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LIPS: LiDAR-Inertial 3D Plane SLAM
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Abstract— This paper presents the formalization of the closest
point plane representation and an analysis of its incorporation
in 3D indoor simultaneous localization and mapping (SLAM).
We present a singularity free plane factor leveraging the
closest point plane representation, and demonstrate its fusion
with inertial preintegratation measurements in a graph-based
optimization framework. The resulting LiDAR-inertial 3D plane
SLAM (LIPS) system is validated both on a custom made
LiDAR simulator and on a real-world experiment.

I. INTRODUCTION

Accurate and robust indoor localization and mapping is
a fundamental requirement for many applications of au-
tonomous robots. Indoor environments are typically rich in
structural information, such as lines and planes, that should
be exploited to achieve high-accuracy simultaneous localiza-
tion and mapping (SLAM). Although indoor environments
prevent the use of GPS for localization, inertial navigation
systems (INS) aided with exteroceptive sensors such as
cameras [1, 2], light detection and ranging (LiDAR) sensors
[3, 4], and even sonars [5], have shown to be effective.

Recently LiDAR sensing technology has reduced in weight
and size, allowing for portable and handheld use, delivering
up to 2.2 million data points per second of the surrounding
environment. LiDARs have proven to be effective in texture-
less and low-light environments, typical of normal office and
building interiors, providing measurements with high signal-
to-noise ratios (SNR). Fundamentally, LIDAR sensors do not
rely on the lighting or texture properties that other sensors
such as cameras require. One of the challenging aspects
of LiDAR sensors is how to process their large amount
of unordered 3D point data for inclusion in estimation.
One of the conventional ways is to use an iterative closest
point (ICP) solver to find the relative transformation between
poses. Using ICP to only recover the relative poses, prevents
the inclusion of highly informative environmental primitives,
such as planes, in state estimation.

The first challenge of using planar primitives for esti-
mation is their parameterization [6]. The most common
representation is that of the plane’s normal direction vector
and a distance scalar, which is known as the Hesse form.
Since the Hesse form is an over-parameterization, it would
suffer from a singular information matrix in least-squares
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optimization if no extra care is taken. To avoid this over-
parameterization, spherical coordinates containing 2 angles
(horizontal and vertical angle) and a distance scalar are
commonly used as its error state representation. Although
this is minimal, it suffers from ambiguities when the vertical
angle equals £75. More recently, Kaess [6] proposed the
use of a unit quaternion and its singularity free 3 degree-of-
freedom (DOF) multiplicative error state, whose geometric
connection to the plane is unclear, and whose numerical
stability may not be optimal. By contrast, in this work, we
advocate the use of the closest point (CP) representation
which is defined by the closest point on the plane to the
origin of a given frame of reference. The CP representation
not only captures all geometric plane information, but also
minimally represents the plane with a simple additive error
state operation, yielding numerical advantages.

Specifically, leveraging the CP representation for planes,
we fuse plane primitive measurements from a 3D LiDAR
and motion information from an inertial measurement unit
(IMU) (in the form of continuous IMU preintegration [7, 8])
through graph optimization for 3D indoor SLAM. The key
contributions of this paper are the following:

« Formulation of the closest point (CP) plane representa-
tion, analysis of its singularities, and its use as a plane
representation and error state in 3D plane SLAM.

e Design of a novel LiDAR-Inertial 3D Plane SLAM
(LIPS) system with a robust relative plane anchor factor
for graph-based optimization, effectively overcoming
the singularity issue of the CP representation.

o Development of a generalized LiDAR simulator for
evaluating LiDAR-aided localization algorithms, which
is open sourced to better benefit the community.'

« Validation of the proposed LIPS system through Monte-
Carlo simulations and a real-world experiment.

The rest of the paper is structured as follows: After
reviewing the related work in the next section, we formulate
the LiDAR-inertial plane SLAM (LIPS) problem in Sec-
tion III, and describe the continuous IMU preintegration
in Section IV. In Section V we present in detail how to
determine the plane factors that are used in graph-based
optimization. In Section VI we validate the proposed LIPS
system on synthetic and real experiments. Finally, the paper
concludes in Section VII along with possible future research.

