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Abstract— In this paper, we address the problem of optimally
fusing multiple heterogeneous and asynchronous sensors for use
in 3D mapping and localization of autonomous vehicles. To this
end, based on the factor graph-based optimization framework,
we design a modular sensor-fusion system that allows for
efficient and accurate incorporation of multiple navigation
sensors operating at different sampling rates. In particular, we
develop a general method of out-of-sequence (asynchronous)
measurement alignment to incorporate heterogeneous sensors
into a factor graph for mapping and localization in 3D, without
requiring the addition of new graph nodes, thus allowing the
graph to have an overall reduced complexity. The proposed
sensor-fusion system is validated on a real-world experimental
dataset, in which the asynchronous-measurement alignment is
shown to have an improved performance when compared to a
naive approach without alignment.

I. INTRODUCTION

Autonomous driving is an emerging technology that en-

ables the reduction of traffic accidents and allows for those

who are unable to drive for various medical conditions to

regain their independence, by performing intelligent per-

ception and planning based on multimodal sensors such

as LIDARs, cameras, IMUs and GPS. It is critical for an

autonomous vehicle to perform precise, robust localization

for decision making as it is the sub-system that almost all

online autonomous operations depend upon. There has been

a large amount of research efforts focused on multi-sensor

fusion for localization [1], which has reached a certain level

of maturity, yielding a bounded problem given the well

structured environment a vehicle operates in. In particular,

graph-based optimization has recently prevailed for robot

mapping and localization [2]. Due to the different sampling

rates of the heterogeneous sensors, measurements arrive at

different times. Accurate alignment of such out-of-sequence

(i.e., asynchronous) measurements before optimally fusing

them through graph optimization, while essential, has not

been sufficiently investigated in the literature.1

Factor graph-based formulation [4] is desirable due to its

ability to allow for delayed incorporation of asynchronous
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1It should be noted that the asynchronous measurement alignment
under consideration is different from the time synchronization (or temporal
sensor calibration) [3]; that is, even if sensors are well synchronized, their
observations are still collected asynchronously.

measurements. Indelman et al. [5] addressed the problem

of the inclusion of asynchronous measurements by taking

advantage of IMU preintegrated terms. This allowed them to

incorporate any set of asynchronous sensors whose rates are

slower than that of the IMU. Sünderhauf et al. [6] looked

to address the incorporation of measurements with unknown

time delays. Using high frequency odometry measurements,

they created states for each incoming odometry measurement

so that delayed factors could be directly connected to the

closest high frequency state. While both of these can be

used to address arbitrary amounts of delay between sensors,

they add large amounts of additional factors and edges to

the graph. In contrast, the proposed approach incorporates

measurements of different frequencies without increasing of

the overall graph complexity. It should be noted that while

the proposed method does reduce the computational cost of

optimization, graph size reduction also positively impacts

memory constrained devices.

From the theoretical perspective, as the main contribu-

tion of this paper, we accurately align both asynchronous

unary and binary graph factors to existing states based on

our analytically derived linear 3D pose interpolation. This

interpolation allows for the direct addition of asynchronous

measurements into the graph, without the need for extra

nodes to be added or for the naive ignoring of the measure-

ment delay. Patron-Perez et al. [7] first proposed a spline-

based trajectory method that allows for the fusion of delayed

measurements with the consequence of an increase of overall

system complexity and deviation from a pure pose graph.

Outside of graph-based optimization, interpolation has been

used to correct time offsets of continuous measurements such

as rolling shutter camera features and LIDAR point clouds.

In particular, Guo et al. [8] introduced the idea of linear

interpolation between past camera poses, which allowed for

the use of extracted features from rolling shutter cameras.

Ceriani et al. [9] used a linear interpolation between two

poses in SE(3) to unwarp LIDAR point measurements. In

this work, however, we focus on the analytical derivation of

the SO(3)×R
3 interpolation and its application inside of a

graph-based optimization framework to allow for the efficient

alignment of asynchronous measurements.

