
Robust Monocular Visual-Inertial
Depth Completion for Embedded Systems

Nathaniel Merrill*, Patrick Geneva*, and Guoquan Huang

Abstract— In this work we augment our prior state-of-
the-art visual-inertial odometry (VIO) system, OpenVINS [1],
to produce accurate dense depth by filling in sparse depth
estimates (depth completion) from VIO with image guidance
– all while focusing on enabling real-time performance of
the full VIO+depth system on embedded devices. We show
that noisy depth values with varying sparsity produced from
a VIO system can not only hurt the accuracy of predicted
dense depth maps, but also make them considerably worse
than those from an image-only depth network with the same
underlying architecture. We investigate this sensitivity on both
an outdoor simulated and indoor handheld RGB-D dataset,
and present simple yet effective solutions to address these
shortcomings of depth completion networks. The key changes to
our state-of-the-art VIO system required to provide high quality
sparse depths for the network while still enabling efficient state
estimation on embedded devices are discussed. A comprehensive
computational analysis is performed over different embedded
devices to demonstrate the efficiency and accuracy of the
proposed VIO depth completion system.

I. INTRODUCTION
Traditionally, real-time dense depth is achieved through

depth sensors, posing hardware constraints which may not
amenable for embedded resource constrained systems such as
micro-aerial vehicles (MAVs) and mobile augmented-reality
(AR) devices. Recent works have leveraged deep learning to
predict depth from single images [2]–[6], image sequences
[7]–[9], and also sparse depth maps paired optionally with
images (also known as depth completion) [10]–[15]. A select
few of these methods [6], [13] are particularly appealing as
lightweight network architectures are used. In this work, we
augment our prior state-of-the-art VIO system, OpenVINS,
with the ability to produce real-time dense depth, while
focusing on enabling real-time state estimation and dense
depth completion on embedded systems.

In particular, dense depth completion from images com-
bined with sparse depths generated from VIO systems has
shown promising accuracy gains over pure image-based
depth prediction networks [13]–[15]. In this work we extend
the FastDepth [6] architecture to support sparse depth inputs
along with color images and investigate sensitivities of this
network to VIO errors on resource-constrained devices. The
main contributions of this work include:
• We show that noisy depth values with varying sparsity

produced by VIO can not only hurt the accuracy of the
completed depth maps, but also make them considerably
worse than the predictions from an image-only depth
network with the same underlying architecture.
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Fig. 1: (a) The example RGBsD inputs from VIO along with the
groundtruth depth maps. (b) The prediction from the RGB only
network with a heat map of the per-pixel absolute error (white
is larger). (c) The prediction from the depth completion network
which has been trained without noise performs worse than the RGB
network. (d) The proposed network trained to be robust to extreme
varying levels of sparsity as well as the noisy depth values.

• We propose novel solutions to address these shortcom-
ings and robustify the network, which are generalizable
to nearly any sparse depth completion network and
dataset without altering the network architecture. The
proposed methods are presented and evaluated on both
an outdoor MAV simulated and indoor handheld RGBD
dataset, with both simulated and real VIO depth inputs.

• We introduce some key changes to our OpenVINS [1],
required to provide high-quality sparse depths inputs for
the network and enable efficient VIO depth completion
on embedded devices (<10-15W). We show through
comprehensive timing experiments that the proposed
VIO depth completion system can achieve this goal.

II. RELATED WORKS
Pairing images and sparse depth as input to depth esti-

mation networks has been of particular interest recently due
to its promise of accurate dense depth map predictions –
typically with minimal additional computation compared to
just image inputs. While many works have studied depth
from a single image [2]–[6], [16], [17], the inclusion of a
sparse depth source (e.g. VIO, selective stereo matching,
range sensor) [10]–[12], [18]–[21] has shown far better
results due to the fact that the network has access to some
known depth values – thus relaxing the ill-poised problem



of single-view depth estimation. Ma and Karaman [10],
[11] introduced a sparse-to-dense ResNet-based model which
combined a 4-channel input of RGB and sparse depth points
and demonstrated that coupling the two as a single input
in an end-to-end fashion outperforms the state-of-the-art
and reduces prediction error compared to their RGB-only
counterparts. Note that while they reported that training with
extreme sparsity performs worse than the RGB counterpart,
this is quite different from our experiments, which shows
this phenomena without even varying the sparsity.

