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Abstract— Recent advancements in the performance and
affordability of cameras and inertial measurement units (IMUs)
have caused demand for efficient, accurate visual-inertial nav-
igation solutions. In this paper, we present a system for
the fusion of preintegrated inertial measurements with highly
informative direct alignment of images. In particular, our
preintegration theory is based on closed-form solutions of the
continuous-time IMU kinematic model, instead of discrete time.
This allows for more accurate computation of preintegrated
measurements and their uncertainty as well as bias Jacobians.
These measurements are fused via graph-based methods with
relative pose constraints obtained from direct image alignment
from a stereo platform. The proposed system is validated on
publicly-available real-world datasets.

I. INTRODUCTION

Visual-inertial navigation systems (VINS) have become
very popular in recent years due to their enormous potential
in robotics. These low-cost and light-weight sensors are still
highly informative, and are therefore ideal for providing nav-
igation solutions for Unmanned Aerial Vehicles (UAVs) and
mobile/wearable devices. The accuracy of these solutions is
imperative for real-world applications, especially in the case
of autonomous systems which require accurate information
of their state for decision making. As such, a great deal of
efforts have been placed in estimation via the processing of
camera and IMU measurements [1], [2].

Traditionally, estimation algorithms for VINS have been
based on the Extended Kalman Filter (EKF) [3], [4], where
incoming measurements are linearized and processed sequen-
tially, without the ability to correct past states. In contrast,
for Simultaneous Localization and Mapping (SLAM), graph-
based optimization techniques [5] process all measurements
at once to estimate an entire trajectory. However, it has
historically been difficult to incorporate IMU readings into a
factor-graph due to the nature of acceleration measurements
and biases. To deal with these issues, Lupton et al. [6]
intoduced the theory of preintegration, where IMU measure-
ments are processed in the IMU local frame of reference,
while dependency of these measurements on biases is re-
moved by linearizing about the current bias estimates. This
reformation of the IMU processing allows for the creation
of factors for graph-based SLAM [7]. Nevertheless, current
preintegration methods are based on the discretization of the
state dynamics, which incurs approximation.

In this work, however, by building upon our recently
developed analytical preintegration theory [8], we propose a
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graph-based direct VINS algorithm that not only analytically
preintegrates the IMU measurements between keyframes
based on continuous state dynamics, but also directly tracks
IMU/camera motion based on dense pixel values, without
detecting and tracking visual features. In particular, we utilize
the recent strategy of direct visual odometry [9] and find
relative camera pose factors by minimizing the photometric
error between two images, thereby using a much larger
subset of pixels and thus more information than sparse
methods [7]. The IMU and camera factors are then fused in
a visual-inertial graph-based optimization framework. In this
way we offer a “best of both worlds” approach, leveraging
state-of-the-art advances in both visual and inertial sensor
technologies.

II. RELATED WORK

In the realm of filter-based VINS, Mourikis et al. [1]
introduced the multi-state constraint Kalman filter (MSCKF),
where the state vector consists of the current sensor state,
as well as the poses of the past n states, allowing short-
term correction of those states for a smoother path. Fea-
ture measurements were extracted from images and used
in the update step. Naively, these measurements could be
processed by adding the 3D feature points into the state
vector, which causes an unbounded computational overhead.
Instead, the authors projected all the information onto a lower
dimensional subspace, such that the residual only constrains
the robot states within the window. Recently, VINS system
observability and filter consistency have been extensively
studied [10]. On the other hand, batch optimization methods
for use in SLAM process all measurements at once by
solving for the Maximum A Posteriori (MAP) estimate
through nonlinear optimization [5], [11]–[13].