From the system perspective, we design and implement a

modular framework for fusing a variety of sensors, where

we decouple the sensor fusion and pose estimation to allow

for any sensor to be incorporated. This decoupled frame-

work allows for an arbitrary sensor odometry (ego-motion)

module, that emits 3D poses, to be included and leveraged

to improve the state estimate. Special care is also taken to
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Fig. 1: Example of a factor graph that our system created.

States that will be estimated are denoted in circles and mea-

surements are denoted in squares. Note that we differentiate

factors with interpolated measurements with dashed outlines.

ensure that odometry modules emitting 3D poses in unknown

frame of references are converted into local robot-centric

measurements, allowing for their direct incorporation into

the global estimation of the robot’s pose.

A. Notations

In this work, we parameterize the pose of each timestep as

{i
GR,Gpi} ∈ SO(3)×R

3, which describes the rotation from

the global frame {G} to the local frame {i} and the position

of the frame {i} seen from the global frame {G} of reference.

We denote the vector form of the matrix exponential as

Exp(·) which maps R
3 → SO(3), (e.g., Exp(G

I θθθ) = G
I RRR).

Similarly, we define the matrix logarithm Log(·) to map

between SO(3)→R
3, (e.g., Log(G

I RRR) = G
I θθθ ). Other notation

and identities can be found in Appendix A.

II. GRAPH-BASED ESTIMATION

As the vehicle moves through the environment, a set

of measurements, z, is collected from its sensors, such as

LIDAR scans, images, GPS, etc. These measurements relate

to the underlying state to be estimated, x. This process

can be represented by a graph, where nodes correspond to

parameters to be estimated (i.e., historical vehicle poses).

Incoming measurements are represented as edges connecting

their involved nodes (see Figure 1). Under the assumption of

independent Gaussian noise corruption of our measurements,

we formulate the Maximum Likelihood Estimation (MLE)

problem as the following nonlinear least-squares problem

[10, 11]:

x̂ = argmin
x

∑
i
||ri (x)||2Pi

(1)

where ri is the zero-mean residual associated with mea-

surement zi, Pi is the measurement covariance, and ||v||2P =
v�P−1v is the energy norm. This problem can be solved

iteratively by linearizing about the current estimate, x̂−, and

defining a new optimization problem in terms of the error
state, Δx:

Δx− = argmin
Δx

∑
i

∣∣∣∣ri
(
x̂−

)
+HiΔx

∣∣∣∣2
Pi

(2)

where Hi =
∂ri(x̂−�Δx)

∂Δx is the Jacobian of i-th residual with

respect to the error state. We define the generalized update

operation, �, which maps the error state to the full state.

Given the error state {i
Gθ̃θθ ,Gp̃i}, this update operation can be

written as {Exp
(−i

Gθ̃θθ
)

i
GR̂−,Gp̂−

i +Gp̃i}. After solving the

linearized system, the current state estimate is updated as

x̂+ = x̂−�Δx−. This linearization process is then repeated

until convergence. While there are openly available solvers

[10, 12, 13], the computational complexity of the graph-

based optimization can reach O(n3) in the worst case, with

n being the dimension of x.

III. ASYNCHRONOUS MEASUREMENT

ALIGNMENT

A. Unary Factors

It is clear that a reduction in the number of states being

estimated can both help with the overall computational

complexity and the physical size of a graph during long-term

SLAM. Naively, if a new node is created for each incoming

measurement, the overall graph optimization frequency can

suffer. To prolong high frequency graph optimization, we

present our novel method of measurement alignment which

allows for the estimation of a single set of poses that all

other incoming measurements are aligned to.

Fig. 2: Given two measurements in the global frame of

reference {1} and {2}, we interpolate to a new pose {i}.

The above λ is the time-distance fraction that defines how

much to interpolate the pose.

Unary factors can appear when sensors measure informa-

tion with respect to a single time instance. For example, GPS

can provide global position measurements indirectly through

latitude, longitude, and altitude readings, while LIDAR scan-

matching to known point cloud maps can provide a direct

reading of the global pose. To limit the addition of new graph

nodes when receiving asynchronous data, we interpolate

between two sequential 3D pose measurements to a given

state timestamp. This new interpolated measurement can then

be directly added as a prior factor on the given state.