Significant research efforts have investigated sparse depth
sensitivities [22]–[28]. Jaritz et al. [22] showed that changing
the training procedure to vary the level of sparse point
densities greatly improves robustness to varying levels of
sparse points during test time. Cheng et al. [23] investigated
the sensitivity of LiDAR-stereo depth network completion
algorithms to noisy LiDAR points and sensor extrinsic
misalignment and addressed sensor misalignment through a
training strategy which gradually removed inconsistent noisy
LiDAR points. In this work, we investigate the sensitivity
of a lightweight model architecture to the noises present in
VIO depths with the goal of running the full system on an
embedded platform.

The coupling of visual-inertial state estimation and dense
depth prediction has seen recent interest. A popular technique
is to leverage meshing of sparse points [14], [29]. A major
drawback is that the resolution of the mesh is limited to
the density of sparse points, which limits its applicability to
outdoor non-planar environments. Sartipi et al. [15] looked
at directly leveraging the sparse points from VIO through
a multi-stage system which detects planes, surface normals,
and finally a dense depthmap. However, this method has high
computational complexity and only focuses on indoor planar
environments.

As for deep depth estimation on embedded devices, Wofk
et al. [6] introduced the FastDepth architecture which fo-
cused on enabling real-time depth inference on embedded
platforms. They successfully reduced the computational com-
plexity of a dense RGB depth network to enable real-time
inference on an NVIDIA Jetson TX2 GPU. Teixeira et al.
[13] presented a lightweight network architecture that could
perform image-guided depth completion from VIO depths
at 15Hz on a TX2; however, they suffered from significant
accuracy loss when going from the uniformly sampled depths
used in training to the real VIO depths. Due to its superior
speed, in this paper, we utilize the FastDepth architecture
to support the inclusion of sparse depth from a VIO system
with the goal of reducing predicted depth errors.

III. SPARSE DEPTH COMPLETION

To enable real-time dense depth completion on embedded
platforms we leverage the final pruned FastDepth network
architecture. In this section, we identify and investigate
the particular problems that arise from attempting to use
sparse OpenVINS VIO depth values as input to the depth
completion network, and show that naı̈ve image-guided depth
completion may become worse than RGB-only depth.

We investigate two methods of which to modify the hour-
glass FastDepth architecture to allow for combined image

and sparse depth input. The first is the original method
of Ma et al. [10] which involves simply concatenating the
sparse depth map with the input image and inputting this
four channel image. The second is the method of late
fusion, similar to Jaritz et al. [22], which has two separate
encoders for the image and sparse depth. Unlike [22], which
concatenates the skip connections from the two encoders to
be fed into the decoder, we use element-wise addition to
speed up the computation (as in [6]).

A. OpenVINS Modifications
At its core OpenVINS [1] is an on-manifold modular

EKF-based sliding-window visual-inertial estimator. There
are two different types of features used: 1) SLAM features
are inserted into the state vector and updated with new
measurements in future timesteps directly, and 2) MSCKF
features are short-term or extra features whose measure-
ments are batch processed using the MSCKF [30] null-space
projection to remove the need to include them in the state
vector. The former become computationally cheaper if they
are created for features which have long feature tracks, while
the latter are cheaper when there are large numbers of short
feature tracks [31]. Thus a combination of these two feature
types is typically used to maximize performance.

To facilitate the proposed depth completion network and
reduce computation, a few key changes are made. First, we
introduce a limit to the number of MSCKF features which
can be used in a single update step, with features being
selected based on maximum track length. Leftover “actively
tracked” features will be postponed to a future update.
Second, we perform the process of re-triangulation after each
feature update over all actively tracked features which can
be triangulated. After triangulation, features are projected
into the current camera frame using the currently estimated
poses and calibration values, and then sent to the network
in the form of a sparse depth image. We found that this
re-triangulation typically only takes 1-2ms for 500 features,
which is computationally cheap and allows for downstream
applications (e.g., depth completion, loop-closure detection)
to leverage the pointcloud. In practice this re-triangulation
can be performed before or after state update to either enable
lower latency for depth prediction or more accurate sparse
depths (which we use as default).

