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Abstract— Enabling real-time visual-inertial navigation in
unknown environments while achieving bounded-error per-
formance holds great potentials in robotic applications. To
this end, in this paper, we propose a novel linear-complexity
EKF for visual-inertial localization, which can efficiently utilize
loop closure constraints, thus allowing for long-term per-
sistent navigation. The key idea is to adapt the Schmidt-
Kalman formulation within the multi-state constraint Kalman
filter (MSCKF) framework, in which we selectively include
keyframes as nuisance parameters in the state vector for loop
closures but do not update their estimates and covariance in
order to save computations while still tracking their cross-
correlations with the current navigation states. As a result,
the proposed Schmidt-MSCKF has only O(n) computational
complexity while still incorporating loop closures into the sys-
tem. The proposed approach is validated extensively on large-
scale real-world experiments, showing significant performance
improvements when compared to the standard MSCKEF, while
only incurring marginal computational overhead.

I. INTRODUCTION

Visual-inertial navigation systems (VINS) have become
one of the most promising low-cost 3D localization solutions,
which fuse images from a monocular or stereo camera
and IMU measurements [I-7]. This localization solution
has the advantages of using sensors that are both cheap
and ubiquitous and, because of the complementary nature
of the sensors, has the potential to provide pose estimates
which are on-par in terms of accuracy with more expensive
sensors such as LIDAR. While current VINS approaches can
perform well over a short period of time (e.g., see [2—4, 7,

] and references therein), they are not robust and accurate
enough for long-term and large-scale deployments, due to
their limited available resources of sensing, memory and
computation.

In this paper, we seek to overcome this issue by developing
efficient VINS to incorporate loop closures, as loop closure
constraints provide effective information to correct drift
accumulated over time, thus permitting bounded localization
errors even after long-term navigation in unknown environ-
ments [9-11]. In particular, instead of performing feature-
based SLAM to build a large 3D map of the environment, we
build upon the standard multi-state constraint Kalman filter
(MSCKEF) [1], and selectively keep the poses of keyframes
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(where loop closures take place) over the trajectory in the
state vector, thereby limiting the growth of the state as a
single keyframe may observe many features. By doing so,
both feature measurements in the current window and loop
closure feature observations can be exploited in the EKF
update. However, as the length of the trajectory grows and
keyframes are continuously added to the state, this naive
extension of the MSCKF would quickly become compu-
tationally intractable for real-time performance due to the
quadratic complexity of the EKF covariance update. For
example, we empirically observed that the standard EKF
could only retain on the upwards of 200 keyframes and
remain real-time. To overcome this issue, we exploit the
Schmidt-KF (SKF) [12] to treat the keyframe poses in the
state vector as ‘“nuisance” parameters and do not update
their estimates and covariance while still properly tracking
their cross-correlations with the rest of the navigation states.
As a result, the proposed Schmidt-MSCKF has only O(n)
computational complexity with respect to the number of
keyframes added, while effectively exploiting loop closure
constraints.

II. RELATED WORK

SLAM jointly estimates a robot’s location and the structure
of its surrounding environment and has attracted significant
research efforts in the past three decades [I13]. Over a
trajectory, localization errors may grow unbounded unless
some global information (e.g., GPS or a priori map) or
constraints to previous locations (i.e., loop closures) are de-
tected and used. Many methods leverage feature observations
from different keyframes to limit drift over the trajectory
[4, 14]. Most have a two-thread system that optimizes a
small window of “local” keyframes and features limiting
drift in the short-term, while a background process opti-
mizes a long-term sparse pose graph containing loop closure
constraints enforcing long-term consistency [15-19]. For
example, VINS-Mono [18, 19] uses loop closure constraints
in both the local sliding window and in the global batch
optimization. Specifically, during the local optimization,
feature observations from keyframes provide implicit loop
closure constraints, while the problem size remains small
by assuming the keyframe poses are perfect (thus removing
them from optimization).