We define a time-distance fraction corresponding to the

time-instance between two consecutive measurements as

follows (see Figure 2):

λ =
(ti − t1)
(t2 − t1)

(3)

where t1 and t2 are the timestamps of the bounding mea-

surements, and ti is the desired interpolation time (i.e., the

timestamp of the given state). Under the assumption of a con-

stant velocity (both translational and angular) motion model,

we interpolate between the two 3D pose measurements:

i
GR = Exp

(
λ Log(2

GR1
GR�)

)
1
GR (4)

Gpi = (1−λ )Gp1 +λ Gp2 (5)

5995



where {1
GRRR,G ppp1} and {2

GRRR,G ppp2} are the bounding measure-

ment poses and {i
GRRR,G pppi} is the aligned pose measurement

to the given state timestamp. The last step before directly

adding this 3D pose as a prior measurement is to correctly

compute the corresponding covariance needed in graph-based

optimization. Hence, we perform the following covariance

propagation:

PPPi = HHHuPPP1,2HHHu
T (6)

HHHu =

⎡
⎣ ∂ i

Gθ̃θθ
∂ 1

Gθ̃θθ 0003×3
∂ i

Gθ̃θθ
∂ 2

Gθ̃θθ 0003×3

0003×3
∂ G p̃ppi
∂ G p̃pp1

0003×3
∂ G p̃ppi
∂ G p̃pp2

⎤
⎦ (7)

where PPP1,2 is the joint covariance matrix from the bounding

measurements, and θ̃θθ and p̃pp are the error states of each

angle and position measurement, respectively. For detailed

calculations of all Jacobians derived in this paper, we refer

the reader to the companion technical report [14]. The

resulting non-zero Jacobian matrix entries are analytically

derived as:

∂ i
Gθ̃θθ

∂ 1
Gθ̃θθ

=−i
1RRR

(
Jr

(
λ Log(2

1RRR)
)

λ J−1
r

(
Log(2

1RRR)
)
− I

)
(8)

∂ i
Gθ̃θθ

∂ 2
Gθ̃θθ

= i
1RRR Jr

(
−λ Log(2

1R�)
)

λ J−1
r

(
Log(2

1R�)
)

(9)

∂ G p̃ppi

∂ G p̃pp1

= (1−λ ) I ,
∂ G p̃ppi

∂ G p̃pp2

= λ I (10)

where the Right Jacobian of SO(3) denoted as Jr(φ) and its

inverse J−1
r (φ) (see Appendix A).

B. Binary Factors

Designing multi-sensor systems for state estimation often

requires fusing asynchronous motion information from dif-

ferent sensor modules (e.g., ORB-SLAM2 [15] or LOAM

[16]). A difficulty that arises is the unknown transformation

between the different global frame of references of each

module. This unknown comes from both the rigid transfor-

mation between sensors (which can be found through extrin-

sic calibration) and the fact that each module initializes its

own global frame of reference independently. Rather than di-

rectly modifying the codebase of each module or performing

sophisticated initialization, we combine sequential 3D pose

measurements into relative transforms; thereby, we remove

the ambiguity of each module-to-module transformation.

In particular, given two pose measurements in the second

sensor’s global frame, {1
oRRR, o ppp1} and {2

oRRR, o ppp2} with the joint

covariance PPP1,2, we calculate a new relative measurement as

follows:
2
1RRR = 2

oRRR1
oRRR� (11)

1 ppp2 =
1
oRRR(o ppp2 −o ppp1) (12)

where we define the unknown global frame of these 3D

pose measurements as {o} and their corresponding reference

frames as {1} and {2}. To find the covariance of this new

relative measurement, we perform the following covariance

propagation based on the above measurement transformation:

PPP12 = HHHrPPP1,2HHHr
T (13)

The resulting Jacobian matrix HHHr is defined as the following:

HHHr =

[ −2
1RRR 0003×3 III3×3 0003×3

�1
oRRR(o ppp2 −o ppp1)×� −1

oRRR 0003×3
1
oRRR

]
(14)

where �·×� is the skew-symmetric matrix, see Appendix A.