B. Simulation Analysis
Our analysis is performed on a simulated outdoor forest

environment, as compared to existing RGBD datasets, to
provide a challenging depth estimation scenario with noise-
free and fully dense ground truth depth maps. Shown in
Figure 1 (left column), this environment presents a particular
challenge due to the density of the forest and range of depths
observed (maximum depth of 65 meters) – as well as the
large roll and pitch variations that we allow. There is a
high density of small branches and leaves which presents
a challenge in recovering their depths, but also are crucial to
recover accurately in cases where the predicted depth map
is used for obstacle avoidance. We collect 29,909 images
in total by randomly placing the camera in the forest world,
with random position and orientations of roll ±25◦ and pitch
±45◦, and excluding any images where the camera landed



inside of an object. 19,716 and 1195 images are respectively
used for training and validation, and 8,998 are reserved for
testing. We use a relatively large testing split in order to
ensure that none of the results are anomalies from overfitting.
Due to the challenging environment with clutter from the
trees, large depth ranges, and large amounts of roll and pitch
variations, the networks struggle to achieve metrics on the
order of public benchmarks that are easier due to their limited
orientation changes and relatively small clutter [19].

1) Training
We train all the networks in this paper with PyTorch [32],

using the Adam optimizer [33] with the default parameters
and a batch size of 64. Unless otherwise specified, all of
the networks discussed are initialized with weights from
a MobileNet model [34] pretrained on the ImageNet [35]
and trained for 30 epochs with the `1 loss and the data
augmentations as in [2]. As opposed to the original training
method of FastDepth, which involves training the model with
the full MobileNet model, pruning, and then fine tuning,
we simply use the pruned FastDepth model architecture,
and copy over the first cp channels from any layer of the
MobileNet model that has c layers, where cp ≤ c. This
helps to streamline the training process and achieves the
same accuracy as the original work. Note that in both training
and testing, when noises are present, the same random seed
is used to provide a fair relative comparison.

2) Sensitivity to Sampling Methods
We first investigate the sensitivity of the depth completion

networks to sampling methods alone by fixing the number
of points and using the true depth values. We train both
the baseline RGB FastDepth and the RGB-sparse depth
(RGBsD) networks with both the shared encoder and late
fusion architectures, using some standard metrics used in
the depth estimation literature1. The following training depth
sampling strategies are investigated: 1) points sampled uni-
formly according to the original method of Ma et al. [10]
(unif), 2) raw FAST corner locations (fast), and 3) FAST
corners with injected noise to model VIO depths (robust),
which is explained in more detail in the next section. 500
samples are used in each case, with slight variations in the
uniform samples as in [10], as well as in the FAST corners
due to a lack of gradients in darker areas. We test these
models with each one of these sampling strategies in order
to observe how the sampling affects each one individually. It
is clear from Table I that just sending FAST corner features to
the network trained with uniform samples quickly degrades
the performance past that of the RGB network. While it has
been shown in [13], [15] that sending corner features with
and without noise to a network trained with uniform data can
hurt the performance, to our knowledge this is the first time
it has been observed to perform significantly worse than a
comparable RGB network. Since we want to leverage sparse
VIO depth of FAST features, we could use the system trained
on the true FAST corners, but this ignores that there are other
sources of errors which could affect these sparse samples.

1Definitions of all of the metrics besides the MAE can be found in [2].
Mean Absolute Error (MAE) is the average pixel-wise absolute difference
between the prediction and ground truth depth.

TABLE I: Prediction results on the simulated forest environment
for a trained model with different methods for feature sampling.
Entries less than 10% worse than the baseline are yellow, and entries
that are at least 10% worse than the baseline are red. The network
with the best metric is bolded per-section.

