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Abstract
In this paper we propose a new analytical preintegration theory for graph-based sensor fusion with an inertial
measurement unit (IMU) and a camera (or other aiding sensors). Rather than using discrete sampling of the
measurement dynamics as in current methods, we derive the closed-form solutions to the preintegration equations,
yielding improved accuracy in state estimation. We advocate two new different inertial models for preintegration: (i) the
model that assumes piecewise constant measurements, and (ii) the model that assumes piecewise constant local true
acceleration. We show through extensive Monte-Carlo simulations the effect that the choice of preintegration model
has on estimation performance. To validate the proposed preintegration theory, we develop both direct and indirect
visual-inertial navigation systems (VINS) that leverage our preintegration. In the first, within a tightly-coupled, sliding-
window optimization framework, we jointly estimate the features in the window and the IMU states while performing
marginalization to bound the computational cost. In the second, we loosely-couple the IMU preintegration with a direct
image alignment that estimates relative camera motion by minimizing the photometric errors (i.e., image intensity
difference), allowing for efficient and informative loop closures. Both systems are extensively validated in real-world
experiments and are shown to offer competitive performance to state-of-the-art methods.
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1 Introduction

Accurate localization for autonomous systems is a pre-
requisite in many robotic applications such as planetary
exploration (Mourikis, Trawny, Roumeliotis, Johnson and
Matthies 2007), search and rescue (Ellekilde 2007), and
autonomous driving (Geiger, Lenz and Urtasun 2012). In
many of these scenarios, access to global information such
as from a Global Positioning System (GPS), motion capture
system, or a prior map of the environment is unavailable.
Instead, one has to estimate the robot state and its surround-
ings based on noisy, local measurements from onboard sen-
sors, by performing simultaneous localization and mapping
(SLAM), which has witnessed significant research efforts
in the past three decades (Cadena, Carlone, Carrillo, Latif,
Scaramuzza, Neira, Reid and Leonard 2016).

Of many possible sensors used in SLAM, micro-electro-
mechanical-system (MEMS) inertial measurement units
(IMUs) have become ubiquitous. These low-cost and light-
weight sensors typically provide local linear acceleration
and angular velocity readings, and are well suited for many
applications such as micro aerial vehicles (MAVs) (Ling,
Liu and Shen 2016) and mobile devices (Wu, Ahmed,
Georgiou and Roumeliotis 2015). IMUs provide information
only about the derivatives of the kinematic states, so
estimation must be performed by integrating over these
noisy measurements. This may lead to large drifts over long
periods of time, making the use of a low-cost IMU alone
an unreliable solution. However, IMU readings are highly-
informative about short-term motion which is ideal for
fusion with measurements from exteroceptive aiding sensors,

such as LiDAR and cameras. These sensors compensate for
the drift issue inherent in inertial navigation, while high-
rate inertial measurements are useful in tracking aggressive
motion which may be difficult for exteroceptive low-rate
sensors alone.

One canonical way of fusing IMU measurements in aided
inertial navigation is to use an extended Kalman filter (EKF)
(e.g., see Mourikis and Roumeliotis (2007)). In this method,
the inertial measurements are used to predict to the next time
instance, while measurements from exteroceptive sensors
are used to update the state estimate. More recently, the
development of preintegration has allowed for the efficient
inclusion of high-rate IMU measurements in graph-based
SLAM (Lupton and Sukkarieh 2012; Forster, Carlone,
Dellaert and Scaramuzza 2015, 2017). In this paper, building
upon our prior conference publication (Eckenhoff, Geneva
and Huang 2016a), we investigate in-depth the optimal use
of preintegration by providing models and their closed-
form solutions for the preintegrated measurement dynamics,
allowing for more accurate computation of the inertial factors
for use in graph optimization of visual-inertial navigation
systems (VINS).
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In particular, the main contributions of this work include:

• We advocate two new preintegration models (i.e.,
piecewise constant measurements and piecewise
constant local true acceleration, instead of piecewise
constant global acceleration as assumed in existing
methods) to better capture the underlying motion
dynamics and offer the analytical solutions to the
preintegration equations. We have open sourced the
proposed preintegration to better contribute to our
research community.*

• Using the proposed closed-form preintegration, we
develop an indirect, tightly-coupled, sliding-window
optimization based visual-inertial odometry (VIO),
which marginalizes out features from the state vector
when moving to the next time window to enable real-
time performance of bounded computational cost.

• With the proposed closed-form IMU preintegration,
we further develop a loosely-coupled, direct VINS,
which fuses preintegrated inertial measurements with
direct image alignment results.

• We conduct thorough Monte-Carlo simulation analysis
of different preintegration models by varying motion
dynamics and IMU sampling rates. We also perform
extensive real-world experiments to validate the
proposed VINS using our preintegration by comparing
with a state-of-the-art method.

The reminder of the paper is organized as follows: After
a brief overview of related work in the next section and
estimation preliminaries in Section 3, we present in detail
the proposed continuous preintegration in Section 4. The
direct and indirect VINS that use the proposed preintegration
are described in Section 5. In Sections 6 and 7, we validate
the proposed VINS algorithms through both simulations and
experiments. Finally, Section 8 concludes the work in this
paper, as well as the possible future research directions.

2 Related Work

2.1 Visual-Inertial Navigation
Mourikis and Roumeliotis (2007) proposed one of the
earliest successful VINS algorithms, known as the multi-
state constraint Kalman filter (MSCKF). This filtering
approach used quaternion-based inertial dynamics (Trawny
and Roumeliotis 2005) for state propagation coupled with a
novel EKF update step. Rather than adding features seen in
the camera images to the state vector, their visual measure-
ments were projected onto the nullspace of the feature Jaco-
bian matrix (akin to feature marginalization (Yang, Maley
and Huang 2017)), thereby retaining motion constraints that
only related to the stochastically cloned camera poses in the
state vector (Roumeliotis and Burdick 2002). While reducing
the computational cost by removing the need to co-estimate
features, this nullspace projection prevents the relineariza-
tion of the processed features’ nonlinear measurements at
later time steps.

The standard MSCKF recently has been extended in
various directions. For example, Hesch, Kottas, Bowman
and Roumeliotis (2013); Huang, Kaess and Leonard (2014)
improved the filter consistency by enforcing the correct
observability properties of the linearized EKF VINS. Guo

and Roumeliotis (2013) showed that the inclusion of plane
features increases the estimation accuracy. Guo, Kottas,
DuToit, Ahmed, Li and Roumeliotis (2014) extended
to the case of rolling-shutter cameras with inaccurate
time synchronization. Recently, Wu, Ahmed, Georgiou
and Roumeliotis (2015) further reformulated the VINS
problem within a square-root inverse filtering framework
for improved computational efficiency and numerical
stability without sacrificing estimation accuracy. While these
MSCKF-based methods have shown to exhibit accurate
state estimation, they theoretically suffer from a limitation
– that is, nonlinear measurements must have a one-time
linearization before processing, possibly introducing large
linearization errors into the estimator.

Batch optimization methods, by contrast, solve a nonlinear
least-squares or bundle adjustment (BA) problem over a set
of measurements, allowing for the reduction of error through
relinearization (Kummerle, Grisetti, Strasdat, Konolige and
Burgard 2011). The incorporation of tightly-coupled VINS
in batch optimization methods requires overcoming the
high frequency nature and computational complexity of the
inertial measurements.

Leutenegger, Lynen, Bosse, Siegwart and Furgale (2015)
introduced a keyframe-based VINS approach (i.e., OKVIS),
whereby a set of non-sequential past camera poses and
a series of recent inertial states, connected with inertial
measurements, was used in nonlinear optimization for
accurate trajectory estimation. These inertial factors took the
form of a state prediction: every time that the linearization
point for the starting inertial state threshold, it is required to
reintegrate the IMU dynamics. This presents inefficiencies
in the inertial processing, while the authors demonstrated the
feasibility of such a scheme for a small number of inertial
factors in a sliding window estimator. It should be noted that
the well-known open-source implementation of OKVIS† in
fact employs the method of inertial preintegration, described
in detail later, while only triggering full reintegration if the
linearization point changes sufficiently and thus improving
the efficiency.

2.2 Visual Processing
A key component to any VINS algorithm is the visual
processing pipeline, responsible for transforming dense
imagery data to motion constraints that can be incorporated
into the estimation problem. Seen as the classical technique,
indirect methods of visual SLAM extract and track features
in the environment, while using geometric reprojection
constraints during estimation. An example of state-of-the-art
indirect visual-SLAM methods is ORB-SLAM2 (Mur-Artal
and Tardós 2017), which performs graph-based optimization
of camera poses using information from 3D feature point
correspondences.

In contrast, direct methods utilize pixel intensities in their
formulation and allow for inclusion of a larger percentage
of the available image information. LSD-SLAM is an
example of state-of-the-art direct visual-SLAM methods

∗The open source of the proposed continuous preintegration is available at:
https://github.com/rpng/cpi
†https://github.com/ethz-asl/okvis
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which optimizes the transformation between pairs of camera
keyframes based on minimizing their intensity error (Engel,
Schöps and Cremers 2014). Note that this approach also
optimizes a separate graph containing keyframe constraints
to allow for the incorporation of highly informative loop-
closures to correct drift over long trajectories. This work
was later extended from a monocular sensor to stereo
and omnidirectional cameras for improved accuracy (Engel,
Stückler and Cremers 2015; Caruso, Engel and Cremers
2015). Other popular direct methods include the work by
Engel, Koltun and Cremers (2018) and Wang, Schwörer and
Cremers (2017) which estimated keyframe depths along with
the camera poses in a tightly-coupled manner, offering low-
drift performance.

Application of direct methods to the visual-inertial
problem has seen recent attention due to their ability
to robustly track dynamic motion even in low-texture
environments. For example, Bloesch, Omari, Hutter and
Siegwart (2015); Bloesch, Burri, Omari, Hutter and Siegwart
(2017) used a patch-based direct method to provide updates
with an iterated EKF; Usenko, Engel, Stückler and Cremers
(2016) introduced a sliding-window VINS based on the
discrete preintegration and direct image alignment; Ling, Liu
and Shen (2016) employed loosely-coupled direct alignment
with preintegration factors for tracking aggressive quadrotor
motions. While these methods have shown the feasibility of
incorporating IMU measurements with direct methods, they
employed the discrete form of inertial preintegration.

2.3 Inertial Preintegration
First introduced by Lupton and Sukkarieh (2012), inertial
preintegration is a computationally efficient alternative to the
standard inertial measurement integration, e.g., as performed
in EKF propagation. The authors employed the discrete
integration of the inertial measurement dynamics in a
local frame of reference, preventing the need to reintegrate
the state dynamics at each optimization step. While this
addresses the computational complexity issue, this method
suffers from singularities due to the use of Euler angles
in the orientation representation. To improve the stability
of this preintegration, an on-manifold representation was
introduced by Forster, Carlone, Dellaert and Scaramuzza
(2015, 2017) which presents a singularity-free orientation
representation on the SO(3) manifold, incorporating the
IMU preintegration into an efficient graph-based VINS
algorithm.

While Shen, Michael and Kumar (2015) introduced
preintegration in the continuous form, they still discretely
sampled the measurement dynamics without offering closed-
form solutions. This left a significant gap in the theoretical
completeness of preintegration theory from a continuous-
time perspective. Albeit, Qin, Li and Shen (2017) later
extended to a robust tightly-coupled monocular visual-
inertial localization system. As compared to the discrete
approximation of the preintegrated measurement and
covariance calculations used in previous methods, in our
prior work (Eckenhoff, Geneva and Huang 2016a), we have
derived the closed-form solutions to both the measurement
and covariance preintegration equations and showed that
these solutions offer improved accuracy over the discrete
methods, especially in the case of highly dynamic motion.