The inclusion of long-term loop closure information is
challenging due to the inability to remain computationally
efficient without making inconsistent assumptions such as
treating keyframe poses to be true, or reusing information.
Mourikis and Roumeliotis [20] introduced a hybrid estimator
that used the MSCKEF to perform real-time local estimation,



and triggered global bundle adjustment (BA) on loop closure
detection. This allowed for the relinearization and inclusion
of loop closure constraints in a consistent manner, while
requiring substantial additional overhead time where the
filter waits for the bundle adjustment to finish. Lynen et al.
[21] developed a large-scale map-based VINS that used a
compressed prior map containing feature positions and their
uncertainties and employed matches to features in the prior
map to constrain the localization globally. Zheng et al. [22]
developed a point-line visual-inertial odometry (VIO) system
that treated the 3D positions of marginalized keypoints as
true for future loop closure observations, which may lead to
inconsistency. Julier [23] developed a 2D SKF that tracked
the positions and covariances of landmarks while remaining
computationally efficient through a sub-optimal update rule.
Recently, DuToit et al. [24] introduced a Cholesky-Schmidt-
Kalman filter, which, however, uses a prior map with its
full uncertainty and relaxes all the correlations between the
mapped features and the current state variables. As compared
to these works, we actively estimate the correlations with the
current state and only add keyframe poses, as compared to
map points, limiting the computational growth.

III. PROBLEM STATEMENT

In this section, we describe the problem of visual-inertial
localization with loop closures within the framework of
the standard MSCKF [1], revealing its (at least) quadratic
complexity not suitable for real-time performance.

A. MSCKF-based VIO

The state vector of the standard MSCKF-based VIO [1]
contains the IMU navigation state x; and a sliding window
of cloned past IMU (or camera) poses x¢, i.e.,
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where éq is the unit quaternion parameterizing the rotation
LR from the global frame of reference {G} to the IMU
local frame {I} [25], b,, and b, are the gyroscope and
accelerometer biases, and “v; and Gp; are the velocity
and position of the IMU expressed in the global frame,
respectively. The clone state x¢ contains m historical IMU
poses in a sliding window fashion.

1) Propagation: In the MSCKE, the state estimate and the
corresponding covariance blocks are propagated over time
by integrating the incoming IMU measurements of linear
accelerations (a,,) and angular velocities (w,,) based on the
following generic nonlinear IMU kinematics [26]:

Xk+1 = f(xkvamk - nak)w’mk - nwk) (4)

where n, and n,, are the zero-mean white Gaussian noise of
the IMU measurements. We linearize this nonlinear model
at the current estimate, and then propagate the state estimate
and covariance matrix using the standard EKF [1].

2) Update: As the sensor platform moves through 3D
space, environmental features are tracked on the image plane
using KLT optical flow [27]. When a feature has been lost
or reaches the sliding window size, we use the feature track
information to perform an update. Specifically, we assume
the following stacked nonlinear camera measurement model:

z; = h(x;, “py) + ny (5)
where ny is the white Gaussian noise with covariance R,
and “p; is the 3D position of the feature. We linearize this
measurement model at the current state estimate and obtain
the following measurement residual:
ry=2; — h(Xppp-1, “Py) (6)
~H,Xgp-1 + H Py + 1y (7)
where H, and H; are the measurement Jacobians with
respect to the state and feature, and X and Gf)f are the
errors for the state and feature, respectively. As the feature
is not contained in the state vector, we marginalize “p ¢ by
projecting r s onto the left nullspace of Hy (i.e., N"Hy = 0)
to obtain the feature-independent measurement residual:
N'r; =NTH, %1 + N H;%p; + N'n; (8)
= I‘/f = H‘{I;ik|k71 + 1’1} 9
where n'y = N "n; is white Guassian noise with covariance
R’f = NTRfN, and can be used in the EKF update [1].