Test Train Model δ1 ↑ δ2 ↑ δ3 ↑ RMSE ↓ MAE ↓ log10 ↓

- - RGB 0.552 0.758 0.859 6.409 3.420 0.144

uniform

unif
RGBsD 0.704 0.835 0.896 6.401 2.902 0.110

RGBsD-late 0.713 0.844 0.904 5.996 2.737 0.104

fast
RGBsD 0.664 0.819 0.888 6.560 3.087 0.120

RGBsD-late 0.687 0.831 0.895 6.365 3.011 0.115

robust
RGBsD 0.629 0.803 0.878 6.654 3.260 0.133

RGBsD-late 0.668 0.821 0.889 6.479 3.036 0.118

corners

unif
RGBsD 0.522 0.718 0.821 6.999 4.010 0.168

RGBsD-late 0.528 0.724 0.825 6.935 4.086 0.166

fast
RGBsD 0.613 0.790 0.873 6.281 3.258 0.133

RGBsD-late 0.641 0.810 0.886 6.054 3.065 0.123

robust
RGBsD 0.595 0.791 0.875 6.369 3.328 0.137

RGBsD-late 0.624 0.801 0.881 6.182 3.123 0.127

noisy
corners

unif
RGBsD 0.443 0.651 0.766 8.025 4.749 0.207

RGBsD-late 0.462 0.672 0.787 7.688 4.688 0.192

fast
RGBsD 0.537 0.738 0.835 7.061 3.844 0.160

RGBsD-late 0.590 0.781 0.867 6.619 3.455 0.138

robust
RGBsD 0.572 0.779 0.867 6.594 3.458 0.143

RGBsD-late 0.613 0.794 0.877 6.308 3.192 0.130

3) Robustness to Noisy Sparse Inputs
To investigate the robustness of the networks to the noises

from imperfect VIO depths and bearings as well as the arti-
facts from projecting into the current frame with imperfect
relative pose with respect to the feature’s anchor frame, we
propose to simulate the noisy sparse point input from VIO
as follows. For each FAST corner location u = [u v]>,
we first extract the groundtruth depth value d and perturb
the coordinates and depth separately with a zero mean
Gaussian with standard deviation of 3 pixels and 0.45 meters
for the depths, respectively. For the camera pose error, we
take the perturbed coordinates and depth, project it into the
camera frame , and then apply a randomly generated SE(3)
transformation to the camera pose with standard deviation
3◦ and 3cm, after which the points are re-projected back
into the image plane. From Table I, we see that the (robust)
networks trained with the simulated noises can also remain
robust to the noises during testing with unseen data, while
most of the other methods are unable to outperform the RGB
network metrics.

4) Sensitivity to Feature Density
The sparse feature density can vary widely in a VIO

system due to conditions such as low image gradients,
fast motion, limited computational resources, or even cases
were the VIO fails and state estimation is lost. Most works
have only compared RGBsD networks to sparse depth-only
networks, and not even considered how it compares to RGB
only. We here focus on making the RGBsD network better
than the RGB network for all possible sparsities of the VIO
system.

Figure 2 shows the impact of varying the number of sparse
features used during test time. Shown in the left column, the
networks that were trained with a fixed 500 points perform
worse than the RGB baseline when presented with sparsity
that is even slightly less than that given at training time, but
improve for higher densities – which is definitely desirable.
Following [22], we decide to not include a validity mask
for the sparse input and instead just allow the network



Fig. 2: All RGBsD networks here have been trained with FAST
corners. Note that no perturbations were performed during test time
to highlight the affects of varying sparsity. Left: Networks trained
to be sparsity agnostic (*-sa), while ones with initialized weights
from the RGB network (*-trans) are evaluated. Right: Networks
trained with perturbations (*-robust) to groundtruth sparse points.