We now have the {2
1RRR, 1 ppp2} relative measurement between

two poses and its corresponding covariance PPP12. If this

transformation is not in the same sensor frame of reference

(e.g., relative transform is between camera to camera and the

state is LIDAR to LIDAR), one can use the method described

in Appendix B to convert the measurement into the same

sensor frame of reference as the state.

Fig. 3: Given a relative measurement between the {1}
and {2} frame of reference, we extrapolate this relative

transformation to the desired beginning {b} and end {e}
timesteps. The above λ s are the time-distance fractions that

we use to extrapolate the relative measurement.

Due to the asynchronous nature of the measurements from

two different sensors, the times corresponding to the start and

end of incoming relative measurements will not align with

existing state timestamps. Therefore, under the assumption

of a constant velocity motion, we extrapolate the relative

measurement to given beginning and end state timestamps.

This intuitively corresponds to a “stretching” of the relative

pose measurement in time. We define two time-distance

fractions that determine how much the relative measurement

needs to be extended (see Figure 3):

λb =
t1 − tb
t2 − t1

λe =
te − t2
t2 − t1

(15)

The λ s describe the magnitude that the relative mea-

surement is to be “stretched” in each direction, with the

subscripts tb and te denoting the beginning and end state

timestamps. These time-distance fractions can also be neg-

ative, corresponding to the “shrinking” of the relative mea-

surement. Formally, we define the following relative mea-

surement extrapolation equations:

e
bRRR = Exp

[
(1+λb +λe)Log

(
2
1RRR

)]
(16)

b pppe = (1+λb +λe)Exp
[−λbLog

(
2
1RRR

)]
1 ppp2 (17)

The measurement covariance propagation is then given by:

PPPbe = HHHiPPP12HHHi
� , HHHi =

⎡
⎢⎣

∂ e
bθ̃θθ

∂ 2
1θ̃θθ 0003×3

∂ b p̃ppe
∂ 2

1 θ̃θθ
∂ b p̃ppe
∂ 1 p̃pp2

⎤
⎥⎦ (18)

where PPP12 is the covariance calculated from equation (13).

For Jacobian derivation details, please see the companion
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Fig. 4: Sensor measurements are first processed through an odometry module if needed (seen in blue) and then converted

into factors (seen in red) that can be added to factor graph. The prior map system (left) leverages RTK GPS measurements

to create a prior map in the GPS frame of reference. The GPS denied estimation system (right) uses the generated LIDAR

maps to ensure that the pose estimation is in the GPS frame of reference.

tech report [14]. The resulting non-zero Jacobian matrix

entries are analytically computed as:

∂ e
bθ̃θθ

∂ 2
1θ̃θθ

= Jr

[
(1+λb +λe)Log(2

1RRR�)
]
(1+λb +λe)J−1

r

[
Log(2

1RRR�)
]

(19)

∂ b p̃ppe

∂ 2
1θ̃θθ

=
(
− (1+λb +λe)Exp

[
λbLog(2

1RRR�)
]⌊

1 p̂pp2×
⌋

Jr(λbLog(2
1RRR�))λbJ−1

r (Log(2
1RRR�))

)
(20)

∂ b p̃ppe

∂ 1 p̃pp2

= (1+λb +λe)Exp
[−λbLog

(
2
1RRR

)]
(21)

IV. SYSTEM DESIGN

A. Design Motivations

We now present a system that leverages asynchronous

sensors in the application of autonomous driving and the

proposed asynchronous measurement alignment. To both

facilitate the flexibility of the vehicle design and reduce cost,

we aim to run the system on a vehicle without access to

a GPS unit and with low cost asynchronous sensors (i.e.,

those without the use of electronic triggering). We look to

provide a localization solution in the GPS frame of reference

without the use of a GPS sensor allowing for existing

autonomous systems such as path planning and routing to

continue to work as expected. To overcome this challenge,

we present a unique prior LIDAR map that allows for the

vehicle to both initialize and localize in the GPS frame

of reference. Specifically we design a framework with two

separate systems as follows:

1) Creation of an accurate prior map using a vehicle that

has an additional Real Time Kinematic (RTK) GPS

sensor unit.

