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Motivation

• Robotics present challenging 
environments for realizing
estimation, perception, and 
SLAM!

• Visual-inertial navigation systems 
(VINS) are crucial and well suited
for many applications
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Wearables and Health Tracking

Nano Aerial Vehicles

Autonomous DrivingExtraterrestrial Robots 

Warehouse RoboticsMicro Aerial Vehicles

AR / VR Experiences

Human Pose Tracking



Significance of VINS

• Improving the computational efficiency, 
robustness, and accuracy are 
challenging open research problems

• Improvements directly impact all 
applications which leverage VINS

• Directly allow for:

1. Low-cost: sensors, compute platforms, 
and robots

2. Reduced computational energy (longer 
missions)

3. Better robustness and accuracy opens 
gateway for more demanding scenarios
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Outline - Estimation Methodology

• Multi-State Constraint Kalman Filter (MSCKF)

• Batch Least Squares (BLS) with Pre-integration

• Incremental Optimization (square-root information form)
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Problem: Visual-Inertial Estimation
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Problem: Visual-Inertial Estimation

• Given: Bearings             and inertial 
readings 

• Goal: Estimate inertial states and 
features

6



IMU Measurement Model:
• Gyroscope:

• Accelerometer:

Models: Inertial Kinematics
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: quaternion 
: rotation matrix
: position
: velocity
: angular velocity
: linear acceleration
: gyro. bias
: accel. bias
: global gravity
: gyro white noise
: gyro random walk
: accel white noise
: accel random walk
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Continuous-Time
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: gyro. bias
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Discrete State 
Evolution Model



Models: Camera Measurements
• Distort to “raw” uv from the 

“ideal” image plane uv

distort      to    in the raw image

8
[1] Geneva, Patrick, et al. "OpenVINS: A research platform for visual-inertial estimation." 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020.



Models: Camera Measurements

• Project onto the “ideal” 
image plane

• Distort to “raw” uv from the 
“ideal” image plane uv

distort      to    in the raw image
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Fully combined feature measurement function:

[1] Geneva, Patrick, et al. "OpenVINS: A research platform for visual-inertial estimation." 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020.



Background - Extended Kalman Filter (EKF)

9

prior control input / state evolution

Propagation



Background - Extended Kalman Filter (EKF)

9

propagation state observation
prior control input / state evolution

Propagation Update



Background - Extended Kalman Filter (EKF)

9

propagation state observation
prior control input / state evolution

Propagation Update

Linearization:



Background - Extended Kalman Filter (EKF)
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propagation state observation
prior control input / state evolution

Propagation

Standard EKF Update

where:

state:

covariance:

Update

Linearization:



Multi-State Constraint Kalman Filter (MSCKF)

• The MSCKF allows for updating features without inserting their 
estimates into the state vector

• Reduced complexity increases computational efficiency

10

[1] Mourikis, Anastasios I., and Stergios I. Roumeliotis. "A multi-state constraint Kalman filter for vision-aided inertial navigation." Proceedings 2007 IEEE International Conference on Robotics and Automation. IEEE, 2007.
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MSCKF Measurement Update

• Measurement equations
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MSCKF Measurement Update

• Measurement equations

• Linearized measurement equation

• Project onto       left nullspace
 Equivalent to marginalization

• Perform standard EKF update!
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nullspace 
projection

Nullspace projection causes derivative in 
respect to the feature to go to zero! 