Fig. 3: Networks trained for additional 30 epochs (*+30) vs. the
original networks with transferred weights from the RGB network.

to learn its own sparsity-agnostic features (marked as “sa”
in Figure 2). We train these networks with 0-500 points
chosen randomly and uniformly. It can be seen in Figure
2 (left column) that the networks are able to learn a natural
invariance to the sparsity level, but are still generally worse
than the RGB-only network at extreme sparsity levels. To
address this issue, we initialize the depth completion network
weights with a fully pre-trained RGB network for layers of
compatible dimensions (including the sparse depth encoder
of the late fusion model) and then train for the same 30
epochs with varying sparsity – which is marked as “trans”
in Figure 2. This provides the best performance and ensures
that even in cases where no points are present, we generally
perform better than the RGB baseline. This method is highly
intuitive, as the RGB network has already learned to handle
0% sparsity and the performance gain is still mostly retained
when more points are supplied.

To see how the networks handle both varying sparsity
and the noise perturbations during training, we perform the
same analysis while training with both variations (see Figure
2 right column). Note that we do not apply any random

TABLE II: Validation of our proposes depth completion models
with sparse depth inputs generated from our VIO system. Evaluation
of the VIO sparse feature error is shown in the first row, and again
the results are highlighed in yellow in red as they become worse
than the baseline RGB network.

Train Model δ1 ↑ δ2 ↑ δ3 ↑ RMSE ↓ MAE ↓ log10 ↓

- VIO (sparse) 0.651 0.790 0.848 6.780 3.179 0.126
- RGB 0.604 0.841 0.913 5.838 3.332 0.125

unif
RGBsD 0.431 0.674 0.802 8.736 5.083 0.188

RGBsD-late 0.539 0.748 0.830 6.390 3.434 0.147

fast
RGBsD 0.436 0.694 0.830 7.817 4.535 0.175

RGBsD-late 0.435 0.744 0.853 7.392 4.342 0.167

robust
RGBsD 0.593 0.771 0.858 7.357 3.917 0.142

RGBsD-late 0.523 0.787 0.866 7.215 3.944 0.149

sa
RGBsD 0.445 0.774 0.874 7.058 4.120 0.155

RGBsD-late 0.570 0.774 0.867 7.287 3.998 0.141

trans
RGBsD 0.582 0.852 0.919 5.652 3.318 0.127

RGBsD-late 0.658 0.849 0.915 5.742 3.211 0.122

perturbations during testing in order to highlight the affect
of the varying sparsity only. Here the benefit of transferring
the knowledge from the RGB model becomes more clear, as
the “sa” networks which have been been initialized with only
the ImageNet weights perform poorly, and completely fail to
converge in 30 epochs when trained with both the varying
sparsity and the sparse depth perturbations. This shows
the difficulty networks have in learning to predict depths
from RGB while filtering out the noisy depth inputs which
vanish randomly. Figure 3 shows that with an additional
30 epochs of training for all but the “trans” networks, and
additionally introducing noisy points in testing again, the
proposed training method still still yields better δ1 accuracy
– especially at extreme sparsity levels, verifying our findings.

5) Impact of VIO Sparse Point Inputs
To evaluate the performance of the network when directly

leveraging sparse points generated from our VIO system,
we collect a visual-inertial dataset of a small MAV flying
through the forest along with groundtruth depthmaps within
the simulator. Shown in Figure 1 and quantified in Table
II, we evaluate the network prediction results when given
these noisy VIO point inputs. Note first that the sparse depths
produced by VIO are more noisy as compared to the RGB
network on this dataset – while remaining generally more
accurate as measured by the δ1 metric, which is interesting
– opposite of that for indoor sequences shown in [15], where
the sparse depths were more accurate. This suggests the
presence of some outliers in the VIO depths, especially
at farther distances, in this challenging outdoor dataset.
Despite this, we can see that the proposed network which
is initialized with weights from the RGB and trained with
noisy/varying points is generally able to outperform the RGB
network and in some cases even the VIO points themselves.
The high noise level of the VIO points additionally suggests
that noisier inputs should be used in training, however the
noises we use still prove beneficial, and we did not want
to seemingly bias results with abnormally large simulated
noises.