2) GPS-denied localization leveraging the prior map to

localize in the GPS frame of reference.

This framework is flexible and cost effective as only a

single “collection” vehicle is needed to build the prior map

that multiple lower cost vehicles can leverage. Specifically,

this prior map allows for localization in the GPS frame of ref-

erence without the use of GPS measurements during runtime

and can support localization in GPS-denied environments

(e.g., tunnels or parking garages).

B. Prior Map

The first system we propose is one that generates an

accurate prior map that can be leveraged by the second

system to localize in the GPS frame of reference during

autonomous operation. Shown in Figure 4, we fuse odometry

measurements from openly available stereo and LIDAR

modules, ORB-SLAM2 [15] and LOAM [16], respectively,

with a RTK GPS unit. Both of these modules provide

six degree of freedom pose estimates.2 These modules

are crucial in providing the orientation information since

the RTK GPS only provides a 3D position solution. We

estimate LIDAR states connected with consecutive binary

factors from LOAM LIDAR odometry. Incoming pairs of

pose measurements from ORB-SLAM2 are converted into

relative measurements, interpolated to the closest bounding

LIDAR state timesteps, and then inserted into the graph as

a normal binary factor (Section III-B). To ensure that the

estimated states are in the GPS frame of reference, RTK GPS

measurements are first interpolated to the correct LIDAR

state timestep and then inserted as a unary factor (Section

III-A). Both ORB-SLAM2 visual odometry and RTK GPS

measurements need to be interpolated because both sensors

are asynchronous to the LIDAR sensor.

Fig. 5: Prior map generated from the experimental dataset.

The graph can be solved in real-time using an incremental

solver such as iSAM2 [13] or offline with a full batch solver.

It is then simple to construct a prior map using the estimated

states and their corresponding LIDAR point clouds. To

evaluate the overall quality of the generated prior map point

cloud, the cloud is visually inspected for misalignment on

environmental planes such as walls or exterior of buildings.

The generated prior map from the experimental dataset can

2Note that both modules do not normally provide a corresponding
covariance needed for batch optimization. We refer the reader to the
appendices in the companion tech report [14]. We run LOAM in the default
mode, while ORB-SLAM2 is run first in “mapping” mode to generate a
map of the environment. We then use ORB-SLAM2 in “localization” mode
during autonomous operation to limit jumps due to loop closures. We also
note that both odometry modules must provide “to-scale” information.

5997



be see in Figure 5.

C. GPS-Denied Map-Based Localization

Using the generated prior map, localization in the GPS

frame can be performed without the use of a GPS sensor.

As seen in Figure 4, we estimate LIDAR states that are

connected with binary LIDAR factors. As in the prior map

system, ORB-SLAM2 measurements are first converted to

relative measurements, interpolated to bounding LIDAR state

timestamps, and then inserted into the graph as a binary

factor (Section III-B). In addition to these two binary factors,

we perform Iterative Closest Point (ICP) matching between

the newest LIDAR point cloud and the generated prior map.

This ICP transform can then be added into the factor graph

as a unary factor and provides constraints to the prior GPS

frame of reference.

To provide real-time localization capabilities, we leverage

the iSAM2 solver during GPS-denied state estimation [13].

The estimation operates at the frequency of the LIDAR

sensor limited only by the speed the LOAM module can

process measurements. It was found that creating unary

factors using ICP matching to the prior map took upwards

of 1-2 seconds. To overcome this long computation time,

incoming LIDAR clouds are processed at a lower frequency

in a secondary thread, and then added to the graph after

successful ICP matching.

V. EXPERIMENTAL RESULTS

A. System Validation

To access the overall performance of the GPS denied

system, we constructed a data collection vehicle with both a

combination of low cost sensors and a RTK GPS sensor.