Lupton, et al. [6] introduced the theory of preintegration.
They showed that by integrating IMU measurements in a
local frame of reference and linearizing about the current bias
estimate, a measurement connecting the start and end states
of the interval could be created. Forster et al. [7] extended
this work to a stable Lie group representation of SO(3),
thereby gauranteeing that all rotation matrices were valid.
In both of these works, discrete versions of the measurement
dynamics were used, which introduces approximation during
integration. Yang and Shen [14] utilized preintegration while
formulating the error dynamics in a continuous fashion.
However, the measurement dynamics were sampled to com-
pute covariances and measurement means. In addition, bias
Jacobians were not utilized. By contrast, our method uses
continuous measurement and error dynamics to compute, in
closed form, the mean, covariance, and bias Jacobians of our
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preintegrated measurements. This affords our method higher
accuracy than its predecessors.

Different visual tracking methods have been used in recent
literature. Direct methods for monocular systems (i.e., with-
out IMU) have been successfully implemented by Engel et
al. [9], which was extended onto rolling shutter cameras [16].
Direct methods with inertial preintegration have been studied
previously [15], [17], which, while having sophisticated
visual front-ends, were still based on the discrete version of
preintegration. Lastly, the direct visual-inertial fusion of [18]
fixed all past states and optimized only over the active state.

III. BATCH OPTIMIZATION

Given a set of measurements Z , batch optimization seeks
the estimation of state parameters, x, to maximize the
conditional distribution p(Z|x). This process is known as
maximum likelihood estimation (MLE). The problem can
be viewed as a graph, where nodes represent parameters to
be estimated, while edges represent measurements relating
adjacent nodes (see Figure 1). Under the assumption of
Gaussian noise and independence of measurements, this
optimization can be written as the following Nonlinear Least
Squares (NLS) problem [5]:

x∗ = argmin
x

∑
i

||ri(x)||2Wi
(1)

We define ri(x) as the residual of measurement i, Wi is the
information matrix associated with the noise corrupting that
measurement, and ||v||2A = v�Av is the energy norm. This
cost function is minimized using the Gauss-Newton method
of iterative linearization of the residual about the current
estimate. State variables may be restricted to a manifold
(such as SO(3)) [19], and we therefore expand the state about
the current estimate x = x̂�Δx. Here x and x̂ are elements
of the manifold corresponding to the true and approximate
states, Δx is a correction vector, and � is an operation that
maps a manifold element and a correction vector to a new
manifold element. For the case of states in a vector space
(such as position and velocity), this operation is simply vec-
tor addition. For unit quaternions (in JPL convention [20]),

this operation is typically approximated as q̄ ≈
[
Δθ
2
1

]
⊗ ˆ̄q,

with ⊗ indicating quaternion multiplication [20]. The NLS
problem (1) can then be expanded about this correction
vector, and the optimization is reformatted to finding the
optimal correction:

Δx∗= argmin
Δx

∑
i

||ri(x̂�Δx)||2Wi
(2)

≈ argmin
Δx

∑
i

||ri(x̂) + JiΔx||2Wi
(3)

where Ji =
∂ri(x̂�Δx)

∂Δx |Δx=0 is the Jacobian of the residual
with respect to the error state. By taking the gradient of (3),
the correction vector can be found in closed form:

Δx∗ = −
(∑

i

J�i WiJi

)−1(∑
i

J�i Wiri (x̂)

)
(4)

With this, the state estimate is updated, x̂+ = x̂− � Δx∗.
This process is iterated until convergence. After optimization,

Fig. 1: Factor-graph representation used in the global opti-
mization. Every state (denoted xi) is connected to the next
state by a preintegration factor (green) and a bias drift factor
(blue). Keyframe states (shown in red) are also connected to
other states in the graph by direct alignment factors (yellow).

Σ =
(∑

i J
�
i WiJi

)−1
serves as an approximation for the

covariance of the zero-mean estimate error:

x = x̂�Δx, Δx ∼ N (0,Σ) (5)

For this work, the state of our sensor suite at step k and the
corresponding correction vector can be written as:

xk =
[
k
Gq̄
� Gv�k

Gp�k
]�

(6)

Δxk =
[
Δkθ�G ΔGv�k ΔGp�k

]�
(7)

k
Gq̄ is the JPL quaternion associated with a rotation from the
global frame to the local frame, and Gvk and Gpk are the
velocity and position in the global frame.