Figure 1. Illustration of the state update operations on a
manifold. The ⊞ operation maps x1 ∈ M and a vector δx ∈ Rn

to a new element x2 ∈ M, while the ⊟ operation maps x1 and
x2 to the vector δx.

In this work, based on our preliminary results (Eckenhoff,
Geneva and Huang 2016a, 2017), we provide a solid
theoretical foundation for closed-form preintegration and
show that it can be easily incorporated into different graph-
based sensor fusion methods. We investigate the improved
accuracy afforded by two different models of closed-
form preintegration and scenarios in which they exhibit
superior performance. We further develop both indirect and
direct graph-based VINS and demonstrate their competitive
performance to state-of-the-art methods.

3 Estimation Preliminaries
The IMU state of an aided inertial navigation system at time
step k is given by (Mourikis and Roumeliotis 2007):

xk =
[
k
Gq̄

⊤ b⊤
ωk

Gv⊤
k b⊤

ak

Gp⊤
k

]⊤
(1)

where k
Gq̄ is the unit quaternion of JPL form parameterizing

the rotation k
GR from the global frame {G} to the current

local frame {k} (Trawny and Roumeliotis 2005), bωk
and

bak
are the gyroscope and accelerometer biases, and Gvk

and Gpk are the velocity and position of the IMU expressed
in the global frame, respectively.

Note that while the state vector (1) contains 16 variables,
there are only 15 degrees of freedom (DOF), due to the
constraint that the quaternion k

Gq̄ must have unit length. In
fact, the state lies on the manifold defined by the product
of the unit quaternions H with the vector space R12 (i.e.,
M = H× R12). In order to represent the estimation problem
on manifold, we employ the “boxplus” update operation,
⊞, which maps an element from a manifold, x ∈ M, and
an error vector δx into a new element on M (Hertzberg,
Wagner, Frese and Schröder 2013). As illustrated in Figure 1,
for a manifold of dimension n, we can define the following
operation:

⊞ : M× Rn → M (2)
x1 ⊞ δx = x2 (3)

Similarly, the inverse “boxminus” operation ⊟ is given by:

⊟ : M×M → Rn (4)
x2 ⊟ x1 = δx (5)

In the case of a state in a vector space, v ∈ Rn, these
operations are the standard addition and subtraction:

v1 ⊞ δv ≜ v1 + δv = v2 (6)

v2 ⊟ v1 ≜ v2 − v1 = δv (7)
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In the case of a unit quaternion expressed using the JPL
convention, q̄, we have (Trawny and Roumeliotis 2005):

q̄1 ⊞ δθ
∆
=

[
δθ
2
1

]
⊗ q̄1 ≃ q̄2 (8)

q̄2 ⊟ q̄1 ≜ 2vec
(
q̄2 ⊗ q̄−1

1

)
= δθ (9)

where vec (q̄) refers to the vector portion of the quaternion
argument (i.e., vec([q⊤q4]

⊤) = q). The quaternion multi-
plication, ⊗, is given by:

q̄ ⊗ p̄ ≜ R (p̄) q̄ = L (q̄) p̄ (10)

R (q̄) =

[
q4I+ ⌊q⌋ q
−q⊤ q4

]
(11)

L (p̄) =

[
p4I− ⌊p⌋ p

−p⊤ p4

]
(12)

where for q = [qx qy qz]
⊤:

⌊q⌋ =

 0 −qz qy
qz 0 −qx
−qy qx 0

 (13)

In state estimation, these operations allow us to model the
state on manifold using a Gaussian distribution on its error
state vector. In particular, the random variable x with mean
value x̂ takes the form:

x = x̂⊞ δx (14)
δx ∼ N (0,Σ) (15)

where Σ is the covariance of the zero-mean error state. The
error state corresponding to (1) is thus given by:

δxk =
[
kδθ⊤

G δb⊤
ωk

Gδv⊤
k δb⊤

ak

Gδp⊤
k

]⊤
(16)

3.1 Batch Optimization
In the case of graph SLAM (Grisetti, Kummerle, Stachniss
and Burgard 2010), the graph nodes can correspond to
historical robot states and features in the environment, while
the edges represent collected measurements from sensors
which relate the incident nodes. As an example, a robot
measuring a feature would add an edge between the feature
and the robot state node. Using this graph formulation and
under the assumption of independent zero-mean Gaussian
noise, we can find a maximum a posteriori (MAP) estimate
of all states by solving the following nonlinear least-
squares problem (Kummerle, Grisetti, Strasdat, Konolige
and Burgard 2011):

x̂ = argmin
x

∑
i

1

2
||ei (x)||2Λi

(17)

where ei is the error/residual of the i-th measurement, Λi

is the associated information matrix (inverse covariance),
and ||v||2Λ = v⊤Λv represents the squared energy norm.
Note that as a common practice, a (Huber or Cauchy)
robust cost function of Equation (17) is often used to
compensate for outliers, in particular when fusing visual
measurements (Hartley and Zisserman 2000). Optimization
is typically performed iteratively, e.g., through a Gauss-
Newton or Levenberg–Marquard method, by linearizing the

nonlinear measurements about the current estimate, x̂, and
defining a new weighted linear least squares problem in
terms of the error state δx:

δx̂ = argmin
δx

∑
i

1

2
||ei (x̂) + Jiδx||2Λi

(18)

Ji =
∂ei (x̂⊞ δx)

∂δx

∣∣∣
δx=0

(19)

We can see that the original optimization problem has been
converted into finding the optimal correction vector, δx, to
the current state estimate. The optimal solution can be found
by solving the following normal equation:(∑

i

J⊤
i ΛiJi

)
δx̂ = −

∑
i

J⊤
i Λiei (x̂) (20)

⇐⇒ Λδx̂ = −g (21)

After obtaining the optimal correction, δx̂, we update our
current estimate at the k-th iteration as: x̂(k+1) = x̂(k) ⊞ δx̂,
and repeat the optimization process. After convergence, we
will be left with the following distribution:

x = x̂⊞ δx (22)
δx ∼ N (0,Σ) (23)

Σ =

(∑
i

J⊤
i ΛiJi

)−1

(24)

where the measurement Jacobians, Ji, are evaluated at the
final state estimate.

3.2 Marginalization
In a naive graph SLAM formulation, nodes are continuously
added to the graph as time progresses without consideration
to the computational burden. For example, as a robot moves
through an unknown environment we would add robot
state nodes at every measurement time. This becomes a
problem due to the high computational complexity, O(n3)
with n = dim(x), of batch optimization, in the worst case.
In order to bound the computational complexity of the
system, marginalization is often performed to remove a
set of nodes, called marginalized states, from the graph,
while retaining the information contained in their incident
edges (see Figure 2 for an example) (Huang, Kaess
and Leonard 2013; Eckenhoff, Paull and Huang 2016b).
Partitioning the optimization variables into states remaining
after marginalization, xr, and the to-be marginalized states,
xm, we can write (17) as the solution of the following
minimization (Huang, Mourikis and Roumeliotis 2011):

{x̂r, x̂m} = argmin
xr,xm

(
cr(xr) + cm(xm,xr)

)
(25)

The second subcost, cm(xm,xr), is associated with the
measurements incident to the marginalized states, and is a
function of both these states and the remaining ones. The
first, cr(xr), refers to all other edges in the graph. The
optimal estimate for the remaining nodes can be written as:

x̂r = argmin
xr

(
cr(xr) + min

xm

cm(xm,xr)
)

(26)
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Figure 2. During graph optimization of VINS, IMU states (shown in circles) and 3D features (diamonds) are included in the graph.
Image projection measurements connect features and the IMU state corresponding to the time that the image was recorded.
Subsequent IMU states are connected with preintegrated factors, while a prior factor connects to the oldest IMU state. During
marginalization, we first select the states to be marginalized, e.g., the oldest IMU state in the window and its associated features (in
red). With these measurements we perform marginalization to form a new marginal measurement for future optimization.

That is, minimizing cm(xm,xr) with respect to xm yields
a cost that is a function only of the remaining states. This
minimization is performed as in (21), where we write out the
linear system for only the measurements involved in cm:

[
Λrr Λrm

Λmr Λmm

] [
δxr

δxm

]
=

[
−gr

−gm

]
(27)

The optimal subcost cm, up to an irrelevant constant, is given
by (Nerurkar, Wu and Roumeliotis 2014):‡

cmarg (xr) =
1

2
||xr ⊟ x̆r||2Λmarg

+ g⊤
marg (xr ⊟ x̆r) (28)

where x̆r is the linearization point used to build the
system (in practice, the current state estimate at the time of
marginalization), and Λmarg = Λrr −ΛrmΛ−1

mmΛmr and
gmarg = gr −ΛrmΛ−1

mmgm are the marginalized Hessian
and gradient, respectively.

In future optimization, this marginalization creates both a
new quadratic and linear cost in terms of the error between
the remaining states and their linearization points. This
then replaces the marginalized measurements in the original
graph, and we can write this new cost (28) up to a constant
in the form of (17):

cmarg (xr) =
1

2
||Am (xr ⊟ x̆r) + bm||22 (29)

withA⊤
mAm = Λmarg (30)

A⊤
mbm = gmarg (31)

This cost yields the following residual and Jacobian for use
in optimization (see (18) and (19)):

emarg(x̂) = Am (x̂r ⊟ x̆r) + bm (32)

Jmarg = Am
∂ ((x̂r ⊞ δxr)⊟ x̆r)

∂δxr

∣∣∣
δxr=0

(33)

where for the Jacobian of a vector (i.e., if xr = v):

∂ ((v̂ ⊞ δv)⊟ v̆)

∂δv
=

∂ (v̂ + δv − v̆)

∂δv
= I (34)

and for a quaternion q̄, with ˜̄q = ˆ̄q ⊗ ˘̄q−1, we have:

∂
((
ˆ̄q ⊞ δθ

)
⊟ ˘̄q
)

∂δθ
=

∂2vec

([
δθ
2
1

]
⊗ ˆ̄q ⊗ ˘̄q−1

)
∂δθ

=

∂2vec

(
R (˜̄q)

[
δθ
2
1

])
∂δθ

= q̃4I+ ⌊q̃⌋ (35)

4 Closed-form Preintegration

In this section, we present in detail the proposed closed-form
IMU preintegration based on two different realistic inertial
models, which is expected to be readily used in any graph-
based aided inertial navigation, thus providing an essential
building block for visual-inertial state estimation.

An IMU attached to the robot collects inertial readings
of the underlying state dynamics. In particular, the sensor
receives angular velocity ωm and local linear acceleration
am measurements which relate to the corresponding true
values ω and a as follows:

ωm = ω + bω + nω (36)

am = a+ I
GR

Gg + ba + na (37)

where Gg = [0 0 9.81]⊤ is the global gravity§ and I
GR is

the rotation from the global frame to the instantaneous local
inertial frame. The measurements are corrupted both by the
time-varying biases bω and ba (which must be co-estimated
with the state), and the zero-mean white Gaussian noises nω

and na. The standard dynamics of the IMU state is given by

‡Throughout the paper, we reserve the symbol x̂ to denote the current
estimate of state variable x in optimization, while x̆ refers to the (inferred)
measurement mean value.
§Note that gravity is slightly different in different parts of the globe.