The vehicle is equipped with a 8 channel Quanergy M8

LIDAR, ZED stereo camera, and RTK enabled NovAtel

Propak6 GPS sensor. The Quanergy M8 LIDAR was run at

10Hz, while the ZED stereo camera was run at 30Hz with a

resolution of 672 by 376. The RTK enabled NovAtel Propak6

GPS sensor operated at 20Hz with an average accuracy of

±15 centimeters. The GPS solution accuracy allows for the

creation of a high quality prior map (see Figure 5). To

facilitate the GPS denied system, a dataset was first collected

on the vehicle and then processed using a full batch solver.

Following the proposed procedure in Section IV-B, binary

LIDAR factors from LOAM, binary stereo ORB-SLAM2

factors, and unary RTK GPS factors are used. Both incoming

ORB-SLAM2 and RTK GPS measurements are transformed

into the correct sensor frame and interpolated before their

addition into the factor graph. The resulting LIDAR point

cloud, created in the GPS frame of reference, can then be

used during GPS denied navigation.

To represent the real world, the GPS-denied localization

system was tested on the day following the data collection for

the prior map. This was to introduce changes in the environ-

ment, such as changes in car placement and shrubbery, while

also showing that the prior map can still be leveraged. Using

the same vehicle, RTK GPS was instead used to provide an

accurate ground truth for comparison and was not used in

the estimation solution. Following the proposed procedure in

Section IV-C, incoming LIDAR point clouds are matched to

the map generated the previous day and added to the factor

graph after successful ICP alignment. Binary stereo ORB-

SLAM2 factors are used after they have been transformed

into the correct sensor frame and interpolated to the given

LIDAR state timestamps.

Fig. 6: Average position error magnitude (meters) over 10

runs. Error calculated relative to the RTK GPS position.

Average vehicle speed of 6mph over the 500 meter long run.

For evaluation, the estimated vehicle position during on-

line operation is compared to the corresponding output of the

RTK GPS. As seen in Figure 6, when performing GPS denied

localization, the system was able to remain within a stable

2 meter accuracy. We compared the proposed asynchronous

measurement alignment against a naive approach of factor

addition into the graph which ignores the issue of time delay

and directly attaches incoming factors to the closest nodes

without performing interpolation. The average RMSE was

0.93 meters for the naive approach with the proposed method

having 0.71 meters (overall 23.6% decrease).

B. Evaluating the Asynchronous Measurement Alignment

Having shown that the system is able to accurately localize

in real-time without the use of GPS, we next evaluated

how the interpolation impacts the estimation. To do so, we

disable the LIDAR prior cloud factors and instead only used

odometry factors from LOAM and ORB-SLAM2.

Fig. 7: Comparison of the proposed method and naive

approach, over 10 runs, using pure odometry measurements.

Seen in Figure 7, the proposed asynchronous measurement

alignment out performed the estimation accuracy of the naive

approach. The RMSE of the naive approach was 26.74 meters

and the proposed method’s average error was 7.026 meters

(overall 73.7% decrease). This shows that the alignement

of measurements to the state timestamps through linear

interpolation can greatly increase the estimation accuracy,

without simultaneously increasing the graph size.
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VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a general approach

of asynchronous measurement alignment within the graph-

based optimization framework of mapping and localization

in order for optimal fusion of multimodal sensors. The

designed framework provides a modular system with the

ability to replace individual modules and allow for any sensor

that provides to-scale 3D pose estimates to be incorporated.

The system has been tested on an experimental dataset and

compared to a naive approach to show the improvement

due to the proposed asynchronous measurement alignment.

Looking forward, we will incorporate other sensors, such

as Inertial Measurement Units (IMUs), through the use

of analytically IMU preintegration developed in our prior

work [17] to robustify the system to sensor failures and

dynamic trajectories. We will also investigate how to improve

the current mapping and localization, in particular, when

autonomously driving in dynamic urban environments.