II. RELATED WORK

Over the past three decades, we have witnessed tremen-
dous progress in SLAM and a multitude of different algo-
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rithms have been developed [9]. In what follows, we only
review the planar SLAM literature closely related to our
work.

A. SLAM with Planar Primitives

Within the literature involving range based sensors, planar
features have shown to improve point cloud registration accu-
racy [10-13]. In the field of LiDAR based odometry, a state-
of-the-art method is LOAM [14], which sequentially registers
extracted planar and edge features to an incrementally built
global map, and demonstrates impressive efficiency and
accuracy. Proencca et al. [15] recently presented a planar
odometry method that used a modified Hesse plane repre-
sentation but during plane matching they defined the cost
function as the difference between two points residing on the
planes. While this was not used as a planar representation,
we will more formally present it as the “closest point”
representation in Section V-A. That being said, instead of
solving the conventional point cloud registration problem
(e.g., iterative closest point (ICP)), we seek to solve the
SLAM problem (i.e., to probabilistically estimate both the
historical robot poses and environment structure) with a high
level geometric primitive: plane features.

One of the first uses of planes in SLAM was by Wein-
garten et al. [16] who extracted planes from incoming point
clouds through a breadth-first region growing algorithm
and fused similar planes using a Mahalanobis-distance test.
Pathak et al. [17] extended this work by presenting a plane
correspondence algorithm that maximized geometric scene
consistency and allowed for realtime performance.

Trevor et al. [18] combined lines, planes, and odometry
measurements in a graph-based framework, but used the
overparametrized Hesse form during optimization. Taguchi
et al. [19] introduced a handheld RGBD point-plane SLAM
system, provides analysis of degeneracy issues, and presented
a RANSAC based approach to the feature correspondence
problem. Salas et al. [20] leveraged the creation of a dense
planar map to allow for simple localization of incoming
RGBD sensor readings through the direct projection of the
dense planar map into the camera frame. Kaess [6] presented
the unit quaternion plane representation, proposed a relative
plane formulation for improved convergence in batch opti-
mization, and demonstrated simple planar 3D mapping with
a handheld RGBD sensor. Based on this work, Hsiao et al.
[21, 22] performed keyframe-based dense planar SLAM and
achieved higher estimation accuracy due to the additional
plane constraints and recently incorporated discrete inertial
preintegration.

More recently, Zhang et al. [23] introduced a fast plane
segmentation and map refinement step that improved real-
time performance and constructed map quality. Ma et al.
[24] used a RGBD camera to perform direct alignment
to planar keyframes and optimized a global graph using
an expectation-maximization framework. All these works
have tried to solve the same basic question: How does one
optimally leverage high level plane primitives in SLAM? In
this work, we propose the use of the CP representation, and
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combine inertial information provided by an IMU to perform
robust 3D SLAM.

B. Inertial-aided Planar SLAM

Conventionally, IMUs have been used to provide 3D pose
predictions for LiDAR registration methods. We instead look
to tightly fuse inertial and planar primitive measurements
in our state estimation. Hesch et al. [3] first proposed a
LiDAR-aided inertial EKF that used a 2D LiDAR for indoor
mapping. Unlike the proposed method, they assumed that
all planes extracted were orthogonal in the environment
and also performed frequent stops to prevent drift in the
unobservable z-direction. Additionally, since plane orienta-
tions were assumed orthogonal to each other and known,
only the distance to the plane was estimated. Guo et al.
[25] investigated the observability properties of an IMU-
RGBD system and constructed an observability-constrained
Kalman filter. They leveraged both point and planar features
and only used the plane orientation as a measurement los-
ing the information captured in the distance to the plane
while avoiding singularity issues. We look to incorporate
the inertial information in a graph-based system, allowing
for loop closures over long distances. The use of planar
primitives for loop closures is desirable due to the large
size and abundance of planar features in the environment.
We leverage the inertial measurements to better constrain the
low frequency LiDAR sensor in highly dynamic scenarios.
Additionally, unlike these prior works, we incorporate the
full 3 DOF plane measurements in estimation without prior
assumptions.