Prepared using sagej.cls



6 Journal Title XX(X)

(Chatfield 1997):

I
G
˙̄q =

1

2
Ω(ωm − bω − nω)

I
Gq̄ (38)

ḃω = nωb (39)
Gv̇I = G

I R (am − ba − na)− Gg (40)

ḃa = nab (41)
GṗI = GvI (42)

where

Ω(ω) =

[
−⌊ω⌋ ω
−ω⊤ 0

]
(43)

4.1 Standard IMU Processing
Given a series of IMU measurements, I, collected over
a time interval [tk, tk+1], the standard (graph-based) IMU
processing considers the following propagation function:

xk+1 = g (xk, I,n) (44)

That is, the future state at time step k + 1 is a function of
the current state at step k, the IMU measurements I, and
the corresponding measurement noise n. Conditioning on the
current state, the expected value of the next state is found by
evaluating the propagation function with zero noise:

x̆k+1 = g (xk, I,0) (45)

which implies that we perform integration of the state
dynamics in the absence of noise.

The residual for use in batch optimization of this
propagation now constrains the start and end states of the
interval and is given by (see Equation (17)):

cIMU (x) =
1

2
||xk+1 ⊟ x̆k+1||2Q−1

k
(46)

=
1

2
||xk+1 ⊟ g (xk, I,0)||2Q−1

k
(47)

where Qk is the linearized, discrete-time noise covariance
computed from the IMU noise characterization and is a
function of the state. This noise covariance matrix and
the propagation function can be found by the integration
of Equations (38)-(42) and their associated error state
dynamics, to which we refer the reader to (Trawny and
Roumeliotis 2005; Mourikis and Roumeliotis 2007). It is
clear from (45) that ideally we need constantly re-evaluate
the propagation function g(·) and the residual covariance
Qk whenever the linearization point (state estimate) changes.
However, the high frequency nature of the IMU sensors and
the complexity of the propagation function and the noise
covariance, can make direct incorporation of IMU data in
real-time graph-based SLAM prohibitively expensive. This
motivates the development of inertial preintegration.

4.2 Model 1: Piecewise Constant
Measurements

IMU preintegration seeks to directly reduce the computa-
tional complexity of incorporating inertial measurements by
removing the need to re-integrate the propagation function
and noise covariance. This is achieved by processing IMU

measurements in a local frame of reference, yielding mea-
surements that are, in contrast to Equation (45), independent
of the state (Lupton and Sukkarieh 2012).

Specifically, by denoting ∆T = tk+1 − tk, we have
the following relationship between a series of IMU
measurements, the start state, and the resulting end
state (Eckenhoff, Geneva and Huang 2016a):

Gpk+1 = Gpk + Gvk∆T − 1

2
Gg∆T 2

+ G
k R

∫ tk+1

tk

∫ s

tk

k
uR (am − ba − na) duds (48)

Gvk+1 = Gvk − Gg∆T

+ G
k R

∫ tk+1

tk

k
uR (am − ba − na) du (49)

k+1
G R = k+1

k R k
GR (50)

bωk+1
= bωk

+

∫ tk+1

tk

nωb du (51)

bak+1
= bak

+

∫ tk+1

tk

nab du (52)

where u and s are dummy variables in the integration.
From the above, we define the following preintegrated IMU
measurements:¶

kαk+1 =

∫ tk+1

tk

∫ s

tk

k
uR (am − ba − na) duds (53)

kβk+1 =

∫ tk+1

tk

k
uR (am − ba − na) du (54)

To remove the dependencies of the above preintegrated
measurements on the true biases, we linearize about the
current bias estimates at time step tk, b⋆

ak
and b⋆

ωk
.

Defining ∆b = b− b⋆, we have (noting that time indices
are occasionally omitted to keep expressions concise, which
however can be easily inferred from the context):

k
GR

(
Gpk+1 − Gpk − Gvk∆T +

1

2
Gg∆T 2

)
≃ (55)

kαk+1

(
b⋆
ωk
,b⋆

ak

)
+

∂α

∂bω

∣∣∣
b⋆

ωk

∆bω +
∂α

∂ba

∣∣∣
b⋆

ak

∆ba

k
GR

(
Gvk+1 − Gvk + Gg∆T

)
≃ (56)

kβk+1

(
b⋆
ωk
,b⋆

ak

)
+

∂β

∂bω

∣∣∣
b⋆

ωk

∆bω +
∂β

∂ba

∣∣∣
b⋆

ak

∆ba

k+1
G R k

GR
⊤ ≃ R

(
∂R

∂bω

∣∣∣
b⋆

ωk

∆bω

)
k+1
k R

(
b⋆
ωk

)
(57)

Note that Equations (55) and (56) are simple Taylor series
expansions for our kαk+1 and kβk+1 measurements, while
Equation (57) models an additional rotation induced due to a
change of the linearization point (estimate) of the gyro bias
(Forster, Carlone, Dellaert and Scaramuzza 2015; Eckenhoff,
Geneva and Huang 2016a).

¶Note that along with the preintegrated inertial measurements in
Equations (53) and (54), the preintegrated relative-orientation measurement
k+1
k q̄ (or k+1

k R) can be obtained from the integration of the gyro
measurements.
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4 CLOSED-FORM PREINTEGRATION 7

The preintegrated measurement’s mean values, kᾰk+1,
kβ̆k+1, and k+1

k
˘̄q, must be computed for use in graph opti-

mization. It is important to note that current preintegration
methods (Lupton and Sukkarieh 2012; Forster, Carlone, Del-
laert and Scaramuzza 2015; Ling, Liu and Shen 2016) are all
based on discrete integration of the measurement dynamics
through Euler or midpoint integration. In particular, the
discrete approximation used by Forster, Carlone, Dellaert
and Scaramuzza (2015) in fact corresponds to a piecewise
constant global acceleration model (expressed in the fixed
global frame of reference), which may be easily violated in
realistic navigation. By contrast, we here offer closed-form
solutions for the measurement means under the assumptions
of piecewise constant (local) measurements and piecewise
constant local acceleration (expressed in local coordinates)
which will be presented later in Section 4.3.

4.2.1 Computing preintegration mean: Between two
image times, tk and tk+1, the IMU receives a series of
inertial measurements. We denote τ as the step at which
an IMU measurement is received, and τ + 1 as the step
of the next IMU reading. The time associated with each
of these steps is given by tτ and tτ+1, respectively. The
relative orientation between the interval, k+1

k
˘̄q, can be found

using successive applications of the zeroth order quaternion
integrator (Trawny and Roumeliotis 2005). Based on the
definitions of kαk+1 and kβk+1 (see Equations (53) and
(54)), we have the following continuous-time dynamics at
every step u with tu ∈ [tτ , tτ+1]:

kα̇u = kβu (58)
kβ̇u = k

uR (am − ba − na) (59)

From these governing differential equations, we formulate
the following linear system that describes the evolution of
the measurements by taking the expectation operation:[

k ˙̆αu

k ˙̆βu

]
=

[
0 I
0 0

] [
kᾰu
kβ̆u

]
+

[
0

k
uR̆

]
(am − b⋆

ak
) (60)

Given am and ωm sampled at time tτ and assuming
that these local IMU measurements are piecewise constant
during [tτ , tτ+1], we analytically solve the above linear time-
varying (LTV) system to obtain the updated preintegration
mean values, which are computed as follows (Eckenhoff,
Geneva and Huang 2018):[

kᾰτ+1
kβ̆τ+1

]
=

[
kᾰτ + kβ̆τ∆t+Aτ â

kβ̆τ +Bτ â

]
(61)

Aτ = k
τ+1R̆

(∆t2

2
I3×3 +

|ω̂|∆tcos(|ω̂|∆t)− sin(|ω̂|∆t)

|ω̂|3
⌊ω̂⌋

+
(|ω̂|∆t)2 − 2cos(|ω̂|∆t)− 2(|ω̂|∆t)sin(|ω̂|∆t) + 2

2|ω̂|4
⌊ω̂⌋2

)
(62)

Bτ = k
τ+1R̆

(
∆tI3×3 −

1− cos(|ω̂|(∆t))

|ω̂|2
⌊ω̂⌋

+
(|ω̂|∆t)− sin(|ω̂|∆t)

|ω̂|3
⌊ω̂⌋2

)
(63)

where we have employed the definitions: ω̂ = ωm − b⋆
ωk

,
â = am − b⋆

ak
, and ∆t = tτ+1 − tτ . Clearly, these closed-

form expressions reveal the higher order affect of the angular

velocity on the preintegrated measurements due to the
evolution of the orientation over the IMU samping interval.

4.2.2 Computing preintegration covariance: In order to
derive the preintegrated measurement covariance, we first
write the linearized measurement error system as follows
(Eckenhoff, Geneva and Huang 2018):


u ˙δθk

˙̃
bω

k ˙δβu
˙̃
ba

k ˙δαu

=


−⌊ω̂⌋ −I 0 0 0
0 0 0 0 0

−k
uR̆⌊â⌋ 0 0 −k

uR̆ 0
0 0 0 0 0
0 0 I 0 0




uδθk

b̃ω
kδβu

b̃a
kδαu



+


−I 0 0 0
0 I 0 0

0 0 −k
uR̆ 0

0 0 0 I
0 0 0 0



nω

nωb

na

nab

 (64)

⇐⇒ ṙ = Fr+Gn (65)

which is akin to the standard VINS error state propagation
equations in a local frame of reference (Mourikis and
Roumeliotis 2007).

It is important to note that in contrast to our previous
work (Eckenhoff, Geneva and Huang 2016a, 2017), we here
couple the preintegration bias and measurement evolution
for improved accuracy. Note also that the bias error terms
in Equation (64), b̃ω and b̃a, describe the deviation of
the bias over the interval due to the random-walk drift,
rather than the error of the current bias estimate. The
discrete state transition matrix Φ(tτ+1, tτ ) can be computed
either analytically in closed-form or numerically using
Runge-Kutta methods based on the following continuous-
time differential equation (see Hesch, Kottas, Bowman and
Roumeliotis (2013); Trawny and Roumeliotis (2005)):

Φ̇(tu, tτ ) = F(u) Φ(tu, tτ ) (66)
Φ(tτ , tτ ) = I (67)

The propagation of the measurement covariance, P, over the
time interval tτ ∈ [tk, tk+1], takes the following form:

Pk = 0 (68)

Pτ+1 = Φ(tτ+1, tτ ) Pτ Φ(tτ+1, tτ )
⊤ +Qτ (69)

Qτ =

∫ tτ+1

tτ

Φ(tτ+1, u)G(u)QcG(u)⊤Φ(tτ+1, u)
⊤du (70)

where Qc is the continuous-time IMU noise covariance.
To keep presentation concise, the discrete-time noise
covariance Qτ , can be computed similarly as in (Trawny and
Roumeliotis 2005).