B. Incorporating Loop Closures

The standard MSCKF-based VIO [1] and its variants [2,
, 7, 28] have been shown to be able to provide accurate
localization solutions for relatively short periods of time and
yet are not robust and accurate enough for long-term large-
scale deployments, since these systems are essentially open-
loop odometry whose navigation errors grow unbounded
over time. In order to bound localization errors, we should
incorporate loop closure constraints even in cases when an a
priori map is unavailable. To this end, we may continuously
include the keyframe poses where loop closure events can
be detected, into the state vector:
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where xs, = [Gq" “pj]" is the i-th keyframe pose.

For example, if one naively keeps all the poses in the
state vector, they essentially build the batch graph SLAM
optimization and can incorporate all possible loop closures,
which, however, causes the problem size to grow unbounded
over time and is not amenable for real-time performance [29].
Even if we continuously include only the keyframe poses into
the state vector within the MSCKF framework, performing
an EKF update still yields quadratic cost in terms of the
dimension of the state vector, dim(xy), which increases
over time and may quickly become too computationally
expensive.

IV. SCHMIDT-MSCKF VINS wWITH LOOP CLOSURES

It is clear from the previous section that simply including
keyframes in the MSCKF state vector in order to utilize
loop closure information is not amenable for long-term real-
time navigation. To address this issue, in this section, we
present in detail the proposed novel consistent Schmidt-
MSCKEF of linear complexity while efficiently incorporating
loop closures into our EKF-based VINS.



A. Overview

As discussed earlier, when looking to include loop closure
constraints into VINS, one of the bottleneck issues is the
computational complexity that arises from the storage and
estimation of keyframe poses and/or keypoint features. As
keyframes are added over the trajectory length, the size of
states that need to be estimated would grow over time, threat-
ening the real-time VINS performance, although it grows
much slower than adding keypoint features into the state
vector. One approach that prevents the need to estimate the
keyframes at later times, is to simply assume that keyframe
poses are “true” and ignore the uncertainty associated with
these estimates, which would cause an overconfident (incon-
sistent) filter. In contrast, we leverage the SKF to allow for
efficient estimation while still tracking the uncertainty of all
keyframes in the states.

Specifically, we carefully retain by stochastic cloning [30]
a set of keyframe poses where loop closures are likely to
occur in the state vector (10) and consistently track their
correlations with other state variables. We implicitly enforce
loop closure constraints by adding additional observations
from historical keyframe poses to actively-tracked features in
the sliding window of the MSCKEF. It is important to note that
this does not require estimating the 3D feature position, since
these observations are only a function of the poses in the
sliding window and the historical keyframes once processed
through the MSCKF update. This leads to substantial compu-
tational savings, as the number of keyframes over a trajectory
is typically much smaller than the number of features seen
from those frames. Moreover, we adapt the SKF [12] to treat
old keyframe poses as “nuisance” parameters, which enables
us to significantly limit the computational complexity in-
curred due to the increasing number of additional keyframes
states. This is due to the fact that with its formulation, we
do not update the estimates and marginal covariance of these
states and instead only updated their cross-correlations with
the active state variables in the sliding window. We thereby
gain a significant reduction in computational complexity
from quadratic to linear while remaining consistent.

B. Schmidt-MSCKF

The key idea of the proposed VINS with loop closures
is to adapt the SKF within the MSCKF framework for real-
time state estimation. Specifically, we first define the active
state x4 := [x] xJ]T as remaining of constant size over the
trajectory due to sliding window marginalization, while the
keyframe state xg grows linearly as new keyframes are in-
serted [see (10)]. We accordingly partition the corresponding
covariance matrix at time step k.

Xpy = {X“‘ﬂ R {P“k (11)
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1) Propagation: As in the standard MSCKEF [1], the IMU
state estimate is propagated via integration based on the
IMU kinematics (4) (see Section III-A.1), while all other
variables remain constant since they have zero dynamics.

