 0.027 0.046 / 0.038 0.053 / 0.047 0.058 / 0.055 0.062 / 0.061 0.065 / 0.065

Without FEJ
1, 1 0.057 / 0.046 0.075 / 0.064 0.087 / 0.081 0.098 / 0.096 0.106 / 0.107 0.114 / 0.119
2, 2 0.044 / 0.033 0.058 / 0.047 0.068 / 0.058 0.077 / 0.068 0.084 / 0.075 0.090 / 0.082
3, 3 0.037 / 0.027 0.048 / 0.039 0.057 / 0.049 0.064 / 0.058 0.068 / 0.064 0.073 / 0.069

Figure 7: The sensor platform used in our experiments consists
of three RS-stereo pairs (only left cameras used), XSENS MT-
100, and Microstrain 3DM-GX-25 IMUs.

numbers of IMUs and cameras. To compensate for the random-
ness caused by RANSAC-based frontends and parallelization,
we performed 30 runs for each sensor combination on each
dataset. The ATE and RPE results are given in Tables XI and
XII, which show that incorporating additional sensing tends
to greatly improve both metrics of estimation accuracy. In
particular, the 3-camera, 2-IMU average ATE of 1.248 degrees
and 0.193 meters was a great improvement over the single-
camera, single-IMU which had an ATE of 2.716 degrees and
0.302 meters. We do note, however, that this improvement
was not seen in all cases such as multicam 1, primarily due
to suboptimal tuning of the noise characteristics, especially for
the IMU noises. In addition, we note that because the system
was run in realtime, increasing the number of sensors may
lead to more dropped frames in certain instances. This can
be handled, for example, by more intelligent selection that
spreads measurements across cameras. Importantly, adding
more sensors led to improved performance in RPE at every
tested segment length.

We additionally compared our system to the open-source
system VINS-Mono [6], which supports a single IMU-camera
pair and can estimate online camera to IMU extrinsics and
temporal offset for a rolling shutter camera (although the
readout time and camera intrinsics are assumed to be well-
calibrated beforehand). Note that VINS-Mono was run without
loop closure to provide a fair comparison to our odometry-
only method. As these results show in Tables XI and XII,
our method generally outperforms VINS-Mono, especially
when our system leverages an increased number of sensors,
while occasionally VINS-Mono did provide the most accurate
orientation estimates in terms of ATE. For RPE, VINS-Mono
tended to give similar positional error to our single-IMU
single-camera system (while yielding improved orientation
estimation), but was clearly outperformed by MIMC-VINS
when more sensors were added. We stress that when compar-
ing two algorithms, there are typically many parameters that
can be tuned to improve performance of either method. For
these experiments, we simply used the same initial calibration
estimates and IMU noises for each system, but did not further
tune parameters for performance. In addition, VINS-Mono

Figure 8: Example timing results of the 3 camera 2 IMU
MIMC-VINS configuration on multicam 1. A per-component
timing (top) of the base camera tracking and the state update
can be seen. Additionally, the timing of each camera’s tracking
thread is shown (bottom). While Table XIII illustrates that the
average frame processing times remain below the the 30 Hz
rate of the cameras, there exists spikes in computation which
force the dropping of frames. This can be mitigated by more
resource-aware selection of features for processing.

may be affected by poor calibration of the camera intrinsics
and readout times, which our system is resilient to due
to estimating these parameters online. Overall, these results
again confirm our desire to add additional sensors into the
system, and demonstrate that real-world accuracy gains can
be achieved even without requiring synchronized or calibrated
sensors. In addition, we have shown that the proposed MIMC-
VINS can demonstrate improved performance against state-of-
the-art methods through its leveraging of additional sensors.

B. Real-Time Performance Analysis
To evaluate the realtime performance of the proposed

MIMC-VINS estimator, we have timed both the complete
update thread corresponding to the base camera along with
each asynchronous tracking thread for each additional camera.
The timing results for the 3-camera 2-IMU configuration are
shown in Figure 8, from which we can see that the individual
components typically perform below 0.040 seconds of total
execution time, while on average the it takes 0.0266 seconds to
perform an update. Note that the system for all the experiments
was evaluated on an Intel Core i7-7700HQ CPU clocked at
2.80GHz base frequency.