IV. ANALYTICAL PREINTEGRATION CONSTRAINTS

Inertial measurements are processed in the form of local
gyro and acceleration measurements, denoted τωm and τam,
respectively. These measurements are received at step τ and
are related to the true angular velocity, true acceleration,
biases, and noises as follows [20]:

τam = τa+ τ
GR

Gg + ba + na (8)
τωm = τω + bw + nw (9)

ḃa = nba (10)

ḃw = nbw (11)

We define τω and τa as the true angular velocity and
acceleration, ba and bw as the acceleration and gyro biases,
ni ∼ N (03×3, σ

2
i I3×3

)
as the process noises, τ

GR as the
rotation matrix which rotates a vector from the global frame
to the τ frame, and Gg as the gravity vector. In this work
we use the convention of Gg ≈ [0 0 9.81

]
. The biases

that corrupt the measurements also need to be estimated, so
we augment our state vector (6):

xk =
[
k
Gq̄
� Gv�k

Gp�k b�ak
b�wk

]�
(12)

Given a sequence of IMU readings, collected at steps τ
between two states, k ≤ τ ≤ k + 1, we can integrate across
these measurements to connect the beginning and end states
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of the preintegration interval of total time ΔT [6], [21]:

Gpk+1=
Gpk + GvkΔT − 1

2
GgΔT 2

+G
k R

∫ tk+1

tk

∫ s

tk

k
τR (τam − ba − na) dτds︸ ︷︷ ︸

kαk+1

=: Gpk + GvkΔT − 1

2
GgΔT 2 + G

k R
kαk+1 (13)

Gvk+1=
Gvk − GgΔT

+G
k R

∫ tk+1

tk

k
τR (τam − ba − na) dτ︸ ︷︷ ︸

kβk+1

=: Gvk − GgΔT + G
k R

kβk+1 (14)

k+1
G R= k+1

k Rk
GR (15)

We have collected the terms which are independent from
the poses and velocities at the kth and (k + 1)th steps
as three preintegration measurements. kαk+1 and kβk+1

describe how the positions and velocities evolve over a
interval, while k+1

k R is the relative rotation between the two
states. By rearranging the dynamic equations, we derive the
measurements as functions of the state variables at steps k
and k + 1:

k
GR

(
Gpk+1−Gpk−GvkΔT +

1

2
GgΔT 2

)
= kαk+1 (ba,bw)

k
GR
(
Gvk+1 − Gvk + GgΔT

)
= kβk+1 (ba,bw)

k+1
G Rk

GR
�
= k+1

k R (bw)

The dependencies of the measurements on the biases are
removed via expansions about the current linearization point
for these biases, b̄a and b̄w [6]. These biases are approxi-
mated as remaining constant over the preintegration interval.
By defining Δb = b− b̄, we have:

k
GR

(
Gpk+1 − Gpk − GvkΔT +

1

2
GgΔT 2

)
� (16)

kαk+1

(
b̄a, b̄w

)
+

∂α

∂ba

∣∣∣
b̄a

Δba +
∂α

∂bw

∣∣∣
b̄w

Δbw

k
GR
(
Gvk+1 − Gvk + GgΔT

) � (17)

kβk+1

(
b̄a, b̄w

)
+

∂β

∂ba

∣∣∣
b̄a

Δba +
∂β

∂bw

∣∣∣
b̄w

Δbw

k+1
G Rk

GR
�� R

(
∂R

∂bw

∣∣∣
b̄w

Δbw

)
k+1
k R

(
b̄w

)
(18)