4.2.3 Preintegration measurement residuals and Jaco-
bians: For use in optimization, we form the associated
preintegration measurement cost and residual as follows:

cIMU (x) =
1

2
||eIMU (x)||2P−1

k+1
(71)
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eIMU (x) = (72)

2vec
(
k+1
G q̄ ⊗ k

Gq̄
−1 ⊗ k+1

k
˘̄q−1 ⊗ q̄b

)
bωk+1

− bωk(
k
GR

(
Gvk+1 − Gvk + Gg∆T

)
−Jβ

(
bωk

− b⋆
ωk

)
−Hβ

(
bak

− b⋆
ak

)
− kβ̆k+1

)
bak+1

− bak(
k
GR

(
Gpk+1 − Gpk − Gvk∆T + 1

2
Gg∆T 2

)
−Jα

(
bωk

− b⋆
ωk

)
−Hα

(
bak

− b⋆
ak

)
− kᾰk+1

)


where we have employed q̄b =

 θ
||θ|| sin

(
||θ||
2

)
cos
(

||θ||
2

)  and θ =

Jq

(
bωk

− b⋆
ωk

)
. In the above expressions, Jq, Jα, Jβ , Hα,

and Hβ , are the Jacobian matrices of the pertinent residuals
with respect to the biases, which are used to correct
the measurements due to a change in the initial bias
estimate b⋆, thus compensating for the fact that preintegrated
measurements have been linearized about b⋆

ωk
and b⋆

ak

without having to recompute the required integrals whenever
the bias estimates change (see Equations (55) and (56)). In
particular, using the fact that our preintegrated measurement
means are linear in the acceleration bias ba (see Equation
(61)), we have the following dynamics of its Jacobians (see
Equations (62) and (63)):[

∂α
∂ba

∂β
∂ba

]
=:

[
Hα (τ + 1)

Hβ (τ + 1)

]

=

[
Hα (τ) +Hβ (τ)∆t−Aτ

Hβ (τ)−Bτ

]
(73)

Similarly, for the gyroscope bias Jacobians, we have:[
∂α
∂bω

∂β
∂bω

]
=:

[
Jα (τ + 1)

Jβ (τ + 1)

]

=

[
Jα (τ) + Jβ (τ)∆t+ ∂Aτ â

∂bω

Jβ (τ) +
∂Bτ â
∂bω

]
(74)

Finally, the orientation Jacobian with respect to gyroscope
bias can be found incrementally as:

Jq(τ + 1) = τ+1
τ R̆Jq(τ) + Jr (ω̂∆t)∆t (75)

where Jr (·) is the right Jacobian of SO(3) and is defined as
(Chirikjian 2011):

Jr(ϕ) = I3×3 −
1− cos(∥ ϕ ∥)

∥ ϕ ∥2
⌊ϕ⌋+ ∥ ϕ ∥ −sin(∥ ϕ ∥)

∥ ϕ ∥3
⌊ϕ⌋2 (76)

Moreover, the measurement Jacobians of these preintegrated
measurements with respect to the error state (16), can
also be analytically computed as shown in Appendix B.1,
which are essential for batch optimization. For the detailed
derivations and closed-form expressions of the preintegrated
measurements and Jacobians, the reader is referred to our
companion technical report (Eckenhoff, Geneva and Huang
2018).

Figure 3. An example of an IMU rotating about the gravity. It
can be seen that the true local acceleration a (red) remains
constant, while its local measurement am (grey) changes
continuously due to the effect of gravity (green).

4.3 Model 2: Piecewise Constant Local
Acceleration

The previous preintegration (Model 1) assumes that noiseless
IMU measurements can be approximated as remaining
constant over a sampling interval, which, however, might
not always be a good approximation (see Figure 3). In this
section, we propose a new preintegration model that instead
assumes piecewise constant true local acceleration during
the sampling time interval, which may better approximate
motion dynamics in practice. To this end, we first rewrite
Equations (48) and (49) as:

Gpk+1 = Gpk + Gvk∆T + G
k R

∫ tk+1

tk

∫ s

tk

k
uRa duds

(77)

Gvk+1 = Gvk + G
k R

∫ tk+1

tk

k
uRa du (78)

Note that we have moved the effect of gravity back inside the
integrals. We then define the following vectors:

∆p =

∫ tk+1

tk

∫ s

tk

k
uRa duds (79)

∆v =

∫ tk+1

tk

k
uRa du (80)

which essentially are the true local position displacement and
velocity change during [tk, tk+1], and yields:

∆ṗ = ∆v (81)

∆v̇ = k
uRa (82)

In particular, between two IMU measurement times
inside the preintegration interval, [tτ , tτ+1] ⊂ [tk, tk+1], we
assume that the local acceleration will be constant:

∀tu ∈ [tτ , tτ+1] , a(tu) = a(tτ ) (83)

Using this sampling model we can rewrite (82) as:

∆v̇ = k
uR
(
am − ba − na − τ

kR
k
GR

Gg
)

(84)

We now write the relationship of the states at the beginning
and end of the interval as (see Equations (77) and (78)):

k
GR

(
Gpk+1 − Gpk − Gvk∆T

)
= ∆p (85)

k
GR

(
Gvk+1 − Gvk

)
= ∆v (86)
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4 CLOSED-FORM PREINTEGRATION 9

It is important to note that, since ∆p and ∆v are functions
of both the biases and the initial orientation, we perform the
following linearization with respect to these states:

k
GR

(
Gpk+1 − Gpk − Gvk∆T

)
≃ ∆p

(
b⋆
ωk
,b⋆

ak
, kGq̄

⋆
)

+
∂∆p

∂bω

∣∣∣
b⋆

ωk

∆bω +
∂∆p

∂ba

∣∣∣
b⋆

ak

∆ba +
∂∆p

∂∆θk

∣∣∣
k
Gq̄⋆

∆θk

k
GR

(
Gvk+1 − Gvk

)
≃ ∆v

(
b⋆
ωk
,b⋆

ak
, kGq̄

⋆
)

(87)

+
∂∆v

∂bω

∣∣∣
b⋆

ωk

∆bω +
∂∆v

∂ba

∣∣∣
b⋆

ak

∆ba +
∂∆v

∂∆θk

∣∣∣
k
Gq̄⋆

∆θk

(88)

where ∆θk = 2vec
(
k
Gq̄ ⊗ k

Gq̄
⋆−1
)

is the rotation angle
change associated with the change of the linearization point
of quaternion k

Gq̄.

4.3.1 Computing preintegration mean: To compute the
new preintegrated measurement mean values, we first deter-
mine the continuous-time dynamics of the expected preinte-
gration vectors by taking expectations of Equations (81) and
(84), given by:

∆ ˙̆p = ∆v̆ (89)

∆ ˙̆v = k
uR̆
(
am − b⋆

ak
− τ

kR̆
k
GR

⋆Gg
)

(90)

As in the case of Model 1 (see Section 4.2.1), we
can formulate a linear system of the new preintegration
measurement vectors and find the closed-from solutions.
Specifically, we can integrate these differential equations and
obtain the solution similar to Equation (61), while using the
new definition: â = am − b⋆

ak
− τ

kR̆
k
GR

⋆Gg, which serves
as the estimate for the piecewise constant local acceleration
over the sampling interval.

4.3.2 Computing preintegration covariance: To compute
the new preintegration measurement covariance, we first
determine the differential equations for the corresponding
preintegration measurement errors (see Equations (81), (84),
(89) and (90)):

∆ ˙̃p = ∆v −∆v̆ = ∆ṽ (91)

∆ ˙̃v = k
uR̆ (I+ ⌊uδθk⌋)

(
am − b⋆

ak
− b̃a

− (I− ⌊τδθk⌋) τkR̆k
GR

⋆Gg − na

)
− k

uR̆
(
am − b⋆

ak
− τ

kR̆
k
GR

⋆Gg
)

= −k
uR̆⌊â⌋uδθk − k

uR̆b̃a

− k
uR̆⌊τ ğ⌋τδθk − k

uR̆na (92)

where τ ğ represents the estimate for gravity in the sampled τ
frame. It is important to notice that, in the above expressions,
we have used two angle errors: (i) uδθk corresponds to the
active local IMU orientation error, and (ii) τδθk corresponds
to the cloned orientation error at the sampling time tτ . In
addition, the bias errors b̃ describe the deviation of the bias
from the starting value over the interval due to bias drift.
With this, we have the following time evolution of the full

preintegrated measurement errors:

uδθ̇k
˙̃
bω

∆ ˙̃v
˙̃
ba

∆ ˙̃p
τδθ̇k


= F



uδθk
b̃ω

∆ṽ

b̃a

∆p̃
τδθk

+


−I 0 0 0
0 I 0 0

0 0 −k
uR̆ 0

0 0 0 I
0 0 0 0
0 0 0 0



nω

nωb

na

nab



⇐⇒ ṙ = Fr+Gn (93)

where

F =


−⌊ω̂⌋ −I 0 0 0 0
0 0 0 0 0 0

−k
uR̆⌊â⌋ 0 0 −k

uR̆ 0 −k
uR̆⌊τ ğ⌋

0 0 0 0 0 0
0 0 I 0 0 0
0 0 0 0 0 0

 (94)

In analogy to Equations (66), (67), and (70), we can
determine the new state-transition matrix Φ(tτ+1, tτ ) and
the new discrete noise covariance Qτ . With that, we now
propagate the measurement covariance over the time interval
tτ ∈ [tk, tk+1] as follows:

Pk = 0 (95)

Pτ+1 = Φ(tτ+1, tτ )PτΦ(tτ+1, tτ )
⊤ +Qτ (96)

Pτ+1 = ΓPτ+1Γ
⊤ (97)

where Γ is the permutation matrix that allows us to replace
the previous static orientation error τδθk by the new one
τ+1δθk simply by cloning the current local orientation error
uδθk at the end of current sampling interval tu = tτ+1

when moving from the current measurement time interval
[tτ , tτ+1] to the next one, and is given by:

Γ =


I 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
I 0 0 0 0 0

 (98)

The resulting preintegrated measurement covariance is then
extracted from the top left 15×15 block of Pk+1 after
the propagation with Equations (95)-(97) over the entire
preintegration interval [tk, tk+1].

4.3.3 Preintegration measurement residuals and Jaco-
bians: As we linearize this preintegration with respect to
the IMU biases and the initial orientation, it is important
to compute the Jacobians with respect to these quantities.
In particular, we note that the solution to the preintegration
equation for Model 2 can be expressed as:

∆p̆τ+1 = ∆p̆τ +∆v̆τ∆t+Aτ

(
am − b⋆

a − τ
kR̆

k
GR

⋆Gg
)

∆v̆τ+1 = ∆v̆τ +Bτ

(
am − b⋆

a − τ
kR̆

k
GR

⋆Gg
)

(99)

where Aτ and Bτ are defined the same as in Equations
(62) and (63). Letting Oα and Oβ denote the Jacobians of
the position and velocity preintegrated measurements with
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respect to the initial orientation, we have:[
Jα (τ + 1)

Jβ (τ + 1)

]
=

[
Jα (τ) + Jβ (τ)∆t

Jβ (τ)

]
(100)

+

[
∂Aτ â
∂bω

+Aτ⌊τkR̆k
GR

⋆Gg⌋Jq (τ)
∂Bτ â
∂bω

+Bτ⌊τkR̆k
GR

⋆Gg⌋Jq (τ)

]
[
Hα (τ + 1)

Hβ (τ + 1)

]
=

[
Hα (τ) +Hβ (τ)∆t−Aτ

Hβ (τ)−Bτ

]
(101)

[
Oα (τ + 1)

Oβ (τ + 1)

]
=

[
Oα (τ) +Oβ (τ)∆t

Oβ (τ)

]
(102)

−

[
Aτ

τ
kR̆⌊kGR⋆Gg⌋

Bτ
τ
kR̆⌊kGR⋆Gg⌋

]

We note that Equation (102) reveals that only changes in
the initial orientation perpendicular to local gravity (kg)
will cause a change in the preintegrated measurement. As
these directions of orientation are observable and thus are
expected to have small errors, this highlights the fact that
our linearization scheme about the initial orientation is
appropriate. At this point, using these Jacobians, we can
write the residual associated with the new preintegrated IMU
measurement as follows:

eIMU (x) = (103)

2vec
(
k+1
G q̄ ⊗ k

Gq̄
−1 ⊗ k+1

k
˘̄q−1 ⊗ q̄b

)
bωk+1

− bωk(
k
GR

(
Gvk+1 − Gvk

)
− Jβ

(
bωk

− b⋆
ωk

)
−

Hβ

(
bak

− b⋆
ak

)
−Oβ 2vec

(
k
Gq̄ ⊗ k

Gq̄
⋆−1
)
−∆v̆

)
bak+1

− bak(
k
GR

(
Gpk+1 − Gpk − Gvk∆T

)
− Jα

(
bωk

− b⋆
ωk

)
−

Hα

(
bak

− b⋆
ak

)
−Oα 2vec

(
k
Gq̄ ⊗ k

Gq̄
⋆−1
)
−∆p̆

)


The resulting measurement Jacobians are necessary for an
iterative solver, which we analytically compute as shown in
Appendix B.2.