6) Summary
Training the network with perturbations to the depths,

corner locations, and camera pose is crucial to allow for



TABLE III: Evaluation of existing methods and the proposed
network under different sparse point selection criteria on the NYU
Depth V2 dataset.

Test Model δ1 ↑ δ2 ↑ δ3 ↑ RMSE ↓ MAE ↓ abs. rel. ↓ log10 ↓

- FastDepth 0.904 0.971 0.989 0.433 0.267 0.092 0.042

uniform
S2D 0.981 0.995 0.998 0.194 0.100 0.036 0.016

RGBsD 0.956 0.991 0.997 0.281 0.173 0.063 0.028
RGBsD-late 0.963 0.991 0.997 0.270 0.160 0.057 0.025

corners
S2D 0.626 0.689 0.730 1.247 0.777 0.267 0.199

RGBsD 0.948 0.990 0.997 0.301 0.194 0.072 0.032
RGBsD-late 0.955 0.990 0.997 0.286 0.176 0.064 0.028

noisy
corners

S2D 0.480 0.613 0.680 1.371 0.980 0.350 0.241
RGBsD 0.942 0.988 0.996 0.316 0.203 0.075 0.032

RGBsD-late 0.950 0.989 0.996 0.298 0.186 0.069 0.030

the network to robustly handle imperfect features. To handle
varying levels of feature sparsity ranging from zero to a
semi-dense image, initializing the network with weights
from the RGB network and training with varying levels of
sparsity ensures that the network never regresses worse than
the baseline RGB network. While the late fusion (RGBsD-
late) outperforms the shared encoder (RGBsD) in terms of
accuracy, in Section IV-B this dual-encoder network clearly
has a tradeoff in terms of prediction speed.

IV. EXPERIMENTAL RESULTS

A. NYU Depth V2 Dataset
We choose the NYUv2 indoor dataset for benchmark

experiments [36], which contains 407,024 RGBD images
collected with a Kinect. The training images contain missing
depth values due to occlusions and specular surfaces that
the Kinect’s depth sensor cannot handle. They additionally
provide 1449 image depth pairs that have full-dense depth
labels. We utilize 101,664 of the training samples and the
full 1449 densely-labeled dataset for testing. We compare our
networks to the original FastDepth [6] and the ResNet-based
sparse-to-dense (S2D) model [10] with RGB and sparse
depth inputs. The S2D model is initialized with ResNet-
50 weights and trained with 500 uniformly-sampled depth
values with no perturbation to the sparse depths as originally
proposed in their work, and all networks are trained with the
same configurations as described in Section III-B.1. Note
that our proposed networks in this experiment are the same
as the “trans” networks from before – initialized with RGB
weights and trained with the sparse depth perturbations and
varying sparsity as before.

Shown in Table III, the S2D ResNet model achieves higher
accuracy than the proposed networks when the sparse points
are drawn uniformly during test time. This is expected since
it was trained on uniform depth values and contains many
more parameters. However, when predicting with sparse
points selected through true or noisy FAST corners, the
S2D accuracy quickly degrades worse than the proposed
networks and baseline RGB FastDepth. In fact, with noisy
corners it predicts nearly unusable results with less than
50% δ1 accuracy on this relatively easy dataset. This further
validates our previous analysis that the difference in the
testing distribution of sparse depths can easily degrade the
performance far below that of the RGB network, even with
the more powerful ResNet architecture. Here we stress that
the proposed networks, which were initialized to RGB-only
weights and trained with noisy and varying number of sparse

depths, are robust over all variations and display consistent
and robust accuracy levels.

B. On-Platform Depth Completion
We evaluate the proposed depth completion networks on

a Jetson TX2 and Jetson Nano2 device. Both are small,
light-weight, and low-power platforms which have an on-
board embedded GPU for network acceleration. The TX2
module has 256 Pascal CUDA cores, a dual-core NVIDIA
Denver 2 64-bit CPU, quad-core ARM A57 Complex and
a max power of 15W. The Nano has 128 Maxwell CUDA
cores with a quad-core ARM Cortex-A57 MPCore processor
and a max power of 10W. Both systems are flashed with
Jetpack 4.4 and evaluated using Max-N performance mode
with jetson clocks enabled. We leverage Apache TVM3 as
in [6] – with 5 trials of 200 network predictions each.