(16) and (17) are simple Taylor series expansions for the
case of our kαk+1 and kβk+1 measurements, while (18)
models an induced extra rotation [7]. Note that because
the preintegrated measurements are performed using only
IMU data and current bias estimates, preintegration avoids
costly reintegration as required by other IMU processing
techniques [22]. With these definitions we can create a factor
between the start and end states of the preintegration window
(k and k+1 respectively) for use in batch optimization. The

residual associated with this edge can then be written as:

rk+1 =

⎡
⎣Δkαk+1

Δkβk+1

Δk+1θk

⎤
⎦

Δkαk+1=
k
GR

(
Gpk+1 − Gpk − GvkΔT +

1

2
GgΔT 2

)
−Jα(bw − b̄w)−Hα(ba − b̄a)− kᾰk+1

Δkβk+1=
k
GR
(
Gvk+1 − Gvk + GgΔT

)
−Jβ(bw − b̄w)−Hβ(ba − b̄a)− kβ̆k+1

Δk+1θk= 2vec
(
k+1
G q̄ ⊗ k

Gq̄
−1 ⊗ k+1

k
˘̄q−1 ⊗ quat(Exp(−�Jq(bw − b̄w)×�))

)
(19)

Here we define preintegration measurement means, kᾰk+1,
kβ̆k+1, and k+1

k
˘̄q. For ease of notation we have also defined

Jα = ∂kαk+1

∂bw
,Jβ = ∂kβk+1

∂bw
,Hα = ∂kαk+1

∂ba
, and Hβ =

∂kβk+1

∂ba
. Jq is a matrix which describes how the relative

rotation changes with a change of bw. Exp(·) refers to the
matrix exponential, quat(·) returns the quaternion associated
with the argument rotation matrix, and vec(·) returns the
vector consisting of the first three elements of q̄. Each of
these bias Jacobians can be computed incrementally as new
IMU measurements arrive, with closed-form expressions de-
rived in [8], [23] (along with derivations of the measurement
Jacobians for use in batch optimization). In addition to
the preintegration factors described, states are also linked
by factors constraining the drift of the biases across the
interval [7] (see Figure 1).

A. Preintegration Mean

The preintegration measurement means, kᾰk+1 and
kβ̆k+1, and k+1

k
˘̄q are computed using the inertial measure-

ments and bias linearization points. k+1
k

˘̄q can be found
using successive applications of the zeroth order quaternion
integrator [20]. Based on the definitions of kαk+1 and
kβk+1, we have the following dynamics at every step τ :

kα̇τ=
kβτ (20)

kβ̇τ=
k
τR
(
τam − b̄a − na

)
(21)

The rotation (quaternion) dynamics is given by [20]:

τ
k
˙̄q =

1

2
Ω(τωm − b̄w − nw)

τ
k q̄ (22)

where Ω(ω) =

[−�ω×� ω
−ω� 0

]
and �ω×� =⎡

⎣ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤
⎦. From these definitions, rather than

discretizing the measurement dynamics, we formulate the
following linear system that describes the continuous evo-
lution of the estimated states by taking the (approximate)
expectation of the dynamic equations:[

k ˙̆ατ

k ˙̆βτ

]
=

[
0 I3×3

0 0

] [
kᾰτ
kβ̆τ

]
+

[
0

k
τ R̆

]
(τam − b̄a) (23)

Given a sampled τam and τωm between times [tτ , tτ+1], we
solve this linear system to obtain the updated preintegration
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means. By defining ω̂ = τωm − b̄w , â = τam − b̄a, and
Δt = tτ+1 − tτ , we can integrate (23) using standard linear

system techniques to obtain kᾰτ+1 and kβ̆τ+1:[
kᾰτ+1
kβ̆τ+1

]
=

[
kᾰτ + kβ̆τΔt

kβ̆τ

]
+ (24)⎡

⎢⎢⎢⎢⎢⎢⎢⎣

k
τ+1R̆( (Δt2)