MSCKF – Estimation Flowchart: Recap

• MSCKF is an efficient method 
for light-weight sensor fusion

• Two step process: Inertial 
propagation and measurement 
update

12
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MSCKF – Estimation Flowchart: Recap

• MSCKF is an efficient method 
for light-weight sensor fusion

• Two step process: Inertial 
propagation and measurement 
update
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PropagateIMU

Track Sparse 
Features

Nullspace 
Projection

EKF
Update

Camera

Step 1 Step 2

SLAM 
Feats

MSCKF 
Feats

SLAM
Can also continuously estimate 
“SLAM” features kept in state



Problem: Factor Graph Perspective
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• Robotic Trajectory:



Problem: Factor Graph Perspective
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Converted 
to Factor 

Graph• Factor Graph Form:

• Robotic Trajectory:



Batch Least Squares (BLS) Estimation
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observation

Inertial Cost Feature / Bearing Cost

control input / state evolution

Prior Cost

[1] Grisetti, Giorgio, et al. "g2o: A general framework for (hyper) graph optimization." Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China. 2011.
[2] Dellaert, Frank. Factor graphs and GTSAM: A hands-on introduction. Georgia Institute of Technology, 2012.



Batch Least Squares (BLS) Estimation
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observation

Inertial Cost Feature / Bearing Cost

control input / state evolution

Prior Cost

[1] Grisetti, Giorgio, et al. "g2o: A general framework for (hyper) graph optimization." Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China. 2011.
[2] Dellaert, Frank. Factor graphs and GTSAM: A hands-on introduction. Georgia Institute of Technology, 2012.

Optimization Formulation:

Can use Gauss-
Newton algorithm



Solutions:
 Sliding window optimization 

(fixed-lag smoothers)

 BLS with graph reduction 
(sparsification)

 Incremental optimization

BLS – Efficient Estimators

Challenge:
 Standard BLS is cubic in terms of the state size O(n3)

 Application to real-time robotic systems requires modifications
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States we wish to marginalize to 
reduce state size & save compute.

States are now 
related through prior.

[1] Leutenegger, Stefan, et al. "Keyframe-based visual–inertial odometry using nonlinear optimization." The International Journal of Robotics Research 34.3 (2015): 314-334.
[2] Kaess, Michael, et al. "iSAM2: Incremental smoothing and mapping using the Bayes tree." The International Journal of Robotics Research 31.2 (2012): 216-235.
[3] Hsiung, Jerry, et al. "Information sparsification in visual-inertial odometry." 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018.



BLS – Marginalization

• Many different practical methods to enable efficient BLS

• Key Considerations:
 What states to marginalize?

 When to marginalize?

• Examples:
 Keyframing of poses

 Dropping of features

 Duplication of measurements

 Non-linear factor recovery

 Fully dense marginal factor

16[photo] Leutenegger, Stefan, et al. "Keyframe-based visual–inertial odometry using nonlinear optimization." The International Journal of Robotics Research 34.3 (2015): 314-334.
[2] Nerurkar, Esha D., Kejian J. Wu, and Stergios I. Roumeliotis. "C-KLAM: Constrained keyframe-based localization and mapping." 2014 IEEE international conference on robotics and automation (ICRA). IEEE, 2014.



BLS – Inertial Pre-integration

• Naive use of inertial measurement model requires re-integration of

• Decouple integration and state variables (through approximations) to 
remove need to re-integrate when states re-linearize during optimization

17[1] Forster, Christian, et al. "On-manifold preintegration theory for fast and accurate visual-inertial navigation." IEEE Transactions on Robotics (2015): 1-18.
[2] Eckenhoff, Kevin, Patrick Geneva, and Guoquan Huang. "Closed-form preintegration methods for graph-based visual–inertial navigation." The International Journal of Robotics Research 38.5 (2019): 563-586.

Not a function of current state 
(after bias linear approx)! 