Fig. 1: An example of feature matches between the current
frame (left) and the keyframe (right). Active feature tracks
are seen in red on the current image and their matches to the
keyframe are visualized with blue correspondence lines.

The covariance matrix is also propagated as follows:
12)
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where ®;_; and Qj_; are respectively the system Jacobian
and discrete noise covariance matrices for the active state.
Note that the repeated computation of ®;_1Pas, ,,_, is
computationally expensive because of the high-rate IMU
measurements (e.g., 200Hz) as compared to the low-rate
camera images (e.g., 20Hz). To reduce this cost, we incre-
mentally integrate the IMU measurements available between
two image times (say m): ®p_1 = Pp_1 - Pr_1,0,
with the initial condition ®;_; = I. Similarly, the noise
covariance Qy_; is recursively compounded.

2) Visual tracking and loop closing: As the IMU-camera
sensor platform navigates in the environment, the sliding
window sequentially shifts forward as a new image arrives.
As in the standard MSCKF VIO (see Section II1-A.2), KLT-
based visual tracking is employed to build feature tracks in
the current sliding window. However, instead of marginal-
izing out the old cloned camera poses as in the standard
MSCKEF, we select certain clones to be keyframes retained
in the state vector for loop closure. While different heuristics
may be used to select new keyframes, for example, based
on the image parallax [18] or feature tracking quality [4],
in this work, for proof-of-concept purposes, we simply add
new keyframes at a fixed time interval. Once a cloned pose
is chosen to be a keyframe, its corresponding state becomes
part of the keyframe state [see (10)], whose cross-correlations
(instead of autocovariance) will be updated at future times.
This can be justified by the fact that when cloned poses reach
the end of the sliding window and are selected as keyframes,
their estimates are often accurate and can be assumed to
have reached their steady states with matured but non-zero
uncertainty, which will be properly and efficiently tracked in
our estimator, instead of being naively assumed to be perfect
with zero uncertainty, e.g., as in [18].

To perform keyframe-based loop closing, we leverage
the state-of-the-art DBoW2 method [31] for finding loop
closure candidates. When a new keyframe is inserted, the
DBoW?2 database is updated with the new keyframe image
by extracting 300 FAST features [32] along with their ORB
descriptors [33]. To detect loop closures with the current
camera image, we query the DBoW?2 database to retrieve the
top keyframes that are visually similar to it. After retrieval,
a geometric check of the top candidate keyframe from the
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Fig. 2: Illustration a keyframe-based loop closure scenario
where an active feature tracked over three clones has matched
to a keyframe {K1}. An additional feature measurement
from the keyframe (blue) is added to the feature track such
that an implicit loop closure constraint (by viewing the same
scene) is formed and can be utilized in the EKF update.

database is performed by ensuring that the fundamental
matrix can be calculated between the query image and
candidate keyframe (see Fig. 1).

Once a loop closure keyframe has been determined, we
then incorporate the feature matches between the actively
tracked features in the sliding window and those in the
keyframe. For example, as illustrated in Fig. 2, if a frame
{C3} is detected as matching a keyframe {K1}, then all
extracted features in {C3} will try to match with features
extracted in {K1}. Specifically, when an actively tracked
feature is matched to a keyframe feature, we add the addi-
tional keyframe observation to the feature track. Special care
has to be taken that an active feature can only match to a
keyframe once; that is, one feature measurement can only
be involved in one feature track, in order to prevent reuse
of information and thus ensure consistency. Note that for
computational savings, the current image is only matched to
a single keyframe while this can be easily modified to allow
for more loop closure keyframes. We thus use the additional
observations from the loop closure keyframe along with
feature tracks from the current window to perform a MSCKF
update once the active feature has lost track or reaches sliding
window size. Explained in the following section, we update
the active state estimate X 4, its covariance, and the cross-
correlations between the active state and keyframe state xg.