III. PROBLEM FORMULATION

Graph-based SLAM has prevailed because of its ability
to relinearize all nonlinear measurements and thus provide
accurate results [26, 27]. We therefore employ such formu-
lation for our proposed LiDAR-inertial plane SLAM (LIPS).

A. Graph-based Optimization

As a robot follows a trajectory it collects a set of measure-
ments, z, of the environment around it through sensors such
as IMUs, LiDARs, and RGBD cameras. These measurements
either directly or indirectly measure the underlying state,
x, of the robot. Formulated as a graph-based optimization
problem, we represent historical robot states, x;, as nodes
with measurements, z;, as edges/factors connected to their
involved nodes. Under the assumption of independent Gaus-
sian noise corruption on our measurements, we formulate
the Maximum Likelihood Estimation (MLE) problem as the
following nonlinear least-squares problem [27, 28]:

ﬁ:argminZHri (x)] ()

2
P;

where r; is the zero-mean residual associated with measure-
ment z;, P; is the measurement covariance, and ||v||fj =
v P~lv is the energy norm. This problem can be solved
iteratively by linearizing about the current estimate, X, and
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Fig. 1: Pictorial view an example trajectory and measurements that are
included in the proposed LIPS optimization. Two planes are being estimated
in different anchor poses. In the case of X IT1,, it was first seen from the
X1 state so it will be estimated in the {X1} frame of reference while
X271, will be estimated in the { X2} frame of reference.

defining a new optimization problem in terms of the error
state, X:

X" = argmlnz [|r; (%) +J; x||P (2)

where J; = % is the Jacobian of i-th residual with

respect to the error state. We define the generalized update
operation, H, which maps the error state to the full state.
After solving the linearized system, the current state estimate
is updated as x = X Hx.

B. The Proposed LIPS System

In the proposed LIPS, we define the robot state at each
time as the following 16 x 1 vector:

]
xi=[La" bl N b 9] B

where the quaternion G(j represents the rotation, IR, from
global frame {G} to the IMU frame {I}, the velocity “v;
is of the IMU seen from the global frame, position “p; is
the IMU position seen in the global frame, and b, and b,
are the gyroscope and accelerometer biases respectively. We
can define the minimal representation error state as:

~ T =T T =T aoT]’

% =|Ls6” b, v b, ©p;] @)
The position, velocity, and biases can all be updated using the
conventional additive error model (i.e., “p; = “p; — “p;).

Special care needs to be taken to use a multiplicative error
model for the quaternion defined by:

Sq=gqoi 't~ [0 1] 5)

where ® is the quaternion multiplication operator [29].
The total state to be estimated, x, consists of the m
historical IMU states and k planar primitives:

x = [x;01) Xrmy 1 I, (6)

where x;(;) is the state of the IMU at timestep ¢ and II;
refers to the jth plane. To perform this estimation, we first
determine the continuous IMU preintegration factors (see
Section IV) and 3D plane factors from LiDAR measure-
ments (see Section V), thereby building a factor graph for
optimization. In particular, planes are first extracted from the

point cloud and then compressed into the CP representation
(see Section V-C). Figure 1 illustrates the overall LIPS
system. These measurements are added to the graph and
optimized using the iISAM2 [30] implementation available
in the GTSAM [31] nonlinear optimization library. Note
that, while not used in our small-scale experiments (see
Section VI-D), an advantage of the relative information
provided by the IMU preintegration is the ability to perform
LiDAR cloud unwarping during high speed maneuvers. The
final cost function of the LIPS system can be described as:

HRH + Z ||rH]

where ry; (x) and rp;(x) are the zero mean residuals
associated with the continuous preintegration and anchored
CP planes measurements, respectively. While, Ry; and Ry
are the covariances of the continuous preintegration and
anchor CP plane measurements, respectively.