5 Visual-Inertial Navigation
To demonstrate the applicability of the proposed closed-
form preintegration (CPI) theory presented in the preceding
section, in this section, we develop two sliding-window
optimization-based sensor fusion schemes for visual-
inertial navigation systems (VINS) that utilize our inertial
preintegration.

5.1 Tightly-Coupled Indirect VIO
As an IMU-camera sensor suite moves through an unknown
environment, visual feature keypoints can be extracted and
tracked from the images to provide motion information about

the platform. In particular, the measurement function that
maps the 3D position, Gpf , of a feature into the normalized
uv-coordinates on the j-th camera’s image plane at time
step k takes the following form:

zfjk = Π
(
Cj

I R k
GR

(
Gpf − Gpk

)
+ CjpI

)
+ nf (104)

where Cj

I R and CjpI are the rigid IMU-to-camera extrinsic
calibration parameters, nf ∼ N (0,Λ−1

fjk), and Π(·) is
the perspective projection function given by (Hartley and
Zisserman 2000):

Π

xy
z

 =

[
x/z
y/z

]
(105)

The error (or residual) associated with this visual
measurement is given by:

efjk(x) = Π
(
Cj

I R k
GR

(
Gpf − Gpk

)
+ CjpI

)
− zfjk

(106)

Using all these visual measurements available in a sliding
window along with the preintegrated IMU measurements and
marginalization prior, we solve the following optimization
problem that tightly couples all available measurement
residuals:

x̂ =argmin
x

(
||emarg (x)||22 +

∑
p∈P

||eIMU (x)||2P−1
p

+
∑

(f,j,k)∈C

||efjk (x)||2Λfjk

)
(107)

where C and P are the set of feature and preintegrated
measurements, respectively, while emarg (x) is the residual
of the marginal prior (see Equation (32)). We want to point
out again that in practice we instead employ a (Huber or
Cauchy) robust cost function on the last visual error term in
Equation (107), while we here omit the detailed derivations
of this standard treatment to keep presentation concise, we
do have a similar treatment in our ensuing loosely-coupled
direct VINS (see Equation (112)).

5.1.1 Inverse-depth representation: A well-known dis-
advantage of the above representation for features is that
points at infinity are difficult to utilize. To mitigate this issue,
we instead employ an inverse-depth representation (Civera,
Davison and Montiel 2008). In particular, we represent a
feature using the inverse coordinates in the camera frame
where it was first observed. Denoting {Ca,i} the frame of
reference of the “anchoring” camera, which is associated
with the i-th camera frame and the anchoring time a, we have
the following inverse-depth representation (see Mourikis and
Roumeliotis (2007)):

Ca,imf =

αβ
ρ

 ⇒ Ca,ipf =
1

ρ

αβ
1

 (108)

where we also show the relationship between the inverse-
depth representation of the feature Ca,imf and the
corresponding 3D position in the anchor frame Ca,ipf . The
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Figure 4. Visualization of selected depth map pixels with a
large intensity gradient (left). Keyframe pixels are projected onto
the query frame as a result of the optimized direct alignment of
the frame-to-frame relative transformation (right).

feature position in the j-th camera frame at time step k can
be computed as follows:

Ck,jpf =
Ck,j

Ca,i
R
1

ρ

αβ
1

+ Ck,jpCa,i
(109)

Ck,j

Ca,i
R =

Cj

I R k
GR

a
GR

⊤Ci

I R⊤

Ck,jpCa,i =
Cj

I R k
GR
(
Gpa +

a
GR

⊤IpCi − Gpk

)
+ CjpI

Note that due to the projective geometry of the perspective
projection (105), Π(x) = Π(ρx), we can multiply both
sides of Equation (109) by ρ and have the equivalent
measurement model:

zfjk = Π (h) + nf (110)

h =

h1

h2

h3

 := ρCk,jpf =
Ck,j

Ca,i
R

αβ
1

+ ρCk,jpCa,i
(111)

The measurement Jacobians of this inverse-depth model can
be found in Appendix C. Note that this measurement model
is numerically stable and can handle points at infinity, thus
allowing for the gain of feature direction information from
these far-off feature points.

5.2 Loosely-Coupled Direct VINS
To further validate the proposed closed-form preintegration
theory, in the following, by leveraging our prior work (Eck-
enhoff, Geneva and Huang 2017), we develop a loosely-
coupled VINS algorithm based on direct image alignment
and IMU preintegration. In particular, we estimate the rel-
ative frame-to-frame motion through direct alignment of
image pixels. These relative-motion constraints then allow
us to efficiently perform loop closure without explicitly
detecting/tracking (or matching) features.

Consider the case where we wish to directly align a current
frame C2 against a keyframe C1 (see Figure 4). Finding the
optimal transformation can be formulated as an optimization
problem over the total (warped) pixel intensity difference
(i.e., photometric error):

C2

C1
T̆ = argmin

C2
C1

T

∑
f

γ


1

σ2
r

IC2

(
C2

C1
T C1pf

)
− IC1

(
C1pf

)
︸ ︷︷ ︸

ef


2

︸ ︷︷ ︸
vf


(112)

where C2

C1
T is the transformation between the two camera

frames parameterized by the relative quaternion C2

C1
q̄ and

relative position C1pC2
, while ICi

(·) returns the intensity of
a given point projected into the image frame, and γ(·) is the
Huber cost. The pixel’s position in the keyframe, C1pf can
be found via an online or stereo pair depth map computation.
This position is treated as a noisy parameter in the residual
allowing for computation of the residual sigma, σr, with the
summation being over all pixels f with valid depth estimates
and high gradients along the epipolar line. The Huber cost
function γ(·) with parameter k is defined as (Eade 2013):

γ(r) =

{
r, if r < k2

2k
√
r − k2, otherwise

(113)

The purpose of the Huber cost is to down-weight large
residuals which occur naturally in image alignment due to
occlusions, and has been used extensively in the literature
(e.g., Engel, Schöps and Cremers (2014)).

Note that the covariance of each residual σ2
r encodes the

uncertainty due to errors in the intensity measurements as
well as the disparity map:

σ2
r = 2σ2

int +
(∂ef
∂d

)2
σ2
d (114)

where σ2
int denotes the covariance of the intensity reading,

∂ef
∂d is the Jacobian of the residual ef (112) with respect to

the measured disparity d, and σ2
d is the covariance of the

disparity measurement. In the case of a depth map computed
from a stereo pair as considered in this work, we define t
as the pixel coordinates, z as the pixel depth, and b as the
baseline between the stereo pair. The Jacobian ∂ef

∂d can be
calculated using the chain rule of differentiation as follows
(see Equation (112)):

∂ef
∂d

=
∂IC2

∂t

∂t

∂C2pf

∂C2pf

∂C1pf

∂C1pf

∂z

∂z

∂d

=
[
IC2x

IC2y

]  fx
C2pfj

(3)
0 − fx

C2pfj
(1)

C2pfj
(3)2

0
fy

C2pfj
(3)

− fy
C2pfj

(2)
C2pfj

(3)2


× C2

C1
R

C1pfj

z

−fxb

d2
(115)

where IC2x
and IC2y

are the image gradients in the x and y
directions respectively, while fx and fy are the focal lengths
of the camera.

The covariance of the pixel disparity, σ2
d, is obtained

based on the observation that this disparity is the maximum
likelihood estimate for a single measurement graph, with the
residual being the difference in intensity between the pixel in
the left, IC1L, and right, IC1R, images in the keyframe stereo
pair, which can be formulated as follows:

d̆ = argmin
d

1

σ2
rd

(
IC1L(v, u)− IC1R(v, u− d)︸ ︷︷ ︸

ed

)2
(116)

where the covariance associated with this residual can be
found as σ2

rd = 2σ2
int, and comes from uncertainty in the

intensity readings. The covariance on our disparity estimate
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can then be approximated as:

σ2
d =

(
∂ed
∂d

2 1

σ2
rd

)−1

= σ2
rd

(
1

IC1Rx

)2

(117)

where IC1Rx
is the x-gradient of the pixel in the right image

which is selected as the match.
Once we have determined the photometric error covari-

ance σ2
r , we now solve the direct alignment problem (112)

using the Levenberg-Marquadt method. In particular, at each
iteration we solve the following normal equation:((∑

wfJ
⊤
f Jf

)
+ λdiag

(∑
wfJ

⊤
f Jf

))
δ C2

C1
T

= −
∑

wfJ
⊤
f ef

(
C2

C1
T̆
)

(118)

where λ is the dampening parameter, and ef (
C2

C1
T̆) is the

residual due to the f -th pixel in the alignment, evaluated
at the current estimate (linearization point) for the relative
transformation, C2

C1
T̆. The weight wf is computed at each

iteration as follows:

wf =
∂γ(vf )

∂vf

1

σ2
f

(119)

∂γ(vf )

∂vf
=

{
1, if vf < k2

k√
vf
, otherwise

(120)

where vf is the raw cost fed into the Huber norm (see
Equation (112)), and k is a design parameter. The Jacobian
matrix Jf is of the direct alignment measurement residual
with respect to the state, computed as:

Jf =
[
IC2x

IC2y

]  fx
C2pf (3)

0 − fx
C2pf (1)

(C2pf (3))2

0
fy

C2pf (3)
− fy

C2pf (2)

(C2pf (3))2


×
[
⌊C2pf⌋ −C2

C1
R
]

(121)

After optimization, we will be left with a Gaussian
distribution on our estimated relative camera pose. We can
then transform this into a distribution on the relative IMU
pose (denoted k and j for the keyframe and query frame IMU
states respectively) using covariance propagation:

C2

C1
T = C2

C1
T̆⊞ C2

C1
δT, where C2

C1
δT ∼ N (0,Σc) (122)

j
kT = j

kT̆⊞ j
kδT, where j

kδT ∼ N (0,Σi) (123)

Σi =
∂j
kδT

∂C2

C1
δT

Σc
∂j
kδT

∂C2

C1
δT

⊤

(124)

where Σc = (
∑

wfJ
⊤
f Jf )

−1 is the covariance of the
zero-mean alignment error. From this, the relative pose
measurement that connects the IMU keyframe and query
frame has the following residual:

ed(x) =

2vec(jGq̄ ⊗ k
Gq̄

−1 ⊗ j
k
˘̄q−1
)

k
GR

(
Gpj − Gpk

)
− kp̆j

 (125)

whose Jacobians with respect to the state are provided in
Appendix D, which will be used during graph optimization.