3) Update: Once feature tracks including both active
feature measurements and (if any) loop closure constraints
are ready for processing in the current sliding window,
we perform a SKF update within the MSCKF framework
(and thus Schmidt-MSCKF) based on these visual feature
measurements. Specifically, as in the standard MSCKF, we
first perform BA with all the feature measurements in the
current window to triangulate the 3D feature positions “p -
Their estimated quantities p ¢ are needed in linearizing the
nonlinear camera measurements (6) [noting that features are
not maintained in our state vector (10)]. For a given feature
zr, we perform linear marginalization of its position (i.e.,
null space operation) [34], and partition Eq. (9) as follows:

v ~Hp Xa,,_, +Hg.Xs,,_, +0} (13)

where H!, := [H,4, Hg,] as in Equation (9).

Ideally, we can now use the above measurement resid-
ual (13) that is independent of features to perform the
standard MSCKF update. However, as the keyframes in the

state vector Xg can grow over time, it may quickly become
too large to update the full state estimate and covariance in
real-time, even though features are already excluded from the
state in the MSCKF. Therefore, we instead perform a SKF
update. Specifically, we first notice that the standard Kalman
gain is computed as follows:

K — {KAR] _ {PAAkk_lH;k + PASk\k—lH_lg'_—k g-1

Ks, PSAk\k—lHAk + PSSmkleSk 4§

= |:LAk:| S;l
Lg,

where S, = H,Py k_ngT + R/ is the measurement
residual covariance [see (9)]. To reduce the computational
complexity, we do not update the keyframe state nuisance
parameters, and thus, as in the the SKF, we set the Kalman
gain corresponding to the keyframe state to zero, i.e., Kg, =
0. Under this condition, it can be shown that the optimal gain
for the active state is identical to its corresponding standard
Kalman gain K 4, . As a result, the state estimate is updated
as follows:

(14)
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Note that in the standard EKF covariance is updated by:
Prp = Prjr—1—

- _ & ~/
XAp = XApp—r + K,z

Pas

. S

K, SkKy, Ka Hy [PSSZZi]

. . a7
ASjik_1 =1 TKT Ko S KL

|:PSSkk1:| % A SEpOkINg,

It can be seen that the Kg, Sngk term contains the largest
computational cost in the standard formulation. The SKEF,
by contrast, allows for computational savings by setting
the Schmidt-Kalman gain K, = 0, while still ensuring
consistency [24]:

Pk = Prjr—1— o
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In the above expressions, the second equality (19) reveals
that the computational complexity becomes O(n), instead
of O(n?) as in (17), which is analyzed in detail next. In
summary, the main steps of the proposed Schmidt-MSCKF
VINS approach are outlined in Algorithm 1.

4) Computational complexity: During propagation, the
computation is dominated by ®,P ASp i [see (12)]. Since
®;. is square with constant size and P 45, , is fat with O(n)
columns, this matrix multiplication has O(n) cost. After
propagation, we create a clone of the the IMU at the current
time. This involves simply copying the corresponding rows
and columns in Py, ,, . which is an O(1) operation, as
well as copying the rows corresponding to the state being
cloned onto the end of P4s, ., which is O(n).

When performing feature tracking, each image associated
with a feature being tracked across the sliding window



Algorithm 1 Schmidt-MSCKF VINS with Loop Closures

Require: Initial state estimate and covariance

1: loop

2:  Propagate the state to the current image time.

3:  Track features from the previous image into the cur-
rent one.

4:  Query the keyframe database for a loop closure and
if there is a match, active features are appended
with additional measurements from the loop closure
keyframe.

5. Features that can be used for update are collected and
processed.

6:  Oldest pose in the sliding window is either marginal-
ized out or added to the keyframe state (nuisance
parameters).