BLS – Estimation Flowchart: Recap

• Factor graphs can provide 
a unified design 
language for sensor 
fusion algorithms

• Allows for higher level 
abstraction away from 
linear algebra 
representation

18

PreintegrateIMU

Track Sparse 
Features

Reprojection

Factor Graph

Camera

Step 1: Append Factors
Step 2: Optimize
Step 3: Marginalize

Optimization
Solver

Marginalize



Incremental Optimization using Sqrt-Info

• Key ideas:
 Use Cholesky factorization of Hessian (information)
 Can formulate equivalent optimization problem using square-root matrix 

• Advantages of square-root form:
 Better system numerical properties (smaller condition number) can enable use of 

single-precision arithmetic
 Optimal state ordering can allow for efficient Givens QR (e.g. iSAM)

19

[1] Dellaert, Frank, and Michael Kaess. "Square Root SAM: Simultaneous localization and mapping via square root information smoothing." The International Journal of Robotics Research 25.12 (2006): 1181-1203.
[2] Maybeck, Peter S. Stochastic models, estimation, and control, vol 1. Academic press, 1982.
[3] Kaess, Michael, Ananth Ranganathan, and Frank Dellaert. "iSAM: Incremental smoothing and mapping." IEEE Transactions on Robotics 24.6 (2008): 1365-1378.
[4] Wu, Kejian, et al. "A Square Root Inverse Filter for Efficient Vision-aided Inertial Navigation on Mobile Devices." Robotics: Science and Systems. Vol. 2. 2015.

Square-root information 
through QR decomposition

Reformulate original BLS in square-
root form (equivalent)

Standard BLS solution 



Incremental Optimization – An Example

20
[1] Dellaert, Frank, and Michael Kaess. "Square Root SAM: Simultaneous localization and mapping via square root information smoothing." The International Journal of Robotics Research 25.12 (2006): 1181-1203.
[2] Wu, Kejian, et al. "A Square Root Inverse Filter for Efficient Vision-aided Inertial Navigation on Mobile Devices." Robotics: Science and Systems. Vol. 2. 2015.
[3] Golub, Gene H., and Charles F. Van Loan. Matrix computations. Vol. 3. JHU press, 2013.

Prior Cost

• All information stored in sqrt 
information form
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Inertial & Feature Cost

Prior Cost

• All information stored in sqrt 
information form

New Factors:
 Will ruin upper triangle structure
 Re-triangulate using QR
 Appends new information to sqrt matrix!
 State re-ordering allows for efficient QR
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Estimation Methodology Equivalences

EKF ⇔MAP Optimization w/ one Gauss-Newton Iteration

EKF ⇔ Extended Inverse (Information) Filter (EIF)

EKF ⇔ Square-Root EKF (SW-EKF)

MSCKF (nullspace) ⇔ BLS with Feature Marginalization (schur)

21
[1] Bell, Bradley M., and Frederick W. Cathey. "The iterated Kalman filter update as a Gauss-Newton method." IEEE Transactions on Automatic Control 38.2 (1993): 294-297.
[2] Wu, Kejian, et al. "A Square Root Inverse Filter for Efficient Vision-aided Inertial Navigation on Mobile Devices." Robotics: Science and Systems. Vol. 2. 2015.
[3] Yang, Yulin, James Maley, and Guoquan Huang. "Null-space-based marginalization: Analysis and algorithm." 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017.

Takeaway:

Equivalent up to linearization errors in theory. Choice 
is based on end application use (e.g., computational 
efficiency and accuracy levels required).



Outline – Essential Building Blocks

• Feature Tracking and Matching

• Observability

• Filter Consistency

• Degenerate Motion

• Initialization

• Calibration

• Robustness

• Long-Term Navigation
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Feature Tracking and Matching

• Indirect methods
 Geometric points or lines
 Track temporally using KLT or 

descriptors
 RANSAC for outlier rejection

• Direct methods
 Intensity based cost function
 Still rely on gradient 

information, but more robust 
in low-texture environments

 How to project features into 
future frames?

23

[1] Lucas, Bruce D., and Takeo Kanade. "An iterative image registration technique with an application to stereo vision." 1981.
[2] Rublee, Ethan, et al. "ORB: An efficient alternative to SIFT or SURF." 2011 International conference on computer vision. Ieee, 2011.
[3] Golub, Gene H., and Charles F. Van Loan. Matrix computations. Vol. 3. JHU press, 2013.
[4] Bloesch, Michael, et al. "Iterated extended Kalman filter based visual-inertial odometry using direct photometric feedback." The International Journal of Robotics Research 36.10 (2017): 1053-1072.