2 I3×3 +
|ω̂|Δtcos(|ω̂|Δt)−sin(|ω̂|Δt)

|ω̂|3 �ω̂×�
+ (|ω̂|Δt)2−2cos(|ω̂|Δt)−2(|ω̂|Δt)sin(|ω̂|Δt)+2

2|ω̂|4 �ω̂×�2)(â)
k
τ+1R̆(ΔtI3×3 − 1−cos(|ω̂|(Δt))

|ω̂|2 �ω̂×�
+ (|ω̂|Δt)−sin(|ω|Δt)

|ω̂|3 �ω̂×�2)(â)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Note that this expression is evaluated every time an IMU
measurement is received during the preintegration interval.
At the end of this interval, the total preintegrated measure-
ments will have been computed. These closed-form expres-
sions allow the derivation of the bias Jacobians associated
with our kᾰk+1 and kβ̆k+1 using the derivatives of the above
equations with respect to the biases [23]. For a comparison
of our method vs. the current, state-of-the-art discrete prein-
tegration [7], the reader is referred to our previous work [8],
where our method was shown to offer improved performance,
in particular, in highly-dynamic trajectories.

B. Preintegration Covariance

For use in batch optimization, we also need to compute
the covariance, P, of the preintegration measurements, such
that for the batch optimization problem (1), Wi = P−1.
This covariance begins at zero, and grows as noise from the
IMU is injected into the system. To compute this covariance,
we begin by defining a linear-system approximation of the
dynamics of the measurement errors by linearizing about the
current state estimates [21]:⎡

⎣Δkα̇τ

Δkβ̇τ

Δτ θ̇k

⎤
⎦ =

⎡
⎣03×3 I3×3 03×3

03×3 03×3 −k
τ R̆�â×�

03×3 03×3 −�ω̂×�

⎤
⎦
⎡
⎣Δkατ

Δkβτ

Δτθk

⎤
⎦

+

⎡
⎣03×3 03×3

−k
τ R̆ 03×3

03×3 −I3×3

⎤
⎦[na

nw

]
(25)

⇒ ṙ = Fr+Gn (26)

This differential equation gives rise to a solution which
describes the error (note that tτ refers to the physical time
corresponding to step τ ):

r(τ + 1) = Φ(tτ+1, tτ )r(τ) +

∫ tτ+1

tτ

Φ(tτ+1, u)G(u)n(u)du

(27)

Φ(tτ+1, tτ ) is the state-transition matrix from step τ to step
τ+1. The state-transition matrix is found using the equations:

Φ̇(tτ+s, tτ ) = F(tτ+s)Φ(tτ+s, tτ )⎡
⎣Φ̇11 Φ̇12 Φ̇13

Φ̇21 Φ̇22 Φ̇23

Φ̇31 Φ̇32 Φ̇33

⎤
⎦=
⎡
⎣03×3 I3×3 03×3

03×3 03×3 −k
τ+sR̆�â×�

03×3 03×3 −�ω̂×�

⎤
⎦
⎡
⎣Φ11 Φ12 Φ13

Φ21 Φ22 Φ23

Φ31 Φ32 Φ33

⎤
⎦

Φ(tτ , tτ ) = I9×9 (28)

This system of differential equations can be solved entry-
wise:

Φ31(tτ+1, tτ ) = Φ32(tτ+1, tτ ) = Φ21(tτ+1, tτ ) = 03×3

Φ11(tτ+1, tτ ) = Φ22(tτ+1, tτ ) = I3×3

Φ33(tτ+1, tτ ) =
τ+1
τ R̆

Φ12(tτ+1, tτ ) = I3×3Δt

Φ23(tτ+1, tτ ) = −�(kβ̆τ+1 − kβ̆τ )×�kτ R̆
Φ13(tτ+1, tτ ) = −�(kᾰτ+1 − kᾰτ − kβ̆τΔt)×�kτ R̆ (29)

Using the state-transition matrix, we can incrementally com-
pute the measurement covariance:

Pk = 09×9

Pτ+1 = Φ(tτ+1, tτ )PτΦ(tτ+1, tτ )
� +Qd

Qd =

∫ tτ+1

tτ

Φ(tτ+1, u)G(u)QcG
�(u)Φ(tτ+1, u)

�du

Qc =

[
σ2
aI3×3 03×3

03×3 σ2
wI3×3

]
(30)

V. DIRECT-ALIGNMENT VISUAL FACTORS

IMU preintegration factors accurately connect nodes that
are time sequential. Over time, however, errors will propagate
and cause divergence of the state estimate. As such, optimally
fusing IMU data with different sensor measurements is
essential for providing long-term accuracy. For visual-inertial
navigation, this extra sensor data takes the form of camera
measurements. These typically come in the form of features:
3D points in the environment corresponding to “interesting”
pixel locations that are matched between images. These
methods, however, fail to utilize the information contained in
other pixels. We therefore leverage the recent progress in di-
rect methods, which seek to estimate relative transformations
using a large subset of the available pixels.

At every image time, the stereo camera records a pair
of images of the surrounding environment. These images
are rectified so that the epipolar line corresponds to the
horizontal, thereby allowing for efficient depth computation.
This yields a depth map for the image pair which describes
the 3D scene in the local frame of reference corresponding
to the base of the alignment. When the scene is recorded
at another time, the environment is projected into this new
image. Barring changes of lighting, we expect pixel intensi-
ties corresponding to the same 3D point to be similar when
viewed in both images.

A. Cost Function
Given two images, I1 and I2, our goal is to estimate the

transformation between the camera poses of the sensor suite
at the two imaging times. I1 and I2 correspond to the left
stereo images at two different times (denoted step 1 and step
2). This estimation is done by finding the relative quaternion
c2
c1q̄ and position c1pc2 that minimize the photometric error
of the alignment [9], [15]:

c2
c1
˘̄q,c1 p̆c2 = arg min

c2
c1q̄,

c1pc2

∑
j∈J

ρ

(
1

σ2
rj

(
I2
(
c1pc2,

c2
c1q̄,

c1pfj

)− I1j
)2)
(31)
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By analyzing (31), we can see that our cost is the sum of
the intensity differences between a pixel in image I1 and the
intensity of that pixel warped into image I2 (see Figure 2).
We sum only over a subset of pixels J , called the valid
pixel set. The warping between the images depends on the
relative transformation parameters, as well as the 3D position
of the pixel in the first frame of reference, c1pfj , which is
found utilizing the first image’s disparity map. The variance
of this residual is denoted σ2

rj , and the weighted photometric
error of each pixel is passed through the Huber cost function
ρ [24], defined as:

ρ(v) =

{
v if v < k2

2k
√
v − k2 otherwise

(32)

The purpose of the Huber cost (with scale k) is to down-
weight large residuals which occur naturally in image align-
ment due to occlusions, and has been used extensively in
previous direct alignment techniques [9].

B. Residual Covariance

The variance of each residual σ2
rj encodes the uncertainty

due to errors in the intensity measurements as well as the
disparity map [9]:

σ2
rj = 2σ2

int +

(
∂rj
∂dj

)2

σ2
dj (33)

We define σ2
int as the variance of the intensity reading,

∂rj
∂dj

as the Jacobian of the intensity residual with respect to the
measured disparity, and σ2

dj as the variance on the disparity
measurement, dj . Defining t as the pixel coordinates, z as
the pixel depth in I1, and b as the baseline between the stereo
pair, this Jacobian can be found using the chain rule:

∂rj
∂dj

=
∂I2
∂t

∂t

∂c2pfj

∂c2pfj

∂c1pfj

∂c1pfj

∂z

∂z

∂dj
(34)