X = argmm Z |lrr; (x

7

W, |

IV. CONTINUOUS IMU PREINTEGRATION FACTOR

Low cost MEMS based IMU sensors have seen great
popularity as they provide direct readings of the evolution
of the robot’s state and provide robustness in dynamic
situations which other exteroceptive sensors alone might fail.
To provide information between the low frequency LiDAR
sensor readings, we leverage our previous work in continuous
preintegration [7, 8] which allows for large amounts of IMU
readings within the interval to be compounded into a single
highly informative constraint. Continuous preintegration is
based on closed-form expressions of the IMU measurement
dynamics rather than the discrete approximations used in
previous works [32]. We model the linear acceleration and
angular velocity inertial measurements as:

Wy =w + bw + Ny (8)
am:a—&—ba—f—na—l—éRGg “

where ©g is the gravity in the global frame, w is the angular
velocity, a is the linear acceleration, and n,,, n, are the
continuous measurement noises. The underlying standard
IMU dynamics are given by [33]:

L= %Q(wm — by —1ny,)5G (10)
b = Ny (11D
i, =R (ay, — by —n,) — g (12)
by = ng (13)
“pr = vy, (14)

where n,,;, ng, are the random walk noises and (+) is:

aw) = |1 (1s)

—w 0

The key idea of preintegration is to factorize the result-
ing integration of equations (10)-(14) between two LiDAR



timesteps [32]:

1
Cpii1 = py, + OViRAT — 5G‘gATQ +SRFagy (16)

Vi1 = Ovip — 9gAT + (R* By (17)
tla=taeka (18)

where AT is the difference between the bounding LiDAR
pose timestamps (¢, tx41) and kakH, kﬁkH are defined by
the following integrations of the IMU measurements:

tha1 s
Fagr = / ZR (a;m — by —ng) duds (19)
tr tr
tht1
FBir1 = / R (a, — b, —n,) du (20)
ty
We note that the preintegrated measurements, *og 1, ¥ B 1,

k“q are dependent on the frue biases. This dependency is

addressed through a first order Taylor series expansion about
the current bias estimates b,, and b, at time ¢:
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where *ay 1, ﬁk+1» P 14 are the preintegrated measure-
ments evaluated at the current bias estimates. In particu-
lar, k'Hq_ can be found using the zeroth order quaternion
integrator [29]. We define the quaternion which models
multiplicative orientation corrections due to changes in the

linearized bias as:

4 _
a(Ab,) = l”"'sml I] o= 01

cos 1161 db., ‘Bw (bw(k) - bw)

where Ab,, := by x) — by and Ab, := by — b, are
the differences between the true biases and the bias estimate
used as the linearization point. The new preintegration mea-
surements can now be computed once and changes in the
bias estimates can be taken into account through the above
Taylor series. The final measurement residual is as follows:

2vec<k+1q RETI®F Gt ® q(Ab,, ))
bu(k+1) = Puk)

’g;R(Gka Gyt GgAT)
~*Bps1 — BOTB’ Abg — %‘1 Bu,Abw
ba(kt1) — bak)
'g;R(kaH Gpy — CvpAT + %GgAT2>

kX dax da
Tkl T W’B Aba — 55, ‘5 Aby
a w

where vec(-) returns the vector portion of the quaternion (i.e.,
the top three elements) and the bias errors are the difference
between biases in the bounding states.

We use combined continuous preintegration factors that
included both the inertial and bias errors together and re-
late to the full 15 degree-of-freedom state (see Equation
3). This combined continuous preintegration factor better
models the measurement error state dynamics due to bias
drift over the integration interval. The analytical Jacobians
needed for graph optimization, bias Jacobians, and closed-
form preintegrated measurements are included in the prein-
tegration technical report [34]. To find the covariance of the
above residual, continuous IMU error state dynamics noise
characterization is performed, for details we refer the reader
to the continuous preintegration paper [8].