Observability

• Determine if we are able to 
fully recover the state given 
sensor measurements

 Compute by stacking all 
Jacobians and state transitions

 If nullspace exists then it is the 
unobs. direction

24

Conical 4 unobs. directions for VINS: 
Yaw (left), Translation (right)

• Why we care about observability:
 Determines minimal information to 

recover states

 Enables design of consistent
estimators (e.g., FEJ, OC-EKF, etc.)

 Identify degenerate motions

[1] Yang, Yulin, and Guoquan Huang. "Observability analysis of aided ins with heterogeneous features of points, lines, and planes." IEEE Transactions on Robotics 35.6 (2019): 1399-1418.



Estimator Consistency

• Estimation error should be zero 
mean and estimate covariance
should be larger than or equal to the 
true covariance

• Preventing information gain in 
unobservable directions is key to 
improving consistency

• Existing Algorithms:
 Robot-centric
 First-Estimate Jacobians
 OC-EKF
 Invariant filters

25

[1] Castellanos, José A., José Neira, and Juan D. Tardós. "Limits to the consistency of EKF-based SLAM." IFAC Proceedings Volumes 37.8 (2004): 716-721.
[2] Huang, Guoquan P., Anastasios I. Mourikis, and Stergios I. Roumeliotis. "Observability-based rules for designing consistent EKF SLAM estimators." The International Journal of Robotics Research 29.5 (2010): 502-528.
[3] Wu, Kanzhi, et al. "An invariant-EKF VINS algorithm for improving consistency." 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017.
[4] Bar-Shalom, Yaakov, X. Rong Li, and Thiagalingam Kirubarajan. Estimation with applications to tracking and navigation: theory algorithms and software. John Wiley & Sons, 2004.
[photo] Hesch, Joel A., et al. "Camera-IMU-based localization: Observability analysis and consistency improvement." The International Journal of Robotics Research 33.1 (2014): 182-201.

All preserve 
original VINS 

unobs. dir.
Inconsistency cause estimator errors, thus 
we minimize inconsistencies!

NEES is large since covariance is overconfident



Degeneracy 

• Situations which cause additional 
unobservable directions in VINS 
(4DoF canonical)

• Identify degeneracies through 
inspection of observability matrix
 System – Likely to cause VINS to fail
 Calibration – Can possibly degrade 

performance

• Degeneracies weaken system 
robustness

• Degeneracies can test estimator 
consistency since there should be 
no information gained

26

System Degeneracies

Calibration Degeneracies

No information is gained in unobservable 
directions (constant variance)

[1] Yang, Yulin, et al. "Degenerate motion analysis for aided ins with online spatial and temporal sensor calibration." IEEE Robotics and Automation Letters 4.2 (2019): 2070-2077.
[2] Yang, Yulin, et al. "Online IMU Intrinsic Calibration: Is It Necessary?." Proc. of the Robotics: Science and Systems, Corvallis, Oregon (2020): 716-20.



State Initialization

• Initialization is the task of 
determining the initial system state

• VINS has 4DoF unobservable, thus 
need to initialize the other 11DoF

• Initialization Challenges:
 Want to initialize as fast and robustly

as possible
 Shorter time makes recovering the 

initial states more difficult or unobs.
 Longer times introduce error due to 

time offsets, inertial noise, along with 
increased computation

27

Global yaw and position unobservable 
(thus can be chosen arbitrarily)

Example SFM Procedure:
1. Collect a window of measurements
2. Perform traditional visual SFM to get up-

to-scale camera trajectory
3. With pre-integrated inertial readings 

recover gravity and state velocities
4. Refine estimates with non-linear 

optimization to get final state estimates

[1] Martinelli, Agostino. "Closed-form solution of visual-inertial structure from motion." International journal of computer vision 106.2 (2014): 138-152.
[2] Dong-Si, Tue-Cuong, and Anastasios I. Mourikis. "Estimator initialization in vision-aided inertial navigation with unknown camera-IMU calibration." 2012 IROS. IEEE, 2012.
[3] Campos, Carlos, José MM Montiel, and Juan D. Tardós. "Inertial-Only Optimization for Visual-Inertial Initialization." 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020.