=
[
I2x I2y

] ⎡⎢⎣ fx
c2pfj

(3) 0 − fx
c2pfj

(1)
c2pfj

(3)2

0
fy

c2pfj
(3) − fy

c2pfj
(2)

c2pfj
(3)2

⎤
⎥⎦ c2

c1R
c1pfj

z

−fxb
d2j

I2x and I2y are the image gradients in the x and y directions
respectively, fx and fy are the focal lengths of the camera,
and c2pfj (i) refers to the ith entry in the c2pfj vector.
The variance of the pixel disparity, σ2

dj , can be found by
considering the disparity as the minimizer of the following
cost:

d∗j = argmin
d

1

σ2
rd

((I1L(v, u)− I1R(v, u− d))
2

(35)

That is, this disparity is the maximum likelihood estimate
for a single measurement graph, with the residual being the
difference in intensity between the pixel in the left and right
stereo pair. The variance associated with this residual rd can
be found as σ2

rd = 2σ2
int, and comes from uncertainty in

the intensity readings. I1L and I1R refer to the left and right
images of the stereo pair at step 1. The variance on our
disparity estimate can then be approximated as:

σ2
dj =

(
∂rd
∂d

2 1

σ2
rd

)−1

= σ2
rd

(
1

I1Rx

)2

(36)

C. Direct-Alignment Optimization
At each iteration of our Gauss-Newton optimization, the

update vector Δx =
[
Δc2θ�c1 Δc1p�c2

]�
can be computed

by solving the normal equations:⎛
⎝∑

j∈J
wjJ

�
j Jj

⎞
⎠Δx = −

∑
j∈J

wjJ
�
j rj (37)

where rj is the residual, and wj is a weight computed at

each Gauss-Newton iteration as wj =
∂ρ(vj)
∂vj

1
σ2
rj

:

∂ρ(vj)

∂vj
=

{
1 if vj < k2

k√
vj

otherwise
(38)

Note that vj is the argument of the Huber cost. Jj is the
Jacobian of the dense residual with respect to the error state:

Jj = (39)

[
I2x I2y

] ⎡⎢⎣ fx
c2pfj

(3) 0 − fx
c2pfj

(1)
c2pfj

(3)2

0
fy

c2pfj
(3) − fy

c2pfj
(2)

c2pfj
(3)2

⎤
⎥⎦ [�c2pfj×� −c2

c1R
]

Note that we consider wj as “fixed” during an optimiza-
tion iteration and therefore ignore the terms that add to
our Hessian due to the dependence of wj on the current
estimate. After convergence, we will be left with a distri-
bution on the relative camera pose with covariance Σc =(∑

j∈J wjJ
�
j Jj

)−1

, which we wish to transfer onto one

constraining the relative IMU states:[
c2
c1q̄

c1pc2

]
=

[
c2
c1
˘̄q

c1p̆c2

]
�
[
Δc2θc1
Δc1pc2

]
,
[
Δc2θc1
Δc1pc2

]
∼ N (06×1,Σc)⇒[

2
1q̄
1p2

]
=

[
2
1
˘̄q

1p̆2

]
�
[
Δ2θ1
Δ1p2

]
,
[
Δ2θ1
Δ1p2

]
∼ N (06×1,Σi) (40)

We then transform this distribution using the rigid calibration
parameters between the IMU and camera, (IcR, cpI):

2
1R̆ = I

cR
c2
c1R̆

I
cR

�

1p̆2 = I
cR(c2c1R̆

�cpI +
c1p̆c2 − cpI) (41)

The covariance can be propogated by computing the deriva-
tive of the relative IMU residual with respect to the relative
camera residual:

Σi = HΣcH
�

H =

[
I
cR 03×3

−I
cR

c2
c1R̆

��cpI×� I
cR

]
(42)

Given the two transformation parameters, 2
1
˘̄q and 1p̆2, the

residuals associated with these measurements are given by:

Δ2θ1 = 2vec
(
2
Gq̄ ⊗ 1

Gq̄
−1 ⊗ 2

1
˘̄q−1
)

Δ1p2 = 1
GR
(
Gp2 − Gp1

)− 1p̆2 (43)