V. DETERMINING 3D PLANE FACTOR

In this section, we present the closest point (CP) plane
representation, derivation of the plane factor for use in graph
optimization, and our approach to computing the closest
point measurement mean and covariance from a given set
of points.

A. Closest Point Plane Representation

We first explain a unique plane representation that is well
suited for range based sensors. This “closest point (CP)”
representation can be described as a 3D point that resides
on the plane and is the closest to the current frame’s origin.
The benefit of this representation is that it is already in its
minimal representation and is singularity free if special care
is taken to select the frame of reference it is defined from.
By representing the plane as a single 3D point, we also have
a simple additive error model when updating the parameter
during optimization. This CP representation can be described
using the Hesse normal vector “n and distance scalar “d:

I =%n “d

rn} _ |/
“a] | Jem]

It is important to point out that without special care, this
representation still has a singularity when the value of “d
approaches zero. Any plane ¢TI that intersects our frame
of reference ({G} in this case) will be represented as the
same zero vector regardless of the plane’s orientation since
the closest point on that plane is at the origin. Nevertheless,
we argue that this singularity is well suited in the case of
plane estimation using range based sensors (e.g., LIDAR and
RGBD cameras) since planes extracted from these sensors
will not be ill-defined if they are represented in the frame
they are extracted from. The singularity in practice would
only arise if we transform a local CP plane, LTI, into a
frame where the plane intersects its origin (see Figure 2).
It was also noted in [14] that planes extracted from range

based sensors that are close to intersecting the sensor frame
should be consider “unreliable” if found and discarded.

(24)

(25)
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Fig. 2: A visual representation of the closest point on the plane. Also shown
is an example of a local plane parameter “IT that is well defined, while
the global plane representation CTI is ill-defined.

B. Anchor Plane Factor

To overcome the aforementioned singularity issue of the
CP representation, we parameterize the plane in the first
observation frame, guaranteeing that the distance to the plane
will be non-zero (from here forward this will be denoted the
“anchor” frame/state). As seen in Figure 3, the transform of
the plane representation from one frame to another is not
a direct 3D point transformation, and instead requires the
calculation of the CP in the new frame. Using the Hesse
plane representation we can map a plane represented in the
anchor frame {A} into the local frame {L} as:

] = L 3]

P
where LR is the relative rotation between the local and
anchor LiDAR frames, “4p; is the position of the local
LiDAR frame seen from the anchor LiDAR frame.

The transform represents the rotation of the anchor plane
normal vector into the local frame, and the subtraction of the
distance between the two frames projected onto the anchor
plane normal. Using the definition of the CP representation
(24), we can use the above {“n, “d} relation to obtain:

LTI(x) = (gRAn) (Ad )

For a given plane measurement, II, we have the following

residual for use in graph optimization (see (7)):
rn(x) = “H(x) — "I

The analytical Jacobians needed for graph optimization are
included in the accompanying technical report [35] and have
been omitted here for space efficiency.

In

Ld

n

d (26)

A TA

P, n 27)

(28)

C. Point to Plane Compression

To get the local CP measurement, we fit planes to the
incoming point clouds from the LiDAR sensor. To find
subsets of the unordered point cloud that correspond to
planes, RANSAC or other plane segmentation methods can
be used. We model each point measurement ‘p,, . as a
true measurement “p, being corrupted by some zero mean
Gaussian noise:

L

P nl) ~ N(Oa Rd)

We look to first compress the extracted subset of points into a
local CP primitive and matching covariance that can be used

=p, +n,, (29)
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Fig. 3: Pictorial view of a closest point plane representation seen in the
local {L} frame which can be transformed into its anchor frame {A} and
vice versa.

in optimization. We can start by formulating a weighted least
squared optimization problem where we seek to minimize
the point-to-plane distances between extracted points and the
local CP measurement “II:

I = argmmZ’ Ep,.i — HLHH

] L

w;
where W; is the inverse variance of the noise that corrupts
the ¢th measurement. In practice, we also introduce a robust
Huber loss to minimize the effect of outliers during opti-
mization (see [36]). We minimize the above cost function
using the Gauss-Newton method of iterative linearization of
the residual about the current best estimate. Formally, we
solve for the correction, ZII, to our linearization point © I:

-1
> I Wi

where we have the following:

Lﬁ = — ZJ:Wl Ti(Lﬁ)

~T ~T
LT LH LH
Ji= = (Ppn ) e - e GD)
[[“I1| (R SN[ 8
T N -1
LTI LTI
=\ 7= R (32)
||~ IL|| ||~ IX]|

Additionally we can calculate the covariance matrix of the
final local CP LTI as the following:
-1
P = ZJI w; J; (33)
In summary, we compress each of the extracted subsets of the
point cloud into local CP plane, © H representations, which
are then directly used to construct plane factors (28). We
found that using a robust Huber loss function on the plane
factors led to lower sensitivity to poor plane measurement
compression performance.

VI. EXPERIMENTAL RESULTS
A. LiDAR-Inertial Simulator
To evaluate the feasibility of the proposed system, a
custom LiDAR IMU simulator was developed. A 2D floor

plan was created and extruded vertically to create a Man-
hattan world environment (we note, for clarity, that the CP



TABLE I: Realistic parameters used in simulation.

Simulation Parameter Value

Gyroscope Noise Density 0.005 rad/svV Hz

Gyroscope Random Walk 4.0e-06 rad/s*/Hz

Accelerometer Noise Density 0.01 m/s>VHz
Accelerometer Random Walk 2.0e-04 m /s> Hz
LiDAR Point Deviation 1 and 3 cm

LiDAR Angular Resolution 0.25°

3.2°,0.0°,-3.2°,-6.4°,

LiDAR Zenith Angles 0.5°.-12.5°.15.4° ~18.3°

Rotation LiDAR to IMU [-1,0,0;0,1,0;0,0,-1]

Position IMU in LiDAR [0;0.04;-0.06] m

Global Gravity [0,0,9.81] m/s?

LiDAR / IMU Sensor Rate 5/800 Hz

0.2 T
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Fig. 4: RMSE results from 80 Monte-Carlo simulations showing the
achievable accuracy of the proposed LIPS system running in realtime. We
show RMSE results for both CP and quaternion representations.

representation can handle arbitrary plane orientations). A set
of ordered 3D control points are used to create a 3D spline
trajectory through the environment (see Figure 5 for the
generated trajectory). Using analytic spline differentiation,
the true IMU measurements can be obtained at any time
along the trajectory. At a given LiDAR sensing frequency,
rays were generated using the intrinsic LiDAR sensor model
defined by the angular resolution and vertical zenith angles.
Generated rays are then intersected with all planes in the
environment and all ray-plane intersections are found. The
final step performs invalidation of intersections that should
not be generated due to occlusions by enforcing that each
ray should only hit the plane that is closest to the LiDAR
frame.

The simulation parameters shown in Table I are modeled
after a Quanergy M8 sensor with a ADIS16448 IMU rigidly
attached. Following the conventional inertial model, IMU
measurements have additive discrete bias and white noise
terms corrupting the true value of each measurement axis.
The noise corrupting the generated 3D LiDAR points is
modeled as an additive white noise to each measurement
axis.

B. Monte-Carlo Simulations

80 Monte-Carlo simulations of the LIPS system were
performed at varying LiDAR noise values, whose results
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TABLE II: Average RMSE over 80 Monte-Carlo simulations at different

LiDAR noise values.

Closest Point Quaternion [6]
Units m deg m deg
1 cm 0.005 0.027 0.016 0.081
3 cm 0.012 0.057 0.033 0.126

are shown in Figure 4 and Table II. The proposed CP
representation and anchor plane factors were able to localize
in the planar environment with high accuracy at different
levels of LiDAR sensor noise. The simulations were done in
realtime with the plane correspondences known and solved
using iISAM2. The large non-zero orientation error towards
the beginning is due to the sensors remaining stationary for
a period after initialization with only a small number of far
away planes constraining the orientation.