Figure 5. The ground truth trajectory of a MAV flying in a circle
sinusoidal path generated in the Gazebo simulator. The total
trajectory length is 307 meters with an average velocity of 6.13
m/s. Start and end positions are denoted with a green square
and red diamond, respectively.

Using this visual measurement residual, along with the
preintegrated IMU measurements, we have the following
optimization problem for the loosely-coupled direct VINS,
which can be solved analogously as in Equation (107):

x̂ = argmin
x

∑
d∈D

||ed (x)||2Σ−1
i

+
∑
p∈P

||eIMU (x)||2P−1
p

(126)

where D and P are the set of direct alignment relative pose
and preintegrated measurements, respectively. Note that this
direct image alignment allows for computationally efficient
incorporation of large-scale loop closures due to the direct
compression of intensity residuals into a single informative
relative motion measurement.

6 Monte-Carlo Simulation Analysis
To validate the proposed closed-form preintegration theory,
we first perform extensive Monte-Carlo simulations in
various conditions in terms of sampling rates and motion
dynamics. In particular, to better model the motion dynamics
of a physical system, we leverage the open-source Gazebo
simulator of a micro air vehicle (MAV) (Koenig and Howard
2004) which allows for direct realistic simulation and
collection of true inertial and pose data (constrained by
the physical MAV motion). The simulated datasets were
generated as follows: (i) the MAV was commanded to
follow a series of waypoints after takeoff, (ii) the ground
truth of 100 Hz inertial and pose information was recorded,
(iii) 80 synthetic stereo visual feature measurements (uv-
coordinates) were created for each camera frame using the
true pose information at a static 10Hz frequency. Following
the commonly-used IMU model (Trawny and Roumeliotis
2005), the true inertial measurements were corrupted with
an additive discrete bias and white noise using the noise
parameters from the VI-Sensor (Nikolic, Rehder, Burri,
Gohl, Leutenegger, Furgale and Siegwart 2014), while the
features’ uv-coordinates were corrupted with an additive
white noise to each axis with one pixel standard deviation.

In our tests, we used the popular GTSAM (Dellaert
2012) framework to construct, optimize, and marginalize
our graph using the included fixed-lag smoother. To ensure
a fair comparison, we evaluate our preintegration methods
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Table 1. Analysis of the effect of different IMU frequencies on
estimation accuracy. Note that each frequency run has a slightly
different trajectory, and thus only the relative spread within a
given frequency should be considered.

MODEL-1 MODEL-2 DISCRETE
Units m deg m deg m deg

100 Hz 0.096 0.327 0.093 0.300 0.107 0.328
200 Hz 0.051 0.204 0.049 0.179 0.058 0.207
400 Hz 0.033 0.107 0.033 0.101 0.035 0.109
800 Hz 0.030 0.085 0.030 0.085 0.031 0.086

against the state-of-art discrete preintegration (Forster,
Carlone, Dellaert and Scaramuzza 2015, 2017), by using
the on-manifold preintegrator class within the GTSAM
implementation to compute the required measurement
means, bias Jacobians, and covariances. We constructed all
graphs side by side, ensuring that the measurements inserted
are exactly the same, and thus fair to all methods. For
simplicity we used the tightly-coupled indirect features in
the graph, in which features are automatically marginalized
out after three seconds (that is, no map was created for
loop closures, and thus, the system is a VIO system). Note
also that we initialized all systems to the ground-truth pose,
and with zero bias. Figure 5 shows one example of the
true simulated trajectory generated using Gazebo in our
simulations.

The Monte-Carlo simulation comparison results of root
mean squared error (RMSE) averaged over 50 runs are
shown in Figure 6. Evidently, the proposed preintegration
using piecewise constant local acceleration model (i.e.,
Model 2) is slightly better with the RMSE (averaged over
all time steps and all runs) of 0.093 meters and 0.300
degrees than that using the piecewise constant measurement
model (i.e., Model 1) with the RMSE of 0.096 meters and
0.327 degrees. More importantly, both methods are shown
to outperform the discrete state-of-the-art method (Forster,
Carlone, Dellaert and Scaramuzza 2015, 2017), which has
the RMSE of 0.107 meters and 0.328 degrees. It is important
to point out that the superior performance (though by a
small margin in this MAV test, with larger improvement
margins expected for higher dynamics not constrained
by MAV motion) endowed by the proposed closed-form
preintegration using the new inertial models over the discrete
one does not incur extra computational overhead during
graph-based VINS optimization.

Furthermore, we investigate the effect that the IMU fre-
quency has on the relative performance of the preintegration
methods under consideration. Using the same simulation
setup, the MAV was commanded to follow the trajectory
with different Gazebo simulation frequencies. It is impor-
tant to note that since we are using a physical simulation,
the true trajectory will vary from frequency to frequency
since the controller will perform differently, however, this is
acceptable since we are looking at the relative performance
within a given frequency. Table 1 shows the averaged RMSE
results of different IMU frequencies. It can be seen that the
proposed closed-form preintegration methods have greater
impact when the frequency of the IMU is lower (i.e., sig-
nificantly better performance); while at higher frequencies,

the above methods become less distinguishable. This implies
that the proposed closed-form preintegration methods are
better suited for applications with limited IMU frequency,
which is often the case for low-cost MEMS sensors.

7 Real-World Experimental Validations

7.1 Tightly-Coupled Indirect VIO
In our tightly-coupled VIO system, we use stereo vision
due to its superior estimation performance as compared
to monocular systems (Paul, Wu, Hesch, Nerurkar and
Roumeliotis 2017). Stereo correspondences allow for
accurate triangulation of features regardless of vehicle
motion, making them robust to maneuvers troubling
monocular systems such as hovering. In addition, stereo
allows for a direct reading of the scale, which is highly
informative to the estimator.

When a pair of stereo images arrive, we perform KLT
tracking (Baker and Matthews 2004) of FAST (Rosten,
Porter and Drummond 2010) features that have been
extracted in an uniform grid over the image. Stereo
correspondence information is known by initializing new
features in the left image and KLT tracking them into the
right. The set of stereo tracks from the current image is then
tracked temporally forward at each future time step, while
also ensuring to initialize new feature tracks if the number of
active tracks falls under our desired active feature threshold.
To reject outliers we perform 8-point RANSAC between
both the temporal and stereo left-to-right matches. We have
found that this frontend provides a good balance between
track longevity, computational speed, and accuracy. If an
active feature is successfully tracked, the normalized image
coordinates are added as measurements associated with that
feature. To robustify our system to outliers, we utilized the
Cauchy loss function for all image measurements.

Inspired by Leutenegger, Lynen, Bosse, Siegwart and
Furgale (2015), we maintain a sliding window of IMU states
in the estimator that consists of two sub-windows. The first,
denoted as the inertial window, contains the full 15 DOF
IMU state and refers to the most recent imaging times. The
second window, called the pose window, contains a set of
pose-only clones (that is, only the orientation and position
are maintained). At every imaging time we create a new
corresponding IMU node. The IMU readings collected over
the interval are preintegrated to both predict the new state
and to form a preintegrated IMU measurement between the
previous and new state.

After tracking, we formulate the sliding-window batch
optimization (i.e., BA) problem using all features with a
sufficient number of tracks as well as all nodes in the
inertial and pose windows. The measurements contained in
this graph are: (i) the prior, (ii) the visual measurements
for the active features, and (iii) the preintegration factors
between the inertial window states (see Equation (107)). We
use the Ceres Solver with an elimination ordering that takes
advantage of the sparsity of the problem through the Schur
Complement (Agarwal, Mierle and Others 2018; Kummerle,
Grisetti, Strasdat, Konolige and Burgard 2011).

If the inertial window has reached its maximum length, we
flag the oldest state’s velocity and biases for marginalization.
If the pose window also reaches its maximum length, we
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Figure 6. Monte-Carlo simulation results averaged over 50 runs: (top) position RMSE, and (bottom) orientation RMSE. In this test,
physically-realistic synthetic data was generated using a Gazebo MAV simulator. It is clear that the proposed closed-form
preintegration outperforms the state-of-the-art discrete approach (Forster, Carlone, Dellaert and Scaramuzza 2015, 2017).

add both the oldest pose and all features it has seen into the
marginal state list. Performing marginalization yields a new
prior factor that has absorbed the old prior, the marginalized
feature measurements, and the oldest preintegration factor.
The oldest IMU state whose velocity and biases have been
marginalized is then moved into the pose window.

7.1.1 EuRoC MAV dataset: We compared our tightly-
coupled indirect VIO system with a state-of-the-art open-
source VINS – that is, the Open Keyframe-based Visual-
Inertial SLAM (OKVIS) (Leutenegger, Lynen, Bosse,
Siegwart and Furgale 2015), although several different VINS
methods were recently introduced (e.g., Bloesch, Burri,
Omari, Hutter and Siegwart (2017)). We performed this
comparison on the EuRoC MAV dataset (Burri, Nikolic,
Gohl, Schneider, Rehder, Omari, Achtelik and Siegwart
2016), which has become the standard method for evaluating
VINS algorithms and provides 20hz stereo pairs with
a 200hz MEMS ADIS16448 IMU. Our tightly-coupled
preintegration-based system was run with inertial and pose
sliding windows of 6 and 8 with a maximum of 300 extracted
features. Stereo-OKVIS was run with 4 and 6 inertial and
keyframes with 300 features. These parameters were selected
to ensure real-time performance with both systems having
minimal dropped frames. It should be noted that depending
on the tuning parameters used in the VINS algorithms, their
performance may vary (e.g., see Delmerico and Scaramuzza
(2018)). Note also that our VIO system uses a sliding
window of poses as well as the inertial window connected
with preintegrated measurements but does not keep any
kind of map (to allow intra-window loop closures), while
OKVIS employs a set of keyframes where mapped points
are maintained. Nevertheless, to provide a direct comparison,
we initialize both systems with the true orientation, biases,
velocity, and position such that no post-processing yaw
alignment is needed. Note also that due to some randomness

that may occur during the visual tracking frontend (e.g.,
RANSAC-based outlier rejection), variations in the VINS
results can be observed even if running the same algorithm
on the same sequences. To limit this variability of the
algorithm, we perform 10 runs on the real-world sequences
and average the results.

The “V1 02 med” and “V2 02 med” average trajectories
can be seen in Figures 7a and 7c where we plot the estimated
trajectories of our VIO and OKVIS along with the ground
truth. Note that it is understood that the performance of
VINS algorithms may vary even if re-running on the same
sequences due to some randomness in visual tracking (e.g.,
RANSAC); and thus, we repeated the test for 10 times and
averaged the results in order to better evaluate the relative
performance of the compared approaches. Figures 7b and
7d show the averaged RMSE results of our VIO algorithm
based on the proposed closed-form preintegration with the
two models as compared to OKVIS, which were computed
at every time step and then averaged over all the runs; while
the averaged RMSE results are shown in Table 2. To show
the repeatability/variability between runs, we also plot the
standard deviation of the runs, noting that this should not be
confused with the estimator uncertainty bounds commonly
found in the literature.

We additionally evaluated the trajectories of the proposed
models using the odometry error metric (Zhang and
Scaramuzza 2018). As compared to the absolute RMSE
value, this metric splits the trajectory into small segments of
predetermined lengths, aligns the start of each segment to the
ground truth, and then computes the error of the ending pose
of the segment in respect to the ground truth. This allows
for insights of how drift is a function of distance. Following
the method proposed by Zhang and Scaramuzza (2018), each
of the ten runs performed by each model on the EuRoC
MAV sequences were evaluated and the total odometric error
over all sequences was computed. Figure 8 and Table 3,
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(a) Average trajectory estimates for “V1 02 med”. (b) Average position and orientation RMSE for “V1 02 med”.