Calibration

• Can be performed offline prior to 
estimation, online during, or both

• Offline calibration:
• Highly accurate
• Can control sensor motion
• Might not always be possible

• Online calibration:
• Crucial for practical deployments

handling of poor initial values
• Handling time-varying calibration 

parameters
• Improves estimation robustness

28

Camera Clock

IMU Clock

Example Parameters
Camera-inertial spatial-temporal

Camera intrinsic (focal, center, dist)
Inertial intrinsic (scale, skew)



Robustness and Resiliency

• Challenges:
1. Hard failures – no measurement 

information (sensor drop)
2. Soft failures – data becomes corrupt

(invalidated measurement model)

• Examples:
 Unmeasurable external forces (e.g., 

moving platform)
 Dynamic environments
 Sensor variations (e.g., exposure, 

temperature)

• Can address through leveraging multi-
sensor fusion

29
[1] Eckenhoff, Kevin, Patrick Geneva, and Guoquan Huang. "MIMC-VINS: A versatile and resilient multi-IMU multi-camera visual-inertial 
navigation system." IEEE Transactions on Robotics (2021).



Long-Term Navigation

• Can incorporate loop-closure directly 
or split the problem into two parts:
 Frontend (Localization): Fast, drifts with 

time, short-term accuracy matters

 Backend (Mapping): Slow, loop-closure, 
global consistency matters

• Challenges:
 Incremental vs full batch pose graph

 Optimal selection problem to reduce 
complexity and memory usage

 Robust loop-closure detection and 
constraints

30[1] Qin, Tong, Peiliang Li, and Shaojie Shen. "Vins-mono: A robust and versatile monocular visual-inertial state estimator." IEEE Transactions on Robotics 34.4 (2018): 1004-1020.
[2] Geneva, Patrick, Kevin Eckenhoff, and Guoquan Huang. "A linear-complexity EKF for visual-inertial navigation with loop closures." 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019.

Addition of loop-closures can limit odometry drift



Outline - Available Open Sourced Systems

• Open Source Estimators

• Dataset Benchmarks

• Metrics and Evaluation

31



Visual-Inertial Research: Embracing Open Source

• Wide range of systems available for visual-inertial research

• Our group’s: OpenVINS which is a feature complete filter system for 
use on resource constrained platforms and as an odometry frontend

32



OpenVINS 

• An open platform for VINS research
(OpenVINS) which achieves state-of-
the-art performance

• On manifold sliding window Kalman 
filter with modular type system for 
state management (gtsam inspired)

• Detailed documentation and 
derivations to support researchers 
using the codebase: 
https://docs.openvins.com/

33

https://github.com/rpng/open_vins

[1] Geneva, P., Eckenhoff, K., Lee, W., Yang, Y. and Huang, G., 2020, November. OpenVINS: A research platform for visual-inertial estimation. In 
Proc. of the IEEE International Conference on Robotics and Automation, Paris, France.