The beginning of the simulated trajectory has limited
amounts of loop closures due to the entering and leaving of
rooms causing the estimation error to increase as one would
normally see in odometry systems (see Figure 5). After 300
seconds the trajectory re-enters the long hallway and returns
towards the starting position re-observing previously seen
sections of the hallway. As seen in Figure 4, loop closures
with previous planes rapidly decrease the estimator error
towards zero.

C. Plane Representation Comparison

To evaluate the effect of using the CP representation,
we compare against the state-of-the-art that leverages the
quaternion and its minimal error state [6]. We compressed
the sets of point clouds into the quaternion representation
using the same methodology used for CP, in which we
perform a minimization on the point-to-plane distances. We
implemented the “relative quaternion” factor proposed by
Kaess, which is directly comparable to our “anchored” CP
representation (whose analytical Jacobians can be found in
our technical report [35]). As shown in Table II, the CP
representation yielded improved accuracy over its quaternion
counterpart. While the results presented here were generated
using the iSAM?2 solver, we found that during full batch
optimization the quaternion representation converged slower
compared to CP. Our conjecture for these results is that the
CP-based measurement model has a better linear Gaussian
approximation than the quaternion parametrization, and thus
provides better numerical performance.

D. Real-World Experiments

To further validate that the proposed LIPS system can
be realized on physical sensors, the issue of plane cor-
respondences needed to be addressed. While there have
been works on matching planes in 3D space [19, 21], a
simple Mahalanobis-distance test between incoming local
CPs and existing planes was sufficient for our small scale
experiments. Point clouds were first processed offline using
RANSAC plane segmentation, available in the Point Cloud
Library (PCL) [37], to find planar subsets. The measurement
compression and estimator were able to run in realtime, but
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Fig. 5: Generated 180 meter long simulation trajectory through a 3D environment. The original 2D floor plan (bottom) has been extruded, and a spline was
fitted to control points to generate a complete trajectory. The trajectory starts in the top left corner and weaves in and out of rooms with varying height
from the floor before finally re-entering the hallway and returning back to the starting location.

for real-world applications the RANSAC plane extraction
will need to be substituted or have its execution time de-
creased.

In this test, planar objects were placed around the LiDAR
sensor to allow for easy RANSAC extraction, to avoid
degenerate motions [38], and to ensure that the LiDAR was
fully constrained in all degrees of freedom (see Figure 6).
An eight channel Quanergy M8 LiDAR operating at 10Hz
was used with a Microstrain 3DM-GX3-25 IMU attached to
the bottom of the LiDAR operating at 5S00Hz. We manually
estimated the LiDAR to IMU extrinsic transformation but
this could easily be added into the factor graph for online
estimation. To evaluate the estimation drift, the sensor unit
was moved in front of the planar surfaces and returned to
the same starting location. As seen in Figure 7, after a 30
meter trajectory distance, the difference between the start and
end poses was 1.5 cm corresponding to 0.05% error over the
trajectory length.

VII. CONCLUSIONS AND FUTURE WORK

We have presented and leveraged a novel CP planar
representation in a LiDAR-inertial SLAM system, allowing
for singularity free optimization of the full planar state
(both orientation and distance). The proposed anchor plane
factor was then combined with continuous preintegration
to allow for a robust graph-based SLAM system to be
constructed. This system was evaluated on a custom made
LiDAR simulator on a 180 meter trajectory and shown to
achieve impressive localization accuracy at different noise
levels when compared to another representation. Finally,
a proof-of-concept real-world experiment was conducted
and shown to achieve similar localization accuracy. Moving
forward, one of the drawbacks of any LIDAR SLAM system
are the possible cases where the extracted planes do not fully
constrain the pose estimate. We look to include other feature
information from camera sensors and expand our experiential
analysis to evaluate full building localization accuracy.
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