These factors can then be inserted into the graph as an edge
connecting the two IMU states, with the information matrix
of this measurement being the inverse of the computed rela-
tive transformation covariance. Alternatively, we could have
formulated the optimization problem (31) directly in terms of
the relative transformation of the IMU poses. However, this
would require more computation, as the warping function
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Fig. 2: Illustration of the direct alignment process. A 3D
scene is projected onto two images corresponding to different
sensor poses. The alignment process attempts to map a large
subset of the pixels in the left image (red) to pixels in the
right image (blue).

would include the rigid transformation. By parameterizing
the problem in terms of the camera state, we need only
compute the transformation at the end rather than at every
Gauss-Newton iteration.

VI. EXPERIMENTAL RESULTS

A. Implementation
Preintegration was performed across all the IMU mea-

surements received between imaging times. Keyframes were
created to serve as the base of the image constraints. When a
new image pair arrived, the current predicted pose was used
to find a close keyframe for alignment. This criterion was
based on the relative position and orientation between the
two poses. If no good keyframe was found, a new one was
generated using the previous imaging time. Direct alignment
was performed between the active keyframe and the newest
image. The disparity map of each keyframe was determined
with the OpenCV function StereoSGBM [25].

In order to speed up processing, we first subsampled the
images into 376 x 240 pixel size. Alignment was performed
across two pyramid levels. The solution for the relative
pose at the first pyramid level served as the initial guess
for the next level, as suggested in [9] and [15]. Intuitively,
this corresponds to a coarse alignment across a subset of
pixels with the highest visual frequencies removed, followed
by a finer alignment on the largest image. In practice this
leads to a higher basin of attraction for the alignment
method. The set of valid pixels were chosen as those with
successful depth estimates and gradients above a threshold.
Batch optimization across all the image times was performed
after every new image using the iSAM2 [26] implementation
available within GTSAM [13]. This incremental smoothing
approach allows for very fast, approximate updates as new
measurements are added into a graph. To ensure long-term
performance, full optimization was performed at periodic
intervals.

B. Real-World Experiments
To verify the proposed dense-VINS with analytical prein-

tegration, we tested our approach on several publicly avail-

Fig. 3: Ground truth vs. the estimated trajectory of the
proposed dense VINS in the experiment on the V1-02-
medium dataset [27].

able real-world, EuRoC MAV Datasets [27]. The three
datasets tested were V1-02-medium, V1-03-difficult, and V2-
02-medium (Vicon Room 1 02, Vicon Room 1 03, and Vicon
Room 2 02). These datasets consist of an UAV equipped
with an IMU and stereo camera exhibiting dynamic motion
through an indoor environment. IMU readings and image
pairs were recorded at 200 Hz and 20 Hz respectively.
Note that we inflated the visual factor noise covariance to
capture unmodeled errors. The trajectory for V1-02-medium
is shown in Figure 3. For V1-02-medium, the position RMSE
was approximately 0.07 m (0.098% of the path). For V1-
03-difficult, the algorithm achieved an RMSE of 0.086 m
(0.1% of path). Finally, for V2-02-medium, the RMSE was
0.14 m (0.17% of path). The error values across each of the
paths are shown in Figure 4. These results clearly validate
the proposed method.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have introduced a graph-based sensor
fusion algorithm for visual-inertial navigation. In particular,
IMU measurements are processed in a continuous fashion to
provide high-accuracy preintegrated inertial factors. These
are then combined with relative-pose constraints derived
from direct alignment of images from a stereo system. The
proposed direct-VINS method has been validated on real-
world datasets and shown to attain good performance. Note
that in this work, in order to prove the key concepts of fusing
analytical IMU preintegration with direct visual alignments,
our method still requires a periodic, full-batch solution of the
global graph, which would prevent real-time performance. As
such, we plan to leverage our prior work on marginalization
techniques [28], [29] to optimally remove past states. In
addition, we plan to extend our work to include better loop
closure detection, improved depth map computation, and
robustness to alignment failures.
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