7: end loop

can be matched to at most one old keyframe. Since each
match can add one bearing measurement, this implies that
all features being processed have a constant size number of
measurements as seen from a constant size number of poses.
Given that the number of tracked features is upper bounded,
during each update, there are (at most) a constant number
of measurements involving a constant number of variables,
which immediately implies that computing Sy is O(1). By
exploiting the sparsity of the measurement Jacobian, we can
compute L4, = PAAWAHL +PASM,€71H;C and Lg, in
O(n) cost [see (14)], which holds similarly for Lg,. The
rest of the update is dominated by L AkSEIL; [see (19)],
which again is O(n) due to the tall Lg, with O(n) rows.

During marginalization, when moving a variable x¢, from
the active state to the keyframe state xg, care must be
taken so that the operation remains O(n). In particular,
we manage Pa4, Pag, and Pgg as separate matrices.
When moving x¢, into the Schmidt state, we first copy the
associated column in P 44 as a new column onto P 4. This
involves allocating O(n) space followed by a cost of O(n)
for copying. Then, we copy the entries from the row of P 45
corresponding to X¢, to form the new rows and columns on
the end of P gg. As before, this involves allocating a new row
and column followed by an O(n) cost in copying. Lastly, we
delete the columns and rows of P 44 corresponding to x¢;,
which is O(1); and delete the rows of P 45 associated with
X¢,, which is O(n). A complete analysis can be found in
our technical report [35] with full details on the complexity
of each step.

V. EXPERIMENTAL RESULTS

To validate the proposed Schmidt-MSCKF VINS with
loop closures, we have performed real-world experiments on
different sensor platforms. In the following, we present two
sets of results with hand-held sensors, demonstrating that
the proposed approach achieves significantly better accuracy
than the standard MSCKF (without loop closures) while only
incurring marginal computational overhead.

A. Vicon Loops

We first test our VINS system on the Vicon loops
dataset [4] which is a 13-minute and 1.2km long trajectory
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Fig. 3: The estimated trajectories of the proposed Schmidt-
MSCKEF, standard MSCKEF [1], and VINS-Mono [18, 19].
Both monocular and stereo VINS results are presented. In
particular, it is clear from the z-axis results (bottom) that
the proposed approach is able to achieve bounded-error
performance while the standard MSCKEF has errors growing
over time.

TABLE I: RMSE position errors averaged over 10 runs of
the Vicon loops dataset (units are in meters).

MSCKF w. Schmidt- VINS-Mono
MSCKF Full Loops MSCKF [18, 19]
Monocular 1.626 0.113 0.122 0.527
Stereo 1.555 0.093 0.172 -

of a hand-held VI-sensor (stereo camera and IMU) traveling
in a large number of loops. Full 6DOF groundtruth is
provided by the Vicon motion tracking system at 200Hz.
In this test, we select loop closure keyframes at a fixed
rate of one every two seconds. For the results presented
below, we have developed and validated both stereo and
monocular (i.e., using only one of the stereo cameras) VINS
algorithms. In particular, the estimators compared are (i) the
standard MSCKF without loop closures [1], (ii) the standard
MSCKF with loop closures and full covariance update for
the keyframes (see Section III-B), (iii) the proposed Schmidt-
MSCKEF VINS with loop closures and (iv) the open sourced
VINS-Mono [18, 19]. The performance metrics used include
(1) the root mean squared error (RMSE) that measures the
estimation accuracy and (ii) the CPU run time that quantifies
the computational cost.

Table I shows the RMSE values averaged over 10 runs (in



g
=3
=N

:
Ml tracking
LIl propagation

M loop closure
MSCKEF update
| marginalization
o —————

I
=]
K

Wall Time (sec)
=)
iS4

0 100 200 300 400 500 600 700 800
Ml tracking
LIl propagation

M loop closure
MSCKEF update

' marginalization
0 s

0 100 200 300 400 500 600 700 800

o
o

Wall Time (sec)
(=]

~03 T

§ —mono-full

> 0.2 F—mono-schmidt

g 0.1 | |—stereo-full

= —stereo-schmidt y \
; 0 ¥ ¥ v et v h
§ 100 200 300 400 500 600 700 800

Dataset Timestep (sec)