OpenVINS – Key Features

• Sliding window visual-inertial MSCKF

• Modular covariance type system

• Comprehensive documentation and derivations

• Extendable visual-inertial simulator
• On manifold SE(3) b-spline
• Arbitrary number of cameras
• Arbitrary sensor rate
• Automatic feature generation

• Five different feature representations

• Environmental SLAM feature
• OpenCV ARUCO tag SLAM features
• Sparse feature SLAM features

• Calibration of sensor intrinsics and extrinsics
• Camera to IMU transform
• Camera to IMU time offset
• Camera intrinsics

• Visual tracking support
• Monocular / Stereo / Binocular cameras
• KLT or descriptor based

• First-Estimate Jacobians for consistent estimation

• Static IMU initialization

• Zero velocity detection and updates

• Out of the box dataset evaluation on:
• EurocMav
• TUM-VI
• UZH-FPV Drone Racing
• KAIST Urban Driving

• Extensive evaluation suite:
• ATE, RPE, NEES, RMSE
• Timing evaluation and plotting

• Codebase extensions:
• ov_secondary – Secondary pose graph with loop-closure
• ov_maplab – Multi-session mapping and offline optimization
• vicon2gt – Groundtruth gen. for VIO dataset evaluation

34
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Lots of great features directly “out-of-the-box” 
to enable research and practical deployment!



Wide Range of VINS Datasets
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Metrics for Evaluation

• Quality of groundtruth remains 
challenging in realworld datasets

• High quality metrics allow for fair 
comparison of different algorithms

• Open Source Toolboxes:

 evo - https://github.com/MichaelGrupp/evo

 rpg_trajectory_evaluation -
https://github.com/uzh-rpg/rpg_trajectory_evaluation

 ov_eval - https://github.com/rpng/open_vins

36

• Absolute Trajectory Error (ATE)

• Relative Pose Error (RPE) [recommended]

• Normalized Estimation Error Squared (NEES)

[1] Zhang and Scaramuzza. "A tutorial on quantitative trajectory evaluation for visual (-inertial) odometry." International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018.

Relative pose for 
trajectory segments



Metrics for Evaluation

• Quality of groundtruth remains 
challenging in realworld datasets

• High quality metrics allow for fair 
comparison of different algorithms

• Open Source Toolboxes:

 evo - https://github.com/MichaelGrupp/evo

 rpg_trajectory_evaluation -
https://github.com/uzh-rpg/rpg_trajectory_evaluation

 ov_eval - https://github.com/rpng/open_vins

36

• Absolute Trajectory Error (ATE)

• Relative Pose Error (RPE) [recommended]

• Normalized Estimation Error Squared (NEES)

[1] Zhang and Scaramuzza. "A tutorial on quantitative trajectory evaluation for visual (-inertial) odometry." International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018.

Fast evaluation tool with additional recording 
and timing utilities!

Relative pose for 
trajectory segments



Outline – Conclusion

• Future Directions

• Conclusion
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Where Next?

• Practicality: Many challenges to widely deploying VINS 
(e.g. known calib etc.)

• Robustness: Moving environment, long-term seasons, 
sensor variances

• Semantic Understanding: Object-wise and uncertain 
network classifications

• Computational: Real-time robotic systems (low-cost IoT
devices, latency, etc.)

• Aided-INS: Incorporating additional sensors (e.g. event, 
thermal, etc.)

• Cooperative: Multi-robot systems (measurement 
selection, distributed, scalability, etc.)

• Dynamics: Integrate robot dynamics

38[1] Huang, Guoquan. "Visual-inertial navigation: A concise review." 2019 international conference on robotics and automation (ICRA). IEEE, 2019.
[photo] Dong, Jingming, Xiaohan Fei, and Stefano Soatto. "Visual-inertial-semantic scene representation for 3D object detection." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017.

Higher level environmental understanding 
in both geometric and semantic way



Summary & Thanks!
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• This presentation:
• Introduced background on 

traditional VINS estimators
• Discussed challenges in designing 

VINS algorithms
• Presented summary of current 

open-sourced codebases, datasets, 
and evaluation tools

• Contact information:
• Patrick Geneva (@goldbattle github)
• pgeneva@udel.edu
• https://pgeneva.com/

Please checkout OpenVINS!

https://github.com/rpng/open_vins

https://docs.openvins.com/