In the case where the update takes more than the sensing
rate, in these datasets this would be 30 Hz, the next frame is
dropped to ensure realtime pose results. The majority of the
cost comes from the MSCKF feature update which is expected
as propagation typically plays a very small contribution in
execution time, and the visual tracking has been parallelized.
For the per-thread tracking time for each camera, it is clear that
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Table XI: ATE in degrees/meters on the real-world datasets for MIMC-VINS. Average of 30 runs.

Num. IMU / Cam. multicam 1 multicam 2 multicam 3 multicam 4 Average

1, 1 1.539 / 0.158 1.215 / 0.161 4.433 / 0.651 3.676 / 0.237 2.716 / 0.302
1, 3 1.249 / 0.180 1.027 / 0.191 2.215 / 0.472 2.102 / 0.162 1.648 / 0.251
2, 1 1.186 / 0.139 1.096 / 0.170 3.039 / 0.569 1.348 / 0.136 1.667 / 0.254
2, 3 1.350 / 0.156 0.799 / 0.153 1.739 / 0.341 1.101 / 0.123 1.248 / 0.193

VINS-Mono [6] 1.136 / 0.374 2.250 / 0.229 2.051 / 0.481 0.709 / 0.480 1.536 / 0.391

Table XII: RPE in degrees/meters on the real-world datasets for the proposes algorithm. Average of 30 runs.

Num. IMU / Cam. 8m 16m 24m 32m 40m 48m

1, 1 0.598 / 0.120 0.749 / 0.157 0.916 / 0.149 1.135 / 0.184 1.343 / 0.215 1.579 / 0.229
1, 3 0.506 / 0.093 0.588 / 0.122 0.675 / 0.116 0.810 / 0.141 0.945 / 0.170 1.049 / 0.178
2, 1 0.532 / 0.095 0.647 / 0.127 0.757 / 0.120 0.879 / 0.150 1.024 / 0.172 1.124 / 0.179
2, 3 0.463 / 0.076 0.552 / 0.103 0.636 / 0.096 0.752 / 0.119 0.849 / 0.152 0.906 / 0.157

VINS-Mono [6] 0.492 / 0.156 0.619 / 0.210 0.710 / 0.181 0.855 / 0.190 0.970 / 0.215 1.104 / 0.218

Table XIII: Timing analysis of different system components, units are in seconds.

Num. IMU / Cam. Track. Prop. Up. MSCKF Up. SLAM Init SLAM Marg. Total

1, 1 0.0058 0.0007 0.0040 0.0029 0.0032 0.0013 0.0179
1, 3 0.0043 0.0005 0.0127 0.0017 0.0023 0.0026 0.0240
2, 1 0.0054 0.0015 0.0038 0.0029 0.0033 0.0016 0.0184
2, 3 0.0046 0.0011 0.0129 0.0017 0.0029 0.0034 0.0266

Figure 9: The trajectory estimates of the proposed MIMC-
VINS on multicam 1 dataset in the presence of sensor
dropouts. Red section has 3 camera and 2 IMU, blue has 2
camera and 2 IMU, green has 2 camera and 1 IMU, and cyan
has 1 camera and 1 IMU.

all cameras take about the same time to track (although with
occassional spikes), as each camera has the same resolution
and number of feature tracks, and the parallelization works
as expected to save computation time on non-base feature
measurements. A more detailed breakdown of the average
processing time is shown in Table XIII of all different sensor
configurations. The results show the average timing for feature
tracking, propagation (including multi-IMU update), MSCKF
update, SLAM update, new SLAM feature initialization, and
marginalization of old states. Since the addition of each camera
adds more feature measurements that are included in each
update, we expected to see an increase in the update time.
While propagation is expected to also increase, its additional
computational cost is negligible as compared to the cost
of additional feature measurements which are available for
update. In the future we will investigate optimal selection of
measurements for update to bound the update computational
cost even as the number of features tracked are added.