Fig. 4: The CPU run time of the different components and
the total execution time (bottom). The breakdown of the
proposed monocular Schmidt-MSCKEF (top) and that of the
standard MSCKF with full covariance updates (middle).

order to consider repeatability of the algorithms). Trajectories
were aligned to the groundtruth using the first two min-
utes. Fig. 3 depicts the estimated trajectories, which clearly
shows that the information provided by the loop closure
measurements significantly limit the drift of the proposed
approach over time. Of the two MSCKF systems that utilize
the loop closure constraints, the system that updates the
full state estimate and covariance, as expected, achieves a
slightly better performance; while the proposed Schmidt-
MSCKEF closely follows it in accuracy but with a significant
computational saving. Specifically, Fig. 4 shows the CPU
run time for a single representative run of the monocular
VINS on the dataset." As expected, the proposed Schmidt-
MSCKEF (top) has only linear growth in the time it takes to
perform an EKF update, while the standard MSCKF with
full loop closure update (middle) shows quadratic growth in
the computation time in both propagation and update. The
proposed approach even stays below the real-time threshold
of 0.05 sec (camera frame rate is 20Hz), processing 400
keyframes in real-time towards the end of the trajectory. In
contrast, the VINS-Mono pose optimization backend (non-
realtime thread) takes upwards of 2 sec by the end of the
trajectory, which significantly delays the inclusion of loop
closure information in the current state estimate.

B. UD Spencer

We further conducted a multi-floor indoor experiment at
the University of Delaware (UD) Spencer Lab. An Intel
Realsense ZR300 sensor’ was used to collect a 20-minute
and 1.5km long dataset of monocular fisheye images and
IMU measurements. The extrinsic calibration provided by
the manufacture was used as an initial guess and further
refined online. Keyframes were inserted every 0.75 seconds,
with a maximum of 886 keyframes in total, with 26% of all
features containing at least one keyframe feature observation

I'Single thread on an Intel(R) Xeon(R) E3-1505Mv6 @ 3.00GHz
Zhttps://software.intel.com/en-us/realsense/zr300
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Fig. 5: The trajectories of the standard MSCKEF [1] (blue),

proposed Schmidt-MSCKF with loop closures (black), and

VINS-Mono [18, 19] (magenta). Clearly, without loop clo-
sures, the standard MSCKF accumulates significant errors.

during update. Fig. 5 shows the estimated trajectories of
the standard MSCKE, proposed monocular Schmidt-MSCKE,
and VINS-Mono. Clearly, the proposed method was able
to localize with minimal drift over the trajectory while the
standard MSCKEF drifted significantly. As ground truth was
not available for this dataset, we returned to the starting
location and evaluated the start-end error to be 3.58m (0.2%),
0.64m (0.04%), 0.26m (0.02%), and 0.16m (0.01%) for the
standard MSCKEF, the proposed Schmidt-MSCKF, MSCKF
with full covariance update, and VINS-Mono (with non-
realtime optimization thread). Qualitatively, the trajectory of
the proposed method is on-par with that of VINS-Mono,
while only requiring a single thread for realtime estimation.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed the linear-complexity
Schmidt-MSCKF for VINS, which is able to efficiently
incorporate loop closure constraints in a single-thread es-
timator and provide (almost) bounded-error localization per-
formance. The key idea of the proposed approach is to
selectively keep keyframes (rather then then a large amount
of map features) in the state vector in order utilize loop
closure constraints and then leverage the SKF formulation
without updating the keyframes (as nuisance parameters)
and their covariance while still properly tracking their cross-
correlations with the active navigation states. We have ex-
tensively validated both monocular and stereo VINS with
the proposed Schmidt-MSCKEF, showing significant improve-
ments over the standard MSCKF while incurring marginal
computational overhead. In the future, we will selectively
add and delete keyframes and evaluate the performance of
different keyframe selection criteria.
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