The results are shown in Table IV, where we evaluate the
base FastDepth RGB network along with the two variations
used in previous experiments. The RGBsD network has
prediction speed at the same level as the RGB – showing
that including the extra channel to gain in accuracy from
sparse depth does not cause large impacts on latency for
the embedded device. Interestingly enough, the 4-channel
encoder is sometimes even faster than the 3-channel – which
we suspect has to do with better vectorization and saturation
of the CUDA thread and block allocations due to operations
now being on a power of 2 elements. The RGBsD-late on the
other hand seems to be affected by the constrained resources
on these platforms with a large performance gap compared
to the single encoder networks. However, the accuracy gains
from the previous experiments thus expose a nice tradeoff
between the two architectures, with the RGBsD providing a
high frame-rate with slight loss of accuracy (e.g., in high-
speed obstacle avoidance) and late fusion providing the
best choice in the opposite case (e.g., for dense mapping).
Even with its smaller number of CUDA cores and older
architecture, the Jetson Nano still can provide satisfactory
prediction speeds at 15fps on the CPU (nearly real-time)
and over 50fps on the GPU. The performance gain from
TVM tuning is non-trivial and thus is recommended to be
performed.

Additionally, to obtain a direct comparison to popular non-
learning methods, we provide timing results for traditional
stereo depth methods to directly compare their speed to that
of the networks (see Table V). All input images have already
been pre-rectified, which is often not the case in practice,
thus increasing the amount of time required beyond what
is showed here. Both block matching (BM) [37] and semi-
global block matching (SGBM) [38] leverage a block size
of 5x5 with max disparity of 96 within the OpenCV library
[39]. Both methods perform left-to-right and right-to-left
disparity which are then combined using the post-processing
Fast Global Smoother [40]. It is clear that traditional BM
method can provide a high enough frequency on both the
CPU and GPU, while the semi-global method falls slightly
below real-time performance. In both cases however, the 3
and 4-channel tuned networks are generally faster – with

2https://developer.nvidia.com/embedded/ jetson-modules
3https://github.com/apache/ incubator-tvm/

https://developer.nvidia.com/embedded/jetson-modules
https://github.com/apache/incubator-tvm/


TABLE IV: Timing results of the proposed network on different
platforms. Average over 1000 network prediction, times in millisec-
onds, and input images are 224x224. Best in the group (green) and
second best (blue) are highlighted.

Platform Model No-Optimization TVM-Optimization
tpred σ Hz tpred σ Hz

Nano
(CPU)

RGB 88.87 12.55 11 66.54 14.31 15
RGBsD 89.48 12.62 11 66.41 13.65 15

RGBsD-late 140.54 3.88 7 112.18 11.37 9

Nano
(GPU)

RGB 24.75 0.69 40 14.90 0.79 67
RGBsD 24.91 0.58 40 17.07 1.03 58

RGBsD-late 42.99 0.46 23 70.66 0.34 14

TX2
(CPU)

RGB 118.06 9.62 8 117.45 10.82 8
RGBsD 118.45 9.52 8 105.07 13.01 9

RGBsD-late 184.37 13.87 5 165.69 13.46 6

TX2
(GPU)

RGB 10.79 0.46 92 6.87 0.70 145
RGBsD 10.78 0.60 92 7.09 0.71 141

RGBsD-late 18.36 0.47 54 11.34 0.90 88

TABLE V: Traditional stereo disparity block matching methods on
different platforms. Average over 1000 pre-rectified images, times
in milliseconds, and images are 224x224.

Platform Method tdisp σ Hz

Nano (CPU)
BM 27.76 1.90 36

SGBM 91.22 1.22 11

Nano (GPU) BM 19.24 2.77 52

TX2 (CPU)
BM 19.49 0.40 51

SGBM 64.29 0.32 15

TX2 (GPU) BM 12.38 1.27 80

the exception of the TX2 CPU.4 In contrast, the previously
presented networks rely only on a single camera and can be
trained to predict depths on distorted images – negating the
extra cost of rectification and allowing execution on wider-
variety resource-constrained devices.