(c) Average trajectory estimates for “V2 02 med”. (d) Average position and orientation RMSE for “V2 02 med”.

Figure 7. Average trajectory and RMSE error over ten runs for the “V1 02 med” (top) and “V2 02 med” (bottom) sequences of the
proposed tightly-coupled indirect VIO system. The one-sigma bound on the mean error is also shown and can be interpreted as the
repeatability of the system (due to some randomness occurred in visual tracking). Note that this is not the same as estimator
uncertainty and instead shows the variance of the VIO systems. The total trajectory lengths are 80 and 88 meters, respectively.

Table 2. Average absolute RMSE results of the tightly-coupled indirect VINS for the EuRoC MAV sequences averaged over 10
runs. All systems were initialized with the ground truth state. The smallest position and orientation errors have been highlighted.

MODEL-1 MODEL-2 DISCRETE OKVIS
Units m deg m deg m deg m deg

V1 01 easy 0.2522 2.749 0.2160 2.503 0.2547 2.781 0.2356 2.458
V1 02 med 0.1342 0.942 0.1214 1.215 0.1344 1.001 0.1996 2.321
V1 03 diff 0.1101 0.880 0.0953 0.809 0.1012 0.830 0.1830 3.498
V2 01 easy 0.1429 1.069 0.1426 1.148 0.1426 1.118 0.1806 0.973
V2 02 med 0.1297 1.390 0.1223 1.135 0.1375 1.450 0.1695 2.334
V2 03 diff 0.2982 2.159 0.2800 1.769 0.3055 2.052 0.3483 8.327

MH 01 easy 0.1817 1.398 0.1653 1.761 0.2050 1.321 0.2523 0.728
MH 02 easy 0.1533 0.691 0.1498 0.525 0.1564 0.599 0.2523 0.728
MH 03 med 0.2993 1.024 0.2627 0.968 0.2800 0.840 0.3193 1.903
MH 04 diff 0.3312 0.849 0.3515 0.974 0.3488 0.852 0.2145 1.022
MH 05 diff 0.3939 0.692 0.3971 0.715 0.3835 0.809 0.5432 0.738

show the resulting odometric error for trajectory segments
of {7,14,21,28,35} meters.

These results clearly demonstrate that our VIO system
can offer competitive performance to OKVIS; that is, we
see instances where our method outperforms OKVIS, while
in others OKVIS is superior. Between the two proposed
preintegration models, for these experiments, Model 2 offers
the best performance. We note that the discrete preintegration
method tends to perform with lower accuracy compared to

the two proposed models (although not in all cases), thereby
validating the proposed preintegration models.

7.1.2 UD indoor datasets: We further performed rela-
tively large-scale (as compared to the EuRoC MAV dataset)
indoor experiments in two buildings at the University of
Delaware (UD) using our hand-held VI-Sensor with an IMU
frequency of 400 Hz. In these experiments, because no
ground truth was available, we initialized the system by
keeping the device stationary for a short period of time (e.g.,
2 seconds) so that the initial orientation and biases could be
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Figure 8. Boxplot of the odometric translation error statistics for
the tightly-coupled indirect system evaluated over all of the
EuRoC MAV sequences. Errors were computed using the
odometry metric over trajectory segments of {7,14,21,28,35}
meters in length. The middle box spans the first and third
quartiles, while the whiskers are the upper and lower limits.

Table 3. Mean odometric translation errors for the
tightly-coupled indirect system evaluated over all of the EuRoC
MAV sequences. Errors were evaluated over trajectory
segments of {7,14,21,28,35} meters in length. All errors are in
meters.

MODEL-1 MODEL-2 DISCRETE OKVIS
7 m 0.137 0.135 0.136 0.142
14 m 0.177 0.169 0.177 0.185
21 m 0.220 0.209 0.217 0.226
28 m 0.229 0.216 0.226 0.245
35 m 0.247 0.238 0.246 0.287

found, while the position and velocities were initialized as
zero. To account for poor calibration of the sensor suite, both
the IMU-to-camera spatial calibration parameters as well as
the camera intrinsics were estimated online. This was done
by adding these quantities into the state and using the raw
image coordinates as measurements, while expressing these
as a function of the normalized pixel coordinates (104) as
well as the camera intrinsics (Li, Yu, Zheng and Mourikis
2014). The first indoor experiment was performed in the UD
Gore Hall, in which the trajectory starts on the first floor,
traverses the staircase to the third floor, and returns to the
bottom floor, making a loop on each level. To evaluate the
estimation performance the trajectory returns to the original
starting location. The 3D trajectory estimate is shown in
Figure 9a while its projection onto the building floor plan
is shown in Figure 9b. We ran each preintegration model
ten times across the 228 meter long dataset and averaged the
results. Model 1 had an ending error of 0.763 m (0.33% of
the path), Model 2 had an ending error 0.747 m (0.33%),
discrete preintegration achieved 0.765 (0.34%), and OKVIS
achieved an ending error of 0.762 m (0.33%) showing the
improvement due to closed-form preintegration.

The second indoor experiment was conducted in the UD
Smith Hall. Starting on the second floor, we traversed along a
rectangular wall before descending the stairs, looping around
the first floor, then returning up the stairs, looping one and
a half times around the upper level before returning to the

starting position. Model 1 had an ending error of 0.632 m
(0.28% of the path), Model 2 had an ending error 0.788 m
(0.35%), discrete preintegration achieved 0.768 m (0.34%),
and OKVIS achieved 1.699 m (0.75%) over the 230 meter
trajectory. Note that this scenario was more challenging than
the first experiment, primarily due to the fact that during this
test, there were people walking around, lighting conditions
were varying, and some parts of the environment lacked good
features to detect and track (see Figure 10a).

The 3D trajectory estimate and its projection onto the
floor plan are show in Figures 10b and 10c, respectively.
These results clearly demonstrate that our VIO systems
using the proposed closed-form preintegration are able to
perform accurate 3D motion tracking in relatively large-scale
complex environments.

7.2 Loosely-Coupled Direct VINS
When a stereo pair arrives, as in the preceding indirect VIO,
we perform the proposed closed-form preintegration from
the previous IMU state to the current state. We then check
the list of stored keyframes for a suitable candidate for
direct image alignment, based on a field-of-view constraint
between the candidate and the current image. If no such
acceptable candidate is found, a new keyframe is created
from the previous image pair and its depth map is computed
using the OpenCV function StereoSGBM. In particular, in
order to perform course-to-fine alignment, the depth map is
computed for multiple image pyramid levels. Starting at the
coarsest image level, we perform iterative image alignment,
using the larger levels to further refine the course image
alignment transform. This image alignment optimization was
implemented in a CUDA kernel for GPU acceleration, thus
allowing for the system to achieve real-time performance.
After convergence, we recover the relative-pose constraint
and add it as a factor to our direct-VINS graph. Note
that as compared to our indirect VIO method, we do not
perform marginalization and thus allow later incorporation
of loop closures. To handle this increase of computational
complexity and allow for real-time performance, we leverage
the iSAM2 incremental smoothing implementation within
the GTSAM framework (Kaess, Johannsson, Roberts, Ila,
Leonard and Dellaert 2012; Dellaert 2012). However, the
proposed framework is by no means optimal and can be
further refined, for example, by more intelligently selecting
keyframes.

7.2.1 EurocMav dataset: To validate our direct VINS
approach, we perform tests on the same EurocMav sequences
as before, which allow for direct comparison to a ground-
truth trajectory (Burri, Nikolic, Gohl, Schneider, Rehder,
Omari, Achtelik and Siegwart 2016). The results of the
proposed direct VINS using two different preintegration
models are shown in Table 4. Clearly, in scenarios in
which a large amount of loop closures are present (e.g.,
“V1 03 diff”), this system can outperform the tightly-
coupled VIO system (see Section 5.1 and Table 2). However,
when such loop closures are not available, the loosely-
coupled systems suffer from larger drifts, as can be seen from
the result of “V2 01 easy”.

In these experiments, both proposed models tended
to offer improved performance as compared to discrete
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(a) Example images (top) and 3D trajectory (bottom). (b) Projection of the estimated trajectory onto the floor plan.

Figure 9. The trajectory estimates of the indoor experiment performed in the UD Gore Hall. Two example images from the dataset
can be seen in (a), while the starting and ending locations are shown by a green square and red diamond in the plot, respectively.
Note that the three floors have similar layouts, and thus only one floor plan is shown in plot (b).

Table 4. Average absolute RMSE results for the EurocMav sequences over ten runs using the proposed direct VINS algorithm. All
systems were initialized with the ground truth state. The smallest position and orientation errors have been highlighted.

MODEL-1 MODEL-2 DISCRETE
Units m deg m deg m deg

V1 01 easy 0.2445 2.218 0.2482 2.246 0.2530 2.223
V1 02 med 0.1598 1.767 0.1309 1.483 0.1763 1.899
V1 03 diff 0.0990 1.180 0.1030 1.279 0.1030 1.234
V2 01 easy 0.1627 2.089 0.1940 1.956 0.1664 1.533
V2 02 med 0.1809 2.530 0.1665 2.527 0.1688 2.309
V2 03 diff 0.9337 6.187 0.8927 5.425 1.0137 4.998

MH 01 easy 0.2947 2.270 0.3277 2.148 0.3217 2.226
MH 02 easy 0.1882 1.650 0.2136 1.582 0.2008 1.483
MH 03 med 0.2330 2.096 0.2295 2.121 0.2288 2.092
MH 04 diff 0.4792 2.513 0.4867 2.627 0.4724 2.562
MH 05 diff 0.2884 1.664 0.3014 1.722 0.2946 1.700

preintegration (although not in all cases), while providing
similar levels of performance to each other, with each having
trajectories where they outperform the other. In addition, the
proposed direct VINS is sensitive to the tuning parameters,
which in this experiment were chosen as identical across all
sequences, rather than finding an optimal set per scenario.
This led to situations such as “V2 03 diff”, in which some
of the runs yield incorrect loop closures despite our system
attempting to reject these, greatly corrupting the resulting
trajectory estimates. However, as the purpose of this work is
to show the accuracy of the proposed preintegration, instead
of the robustness of the utilized front-ends, these results
along with the previous simulation results strongly suggest
that our preintegration models can be, and should be, used
when designing graph-based VINS.

8 Conclusions and Future Work
In this paper, we have analytically derived closed-form iner-
tial preintegration and successfully applied it to graph-based

visual-inertial navigation systems (VINS). In particular, we
advocate two new preintegration models for the evolution of
IMU measurements across sampling intervals. In the first,
we assume that the inertial measurements remain piecewise
constant; while in the second, we incorporate a piecewise
constant local acceleration model into the preintegration
framework. We have validated through extensive Monte-
Carlo simulations that both models outperform the state-of-
the-art discrete preintegration. Furthermore, we have utilized
this closed-form preintegration theory and developed two
different VINS algorithms primarily to show the advantages
of the proposed preintegration. In the first, we formulated
an indirect (feature-based), tightly-coupled, sliding-window
optimization based VIO system that offers competitive (if not
better) performance to a state-of-the-art graph-based VINS
algorithm. The second VINS method was developed instead
based on loosely-coupled direct image alignment with the
proposed preintegrations, allowing for efficient incorporation
of informative loop closures.
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(a) Two sample images seen during the experiment.

(b) View of the estimated 3D trajectory.