Figure 10: The pose estimation errors of the proposed MIMC-
VINS on multicam 1 dataset in the presence of sensor
dropouts. The first camera is dropped out at 15 seconds, the
first IMU at 30 seconds, and the second camera at 45 seconds
into the dataset.

C. Sensor Resilience Evaluation

To validate the resilience of the proposed MIMC-VINS to
sensor failure in the real world, we demonstrated a series of
sequential failures on the multicam 1 dataset and the trajectory
estimate and RMSE results after alignment to the groundtruth
are shown in Figure 9 and 10. In particular, at the beginning
of the dataset the system has all three cameras and two IMUs.
The cameras are then failed sequentially at 15 and 45 seconds
into the dataset, while for the IMUs there is only a single
failure of the base in the middle of the dataset at 30 seconds.
We note that in practice sensor failure can be detected by
checking if a new measurement has arrived within the average
sensing frequency, or by using Mahalanobis distance testing on
the multi-IMU update (which would be useful in cases where
vibrations or rapid temperature fluctuations have affected an
IMU). The error and trajectory estimates are continuous and
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thus, there are not large “jumps” in the error at these failure
points. This validates the proposed method’s robustness to
sensor failures and its ability to provide continuous state
estimates. It is also important to note that as more sensors are
being lost the accuracy is expected to decrease (see Section
VI), which explains towards the end of the dataset the position
error starts to increase at a faster rate due to only having
information from a single camera.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we have developed a versatile and resilient
multi-IMU multi-camera (MIMC)-VINS algorithm that is able
to seamlessly fuse the multi-modal visual-inertial informa-
tion from an arbitrary number of uncalibrated cameras and
IMUs. Within an efficient and consistent multi-state constraints
Kalman filter (MSCKF) framework, the proposed MIMC-
VINS estimator is able to preserve the similar computational
complexity as in the single-IMU/camera case (i.e. only mod-
erately increasing the size of the state vector if more sensors
are used), while providing smooth, uninterrupted, accurate 3D
motion tracking even if some sensors fail. We have exten-
sively validated the proposed approach in both Monte-Carlo
simulations and real-world experiments, and have shown our
system can outperform a state-of-the-art method. In the future,
we will investigate how to make the proposed MIMC-VINS
adaptive to (computational) resource constraints, and will also
extend this work to cooperative visual-inertial estimation for
distributed multi-robot systems.

APPENDIX A
INTERPOLATION MEASUREMENT JACOBIANS

To simplify derivations, we define the following matrices:

m(t)=
[
∆tI3 ∆t2I3 · · · ∆tnI3

]
(79)

Aθ= m(t)aθ, Ap = m(t)ap (80)

Lastly, we also define the left Jacobian of SO(3), Jl (·) [58].
Then we can write the orientation interpolation as:

I(t)
G R = Exp (Aθ)

I(t0)
G R (81)

We wish to find the Jacobian of this pose in respect to the
poses the polynomial. We next perturb each side:

Exp
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)

I(t)
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)
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)
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)
Ãθ

)
Exp

(
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)
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≈ Exp
(
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(
Âθ
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)
I(t)
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Thus we can immediately pull out Jacobians as:

∂
I(t)
G θ̃

∂
I(t0)
G θ̃

= −Jl

(
Âθ

) ∂Ãθ

∂
I(t0)
G θ̃

+ Exp
(
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)
(83)

∂
I(t)
G θ̃
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I(tk)
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= −Jl

(
Âθ

) ∂Ãθ

∂
I(tk)
G θ̃

(84)

In order to compute this, we also perturb Aθ:

Âθ + Ãθ = m(t) (âθ + ãθ) = m(t)
(
âθ +V−1∆ϕ̃

)

⇒ ∂Ãθ

∂
I(ti)
G θ̃

= m(t)V−1 ∂∆ϕ̃

∂
I(ti)
G θ̃

(85)

Next, we perturb ∆ϕ:

∆ϕ̂+∆ϕ̃=


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...
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Thus we have:
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In the case that we are estimating a time offset, that is t =
tm + CitCb

, then we will additionally have:

∂
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Next we look at the position interpolation:
∂Gp̃I(t)
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ACKNOWLEDGEMENTS

The authors would like to thank Jesse Bloecker for helping
build the MIMC sensor platform and collecting datasets used
in this paper, and also thank the ARL ASD Aerial Vehicle
Team for their support during the experiments.