C. On-Platform VIO
We now evaluate the the performance of our VIO system.

By default, OpenVINS does not have any multi-threading nor
GPU acceleration. We perform our on-device evaluation on
the UZH-FPV drone racing dataset [41] which exhibits both
the indoor / outdoor environments with high optical flow rate
typically seen from a high speed MAV platform. This dataset
is challenging due to 13-23 m/s top speeds, varying levels of
motion blur, exposure changes, and low / repeated textures.
For comparison to a typical “desktop” non-embedded system,
we run the estimator on a computer which has an Intel(R)
Xeon(R) CPU E3-1505M v6 @ 3.00GHz. Since different
platforms require tuning of different estimator parameters to
enable real-time performance, we evaluate both the accuracy
and frame processing time. As before, all Jetson systems are
run in Max-N mode. The key estimator settings used for each
device are as follows:
• Jetson Nano: 125 features tracked, max of 10 MSCKF

update per-frame, max of 15 SLAM features.
• Jetson TX2: 175 features tracked, max of 15 MSCKF

update per-frame, max of 15 SLAM features.

4In fact, in both cases (GPU and CPU), our timings are slightly worse,
but on the same magnitude, of those reported in [6] (especially in the CPU
case), which we suspect is due to using different tuning parameters.

TABLE VI: Relative pose error, degree per meter and percent
translation, on the competition dataset along with average amount
of time (in seconds) to perform a frame update and its standard
deviation. All errors are based on the results reported by the online
tool which averages errors over the 40m, 60m, 80m, 100m, 120m
sub-trajectory lengths.

Dataset Platform Ori. Pos. ttrack ttotal σtotal

indoor
forward

11

Nano 0.6079 7.474 0.0192 0.0359 0.0115
TX2 0.6075 7.432 0.0128 0.0280 0.0088

Desktop 0.6074 7.416 0.0085 0.0183 0.0044

indoor
45◦ 3

Nano 0.2507 2.675 0.0198 0.0391 0.0119
TX2 0.2503 2.700 0.0131 0.0304 0.0097

Desktop 0.2484 2.649 0.0088 0.0191 0.0048

outdoor
forward

9

Nano 0.1762 7.994 0.0190 0.0339 0.0134
TX2 0.1780 7.839 0.0126 0.0265 0.0103

Desktop 0.1804 7.832 0.0084 0.0175 0.0056

• Desktop: 600 features tracked, max of 20 MSCKF
update per-frame, max of 15 SLAM features.

We report the results on a series of datasets in Table VI.
In general all devices achieve the same order of estimation
errors. It can also be seen that even with the Jetson Nano
only tracking 125 features, it has almost double the tracking
processing time, ttrack, as the desktop system due to its lower
CPU rate. In general the embedded systems can process in
real time at 28fps or 0.0357 seconds, and thus, it is amenable
to use OpenVINS as the sparse depth supplier.

V. CONCLUSIONS AND FUTURE WORK

In this work we have investigated the use of depth com-
pletion networks to generate dense depth maps from noisy
sparse depth inputs from an external VIO system. To this
end, we have tailored our OpenVINS to provide better inputs
into the depth completion network. As naı̈ve training of
the depth completion network with true uniformly-sampled
depths results in significantly worst accuracy than the orig-
inal image-only network, we have investigated different
training schemes to address these sensitivities. We proposed
to initialize from the image-only weights and train with
extremely noisy data, showing large gains in robustness
while generally outperforming the RGB network – even
with wildly varying sparsities and noisy inputs. Finally, we
have performed a thorough computational analysis on the
Jetson Nano and TX2 embedded platforms, showing real-
time performance of both our state estimator and depth
completion network compare to traditional methods. In the
future, we plan to deploy this work in a MAV path planning
system, and include both high frame rate depths for obstacle
avoidance as well as asynchronous dense mapping for long
term navigation.
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