APPENDIX

A. Useful Identities

Given some small value δθ we can define the following

approximations [18]:

�φ×�=
⎡
⎣ 0 −φz φy

φz 0 −φx
−φy φx 0

⎤
⎦ (22)

Exp(δθ)≈ I+ �δθ×� (23)

Exp(φ +δθ)≈ Exp(φ)Exp(Jr(φ)δθ) (24)

Log(Exp(φ)Exp(δθ))≈ φ + J−1
r (φ)δθ (25)

The Right Jacobian of SO(3) Jr(φ) is defined by:

Jr(φ) = I− 1− cos(‖ φ ‖)
‖ φ ‖2

�φ×�+ ‖ φ ‖ −sin(‖ φ ‖)
‖ φ ‖3

�φ×�2 (26)

and the Right Jacobian inverse of SO(3), J−1
r (φ), is:

J−1
r (φ) = I+

1

2
�φ×�+

(
1

‖ φ ‖2
− 1+ cos(‖ φ ‖)

2 ‖ φ ‖ sin(‖ φ ‖)
)
�φ×�2 (27)

B. Relative Measurement Static Transformation

Given a relative 3D pose measurement in a given sensor

frame we would like to convert it to the same sensor

frame of reference as our state (e.g., ORB-SLAM2 relative

measurements are in the left camera sensor frame but the

state is in the LIDAR sensor frame). Given this relative trans-

form {C2
C1RRR,C1 pppC2} in the camera frame and a corresponding

covariance PPPC12, we would like to transform it as follows:

L2
L1RRR = L

CRRR C2
C1RRR L

CRRR� (28)

L1 pppL2 =
L
CRRR

(
C2
C1RRR� C pppL +

C1 pppC2 −C pppL

)
(29)

where we define the LIDAR frame of reference as {Li}, i ∈
{1,2} and the camera frame of reference as {Ci}, i ∈ {1,2}.

It is assumed that the static transform, {L
CRRR,C pppL}, from the

LIDAR to camera frame of reference are known from offline

calibration. The covariance in the LIDAR frame is as follows:

PPPL12 = HHHsPPPC12HHHs
� (30)

where PPPC12 is the relative camera covariance. For Jacobian

derivations, please see the companion tech report [14]. The

resulting Jacobian matrix HHHs is defined as the following:

HHHs =

[ L
CRRR 0003×3

−L
CRRR C2

C1RRR��C pppL×� L
CRRR

]
(31)
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[10] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard.
“g2o: A general framework for graph optimization”. In: 2011 IEEE
International Conference on Robotics and Automation (ICRA).
IEEE. 2011.

[11] K. Eckenhoff, L. Paull, and G. Huang. “Decoupled, Consistent Node
Removal and Edge Sparsification for Graph-based SLAM”. In: in
Proc. IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE. Oct. 2016.

[12] F. Dellaert. Factor graphs and GTSAM: A hands-on introduction.
Tech. rep. 2012.

[13] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F.
Dellaert. “iSAM2: Incremental smoothing and mapping with fluid
relinearization and incremental variable reordering”. In: 2011 IEEE
International Conference on Robotics and Automation. May 2011.

[14] P. Geneva, K. Eckenhoff, and G. Huang. Asynchronous Multi-Sensor
Fusion for 3D Mapping and Localization. Tech. rep. RPNG-2017-
ASYNC. Available: http://udel.edu/˜ghuang/papers/
tr_async.pdf. University of Delaware, 2017.

[15] R. Mur-Artal and J. D. Tardos. “ORB-SLAM2: an Open-Source
SLAM System for Monocular, Stereo and RGB-D Cameras”. In:
arXiv preprint arXiv:1610.06475 (2016).

[16] J. Zhang and S. Singh. “LOAM: Lidar Odometry and Mapping in
Real-time.” In: Robotics: Science and Systems. Vol. 2. 2014.

[17] K. Eckenhoff, P. Geneva, and G. Huang. “High-Accuracy Preinte-
gration for Visual-Inertial Navigation”. In: Proc. of International
Workshop on the Algorithmic Foundations of Robotics. San Fran-
cisco, CA, Dec. 2016.

[18] T. D. Barfoot. State Estimation for Robotics. Cambridge University
Press, 2017.

5999


		2018-09-07T13:11:31-0400
	Preflight Ticket Signature