(c) Projection of the estimated trajectory onto the floor plan.

Figure 10. The results of the indoor experiment performed in
the UD Smith Hall. Two example left camera images are shown
in (a). In plot (b), the starting and ending locations of the
trajectory estimates are shown as a green square and red
diamond, respectively. Note that the trajectory shown in (c)
occurs on both the second and first floors.

In the future, we will integrate the proposed closed-form
preintegrations to aided inertial navigation systems with
other aiding sources (e.g., LiDAR). We also seek to further
robustify our VINS to handle more challenging scenarios
(e.g., ultra-fast motion and highly-dynamic scenes).
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Appendix A: Index to multimedia Extensions
Archives of IJRR multimedia extensions published prior
to 2014 can be found at http://www.ijrr.org, after 2014
all videos are available on the IJRR YouTube channel at
http://www.youtube.com/user/ijrrmultimedia

Table of Multimedia Extension

Extension Media type Description
1 Video Both tightly-coupled indirect

and loosely-coupled direct
VINS with Model 1 prein-
tegration are tested on the
“V1 03 difficult” EurocMav
dataset. The estimated trajec-
tories are plotted in red.

2 Video The indirect system with
Model 1 preintegration is
demonstrated on a 240 meter
large-scale indoor trajectory,
on a collected dataset at
the University of Delaware
Smith Hall.

Appendix B: Preintegration Measurement
Jacobians

B.1. Model 1 Measurement Jacobians
We first partition the preintegrated measurement residual as
follows:

eIMU (x) =
[
e⊤θ e⊤bω e⊤v e⊤ba e⊤p

]⊤
(127)

The measurement Jacobian with respect to each element
of the error state vector can be found by perturbing
the measurement function for the corresponding element.
For example, the relative-rotation measurement residual
eθ is perturbed by a small change in gyro bias around
the current estimate, i.e., bωk

− b⋆
ωk

= b̂ωk
+ δbωk

− b⋆
ωk

,
which yields (see Equation (72)):

eθ = 2vec

(
k+1
G

ˆ̄q ⊗ k
G
ˆ̄q
−1 ⊗ k+1

k
˘̄q
−1 ⊗
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Jq(b̂ωk

+δbωk
−b⋆

ωk
)

2
1

])

=: 2vec

(
ˆ̄qr ⊗
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Jq(b̂ωk

+δbωk
−b⋆

ωk
)

2
1

])

= 2vec

(
L(ˆ̄qr)

[
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+δbωk
−b⋆

ωk
)

2
1

])
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r q̂r,4

] [
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2
1

])
= (q̂r,4I3×3 − ⌊q̂r⌋)Jq(b̂ωk

+ δbωk
− b⋆

ωk
) + other terms

(128)

As a result, the Jacobian with respect to a perturbance in bias
can be read out as:

∂eθ
∂δbωk

= (q̂r,4I3×3 − ⌊q̂r⌋)Jq (129)

Proceeding analogously, the Jacobian with respect to
k+1δθG can be found as follows:

eθ = 2vec

([ k+1δθG

2
1

]
⊗ k+1

G
ˆ̄q ⊗ k

G
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k q̄
−1 ⊗ ˆ̄qb

)
=: 2vec

([ k+1δθG

2
1

]
⊗ ˆ̄qrb

)
= 2vec

(
R(q̂rb)

[ k+1δθG

2
1

])
= 2vec

([
q̂rb,4I3×3 + ⌊q̂rb⌋ q̂rb

−q̂⊤
rb q̂rb,4

] [
1
2
k+1δθG

1

])
= (q̂rb,4I3×3 + ⌊q̂rb⌋)k+1δθG + other terms
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Similarly, the Jacobian with respect to kδθG is computed by:
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⇒ ∂eθ
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=

Prepared using sagej.cls

http://www.ijrr.org
http://www.youtube.com/user/ijrrmultimedia


8 CONCLUSIONS AND FUTURE WORK 21

− ((q̂n,4I3×3 − ⌊q̂n⌋)(q̄mb,4I3×3 − ⌊qmb⌋) + q̂nq̄
⊤
mb)

(131)

where we have defined several intermediate quaternions,
ˆ̄qr, ˆ̄qrb, ˆ̄qn, and ˆ̄qmb, for ease of notation. We compute the
Jacobians of the remaining preintegrated measurements as
follows (Eckenhoff, Geneva and Huang 2018):

∂ebω
∂δbωk

= −I (132)

∂ebω
∂δbωk+1

= I (133)
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⌋
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∂ev
∂δbωk

= −Jβ (135)

∂ev
∂Gδvk

= −k
GR̂ (136)

∂ev
∂Gδvk+1

= k
GR̂ (137)

∂ev
∂δba

= −Hβ (138)

∂eba
∂δbak

= −I (139)

∂eba
∂δbak+1

= I (140)

∂ep
∂kδθG

=

⌊
k
GR̂

(
Gp̂k+1 − Gp̂k − Gv̂k∆t+

1

2
Gg∆t2

)⌋
∂ep

∂δbωk

= −Jα (141)

∂ep
∂Gδvk

= −k
GR̂∆t (142)

∂ep
∂δbak

= −Hα (143)

∂ep
∂Gδpk

= −k
GR̂ (144)

∂ep
∂Gδpk+1

= k
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(146)

B.2. Model 2 Measurement Jacobians
For Model 2, the orientation measurement Jacobians remain
the same as in Model 1. For the remaining measurement
Jacobians, we compute them in the same way as in Model
1 and are given by (see Equation (103)):

∂ebω
∂δbωk

= −I (147)
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∂δbωk+1

= I (148)
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where [q̃⊤ q̃4]
⊤ = k

G
ˆ̄q ⊗ k

Gq̄
⋆−1

Appendix C: Inverse-Depth Measurement
Jacobians
We denote a and i the anchoring time step and the associated
anchoring camera frame, respectively. Consider the case
where we receive an image of the same feature at step
k from camera j. This measurement can be divided into
three categories: (i) when the measurement refers to both
the anchoring time and camera that the inverse depth is
being represented in; (ii) when the measurement refers to the
same anchoring time, but a different camera; (iii) when the
anchoring time and measurement time are distinct.

In case (i), we have (see Equation (111)):

h =

αβ
1

 (162)

Then the measurement Jacobians are computed by (see
Equations (106), (110) and (111)):

∂efjk
∂α

= Hproj(0, 0, 2, 1) (163)

∂efjk
∂β

= Hproj(0, 1, 2, 1) (164)

∂efjk
∂ρ

= 0 (165)

Hproj =

[
1
h3

0 −h1

(h3)2

0 1
h3

−h2

(h3)2

]
(166)

where Hproj(i, j, k, l) refers to the block matrix of size (k, l)
with starting index (i, j).

In case (ii) where k refers to the same imaging time but
a different camera (such as a stereo partner), we have (see
Equation (111)):

h =
Cj

Ci
R

αβ
1

+ ρCjpCi
(167)
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Because in this case the transformation parameters are rigid
and known, we need only the derivatives with respect to the
unknown feature parameterization:

∂efjk
∂α

=
[
Hproj

Cj

Ci
R
]
(0, 0, 2, 1) (168)

∂efjk
∂β

=
[
Hproj

Cj

Ci
R
]
(0, 1, 2, 1) (169)

∂efjk
∂ρ

= CjpCi
(170)

In case (iii) where instead the measurement refers to a
different time, we can write out the rigid transformation
between the anchor and new current camera frame as
follows:

Ck,jpf =
Ck,j

Ca,i
RCa,ipf + Ck,jpCa,i

=
1

ρ
Cj

I Rk
GR

G
a R

I
Ci
R

αβ
1

+

Ck,j

G R
(
GpCa,i

− GpCk,j

)
=

1

ρ
Cj

I Rk
GR

G
a R

I
Ci
R

αβ
1

+

Cj

I Rk
GR

(
Gpa +

G
a R

IpCi
− Gpk − G

k R
IpCj

)
=

Cj

I Rk
GR

G
a R

I
Ci
R

1

ρ

αβ
1

− CipI

+

Cj

I Rk
GR(Gpa − Gpk) +

CjpI (171)

With this, we have:

h =
Cj

I Rk
GR

G
a R

I
Ci
R

αβ
1

− ρCipI

+

ρ
Cj

I Rk
GR

(
Gpa − Gpk

)
+ ρCjpI (172)

We can then take the derivative with respect to each variable:

∂efjk
∂aδθG

= −Hproj
Cj

I Rk
GR

G
a R

I
Ci
R

αβ
1

− ρCipI


(173)

∂efjk
∂Gpa

= Hprojρ
Cj

I Rk
GR (174)

∂efjk
∂kδθG

= Hproj
Cj

I R

⌊
k
GR

G
a R

Ii
CR

αβ
1

− ρCipI

+

ρkGR
(
Gpa − Gpk

) ⌋
(175)

∂efjk
∂Gpk

= −Hprojρ
Cj

I Rk
GR (176)

∂efjk
∂α

=
[
Hproj

Cj

I Rk
GR

G
a R

I
Ci
R
]
(0, 0, 2, 1) (177)

∂efjk
∂β

=
[
Hproj

Cj

I Rk
GR

G
a R

I
Ci
R
]
(0, 1, 2, 1) (178)

∂efjk
∂ρ

= Hproj(−
Cj

I Rk
GR

G
a R

I
Ci
RCipI+

Cj

I Rk
GR

(
Gpa − Gpk

)
+ CjpI) (179)

Appendix D: Relative-Pose Measurement
Jacobian
Recall that in Equation (125), j denotes the query image
and k is the keyframe. We partition the relative-pose residual
ed into the relative-orientation residual eθ and the relative-
position residual ep. The Jacobians with respect to the states
can be found by perturbation in the same way as before.

eθ = 2vec
([ jδθG

2
1

]
⊗ j

Ĝ̄q ⊗
k
G
ˆ̄q−1 ⊗ j

k
˘̄q−1

)
= 2vec

(
R
(
j
Ĝ̄q ⊗

k
G
ˆ̄q−1 ⊗ j

k
˘̄q−1
)[ jδθG

2
1

])
= (q̄r,4I+ ⌊qr⌋) jδθG + · · ·

⇒ ∂eθ
∂jδθG

= (q̄r,4I+ ⌊qr⌋) (180)

Similarly, we perturb the quaternion estimate of the keyframe
to compute the corresponding Jacobian as:

eθ = 2vec
(

j
Ĝ̄q ⊗

k
G
ˆ̄q−1 ⊗

[
−kδθG

2
1

]
⊗ j

k
˘̄q−1

)
= 2vec

(
L
(
k
j
ˆ̄q
)
R
(
k
j
˘̄q
)⊤ [−kδθG

2
1

])
=

−
((

j
k
ˆ̄q4I− ⌊jkq̂⌋

)(
j
k
˘̄q4I− ⌊jkq̆⌋

)
+ j

kq̂
j
kq̆

⊤
)
kδθG + · · ·

⇒ ∂eθ
∂kδθG

=−
((

j
k
ˆ̄q4I− ⌊jkq̂⌋

)(
j
k
˘̄q4I− ⌊jkq̆⌋

)
+ j

kq̂
j
kq̆

⊤
)

Again by following a similar procedure, we can find the
Jacobians of the relative-position residual with respect to the
state as follows:

∂ep
∂Gδpj

= k
GR̂ (181)

∂ep
∂Gδpk

= −k
GR̂ (182)

∂ep
∂kδθG

= ⌊kGR̂
(
Gpj − Gpk

)
⌋ (183)
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