IEEE TRANSACTIONS ON ROBOTICS, VOL. 37, NO. 5, OCTOBER 2021 1378

REFERENCES
[1] G. Huang, “Visual-inertial navigation: A concise review,” in Proc.

International Conference on Robotics and Automation, Montreal,
Canada, May 2019.

[2] J. Hesch, D. Kottas, S. Bowman, and S. Roumeliotis, “Consistency
analysis and improvement of vision-aided inertial navigation,” IEEE
Transactions on Robotics, vol. 30, no. 1, pp. 158–176, 2013.

[3] J. Hesch, D. Kottas, S. Bowman, and S. Roumeliotis, “Camera-
IMU-based localization: Observability analysis and consistency im-
provement,” International Journal of Robotics Research, vol. 33,
pp. 182–201, 2014.

[4] M. Li and A. Mourikis, “High-precision, consistent EKF-based
visual-inertial odometry,” International Journal of Robotics Research,
vol. 32, no. 6, pp. 690–711, 2013.

[5] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint Kalman
filter for vision-aided inertial navigation,” in Proceedings of the IEEE
International Conference on Robotics and Automation, Rome, Italy,
Apr. 2007, pp. 3565–3572.

[6] T. Qin, P. Li, and S. Shen, “VINS-Mono: A robust and versatile
monocular visual-inertial state estimator,” IEEE Transactions on
Robotics, vol. 34, no. 4, pp. 1004–1020, 2018.

[7] M. K. Paul, K. Wu, J. A. Hesch, E. D. Nerurkar, and S. I. Roumeliotis,
“A comparative analysis of tightly-coupled monocular, binocular, and
stereo VINS,” in Proc. of the IEEE International Conference on
Robotics and Automation, Singapore, Jul. 2017, pp. 165–172.

[8] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 40,
no. 3, pp. 611–625, 2018.

[9] M. Li and A. I. Mourikis, “Online temporal calibration for Camera-
IMU systems: Theory and algorithms,” International Journal of
Robotics Research, vol. 33, no. 7, pp. 947–964, Jun. 2014.

[10] K. Eckenhoff, P. Geneva, J. Bloecker, and G. Huang, “Multi-camera
visual-inertial navigation with online intrinsic and extrinsic calibra-
tion,” in Proc. International Conference on Robotics and Automation,
Montreal, Canada, May 2019.

[11] K. Eckenhoff, P. Geneva, and G. Huang, “Sensor-failure-resilient
multi-imu visual-inertial navigation,” in Proc. International Confer-
ence on Robotics and Automation, Montreal, Canada, May 2019.

[12] G. Huang, A. I. Mourikis, and S. I. Roumeliotis, “Analysis and
improvement of the consistency of extended Kalman filter-based
SLAM,” in Proc. of the IEEE International Conference on Robotics
and Automation, Pasadena, CA, May 2008, pp. 473–479.

[13] Z. Huai and G. Huang, “Robocentric visual-inertial odometry,” in
Proc. IEEE/RSJ International Conference on Intelligent Robots and
Systems, Madrid, Spain, Oct. 2018.

[14] G. Huang, M. Kaess, and J. Leonard, “Towards consistent visual-
inertial navigation,” in Proc. of the IEEE International Conference on
Robotics and Automation, Hong Kong, China, May 2014, pp. 4926–
4933.

[15] A. Mourikis, N. Trawny, S. Roumeliotis, A. Johnson, A. Ansar, and
L. Matthies, “Vision-aided inertial navigation for spacecraft entry,
descent, and landing,” IEEE Transactions on Robotics, vol. 25, no. 2,
pp. 264–280, 2009.

[16] P. Geneva, K. Eckenhoff, W. Lee, Y. Yang, and G. Huang, “Openvins:
A research platform for visual-inertial estimation,” in Proc. of the
IEEE International Conference on Robotics and Automation, Paris,
France, 2020.
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